用户名: 密码: 验证码:
高效能整流系统理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日渐枯竭和环境污染的日益加剧,电能作为当今时代最为便捷、宝贵、绿色环保的能源形式,对整个人类现代化文明的发展和推动起着重要作用。联合国千年大会确定全球经济走低碳、可持续发展道路的大背景下,如何提高电能使用效率、加强电能质量控制和管理正越来越得到各国政府的重视。对一些高耗能领域如冶金和化工等行业,目前广泛使用的二极管或晶闸管大功率整流电源系统,普遍存在能耗高、功率因数低和谐波污染严重等问题。因此,研究和开发新型高效能整流系统及配套控制技术,为实现企业节能、减排和增效的目标而具有极其重要的意义。
     高效能整流系统是集电能变换、谐波治理和无功补偿于一体的以高效能为特征的大功率整流电源系统。本文基于课题组提出的感应滤波技术,主要针对新型12脉波高效能整流系统的基本理论、关键技术及工程应用等方面展开研究。本文所做研究工作的特色及取得的主要创新成果体现在以下几个方面:
     1)对高效能整流系统的工作机理进行理论分析,建立了电路解耦模型。首先建立起以变压器为核心的系统电磁约束方程,并假设系统三相对称,推导出系统单相等值电路数学表达式,得到系统单相电路解耦模型,据此从电路理论角度揭示系统感应滤波作用机理、需满足的条件及无功补偿原理等;同时,依据系统工作条件及变压器物理结构对称的特点,对系统模型进行了简化处理,使得该模型既能充分表征系统内部复杂电磁作用关系又具有形式简洁、物理意义明晰的特点,为后续的系统运行特性研究、各部件优化设计及验证工作奠定了理论基础。
     2)对高效能整流系统的稳态运行特性进行研究。以实施感应滤波技术对系统工作性能的改善程度为指标,推导了系统基波、谐波运行条件下的各端口电量关系特性方程。同时,探讨以新型整流变压器为核心的高效能整流系统对谐波抑制、无功补偿及整流换相过程的影响。依据相同工况,对常规网侧滤波整流系统和高效能整流系统进行基波、谐波运行条件下的比较研究,从仿真和实验效果验证高效能整流系统优于常规整流系统,能更好地满足各项运行指标要求。
     3)对高效能整流系统配套滤波装置方案设计、选型及其参数优化方法进行深入研究。依据实际工况,对各滤波方案进行评估和选择的具体方法进行了系统分析和探讨,建立了滤波装置参数设计的多目标优化数学模型,提出了基于向量评价的改进粒子群算法,对滤波参数进行了全面优化设计。算例分析和仿真、实验结果表明:应用优化后的滤波方案及参数,使得系统网侧5、7次等低次谐波放大现象得到了有效防治,滤波效果及评价指标能够较好地满足预设要求。所涉及的滤波装置方案选型及参数优化设计方法,将为12脉波高效能整流系统的工程应用推广提供设计指导作用。同时,为电力系统其它类型滤波装置设计提供方法参考。
     4)对高效能整流系统的整体节能增效潜能进行挖掘。通过采取系统能效监测、系统优化控制两个技术手段来进一步增进高效能整流系统的整体节能效果。在大功率整流节能新技术的推广应用过程中,迫切需要建立一套能效监测分析系统,以实现系统各部件能效指标的准确测量与考核,并以此实施对各项先进节能方案或技术的客观比较和评价。在该能效监测系统的研制过程中,提出了一种反演测算法,以解决整流现场大直流电流的精确测量问题。同时,在实施高效能整流过程控制中,以提升系统电能质量水平和晶闸管、调压设备二者动作协调性为目标,从晶闸管和调压变压器协同控制的角度,建立了晶闸管和调压设备专家协同控制算法模型。研究结论表明:采用此协同控制方案能够有效提升晶闸管和调压设备的动作效率,并使晶闸管的触发角处于最优调整范围。
     5)对高效能整流系统的工程应用进行现场能效测试与分析。以某电解供电系统应用工程作为典型案例,介绍了高效能整流系统的应用背景、接线方案和主参数设计情况;对该系统谐波、功率因数、各部件功率损耗量测及效率指标情况进行了现场测试与分析。测试结果验证了高效能整流系统的效率和电能质量均具备较高的水平,为感应滤波技术在其它领域的应用推广提供了工程范例。
     综上所述,本文就12脉波大功率高效能整流系统的主电路拓扑、解析数学模型、系统等值电路、系统工作机理、配套参数优化设计及专家仲裁协同控制算法等方面进行了研究,初步建立了一套关于高效能整流系统以节能提效为特点的较为完善的理论和方法,为高效能整流系统在电铁牵引系统、高压直流输电等领域的推广应用奠定了理论和技术基础,其所取得的研究成果和工程应用实践也为其它领域新型高效换流装备的研制提供有益的参考和借鉴作用。
With the increasing depletion of fossil fuels and exacerbation of environmental pollution, electric energy as the most convenient, valuable and green energy plays an important role to develop and promote the modernization of the entire human civilization. United Nations Millennium Assembly determined that the global economy should choose the low-carbon and sustainable way. Under this background, how to improve energy efficiency and enhance power quality control and management has increasingly gained the attention of governments of all countries. For some high energy-consuming areas such as metallurgy and chemical industries, the high-power rectifier system with diodes or thyristors is now widely employed, but there are huge energy loss, low power factor and severe harmonic pollution and other negative issues. Therefore, the research and development of new high performance rectifier system (HPRS) and its control technologies is extremely important for the realization of energy saving, emission reduction and efficiency promotion goals.
     With high operating performance, the proposed HPRS, which can synchronously complement electrical energy transformation, harmonic suppression and reactive power compensation, is a new-type high-power rectifying supply system. Based on inductive filtering method, the basic theory, key technologies and engineering application of HPRS in12-pulse form are mainly researched in this thesis. The major work and the innovative achievement in this thesis are summarized as follows:
     1) The operating mechanism of HPRS is analyzed and the decoupling circuit model is established. First, the whole system electromagnetic constraint equations associated with the transformer are presented. Then, under the symmetric condition of power supply system with HPRS, the system single-phase decoupling model is established and its single-phase equivalent circuit equations are derived. Based on these equations, the operating mechanism of the inductive filtering system is analyzed, and the conditions of inductive filtering needed to meet and the principle of reactive power compensation are also discussed. Meanwhile, according to the system symmetrical feature of physical structure, the system decoupling model is simplified. With the simplified model, it has the advantage to fully characterize complex electromagnetic relationship of the system by using a simple form, which lays the theoretical foundation for the follow-up study of operating characteristics, the optimization design of components and verification work.
     2) The steady-state operating characteristics of HPRS are studied. The characteristic equations of each port of the system under the fundamental and harmonic operating conditions are derived, which aims at the performance improvement with inductive filtering technology. At the same time, with the new-type rectifier transformer, the HPRS's performance on harmonic suppression, reactive power compensation and commutation process is separately investigated. For the same operating conditions of fundamental and harmonics environment, the comparative study is done between the HPRS and the conventional one which with filtering device on the network side. From the simulation and experimental results, it is concluded that HPRS is superior to conventional rectifier system and better meet the performance requirements.
     3) The study on the design, selection and detail parameter optimization of L-C filtering device of HPRS is done. Considering the actual conditions, each filtering configuration is evaluated and the multi-objective optimization mathematical model for the filtering parameters design is established. An improved particle swarm optimization algorithm based on vector evaluation method is put forward for the parameters optimization of the chosen filtering scheme. Examples analysis, simulation and experimental results show that the optimized filter can satisfy with the pre-design requirements and performed a good filtering effect, especially to deal with the currents amplification phenomenon of5th and7th harmonic at the system grid-side. The method of filtering scheme selection and its filtering parameters optimization will provide design guidance for the engineering application of HPRS, and it also can provide reference for other power filters design.
     4) The potential efficiency promoting methods for the HPRS is further excavated. By using the energy monitoring system and the optimization control technology, the overall efficiency of HPRS can be further enhanced. During the development of new energy-saving technology for high-power rectifier system, it urgently needs to employ an efficiency monitoring system in order to achieve accurate power measurement and give appropriate efficiency assessment for each component or energy-saving technology. For the proposed efficiency monitoring system, a current inversion algorithm is proposed to solve the accurately measurement problem for heavy direct current. Meanwhile, in order to improve system power quality and coordination between the thyristors and the voltage regulating devices, an expert cooperative control algorithm model is proposed for the rectifier control. The test results of this control algorithm showed that it can improve the adjustment efficiency of both thyristors and voltage regulator and guarantee the firing angle of the thyristors keeping within optimal adjustment range.
     5) The system efficiency of HPRS's engineering application is tested and analyzed. By taking one electrolysis rectifier system as a typical case, the background of HPRS's application, the wiring scheme of main circuit and its design parameters are introduced. Then, based on these measured data got by field test, the items about system harmonics, power factor and power consumption of each component are analyzed. The analysis demonstrates that HPRS possesses good characteristics on operating efficiency and power quality, which provides engineering examples to promote the application of inductive filtering technology in other fields.
     In summary, the HPRS's working mechanism, the main circuit topology, analytical mathematical model, the system equivalent circuit, the filtering parameter optimization design and the system collaborative control algorithms based on experts arbitration are conducted in this thesis. The basic theory and key technology of HPRS, which has the characteristics of power saving and efficiency promoting, is initially set up, it lay the theoretical and technical foundation for the application of HPRS in high power current conversion areas such as electric railway traction systems, HVDC, etc. The research results and engineering application cases of HPRS can also provide a useful reference for the development of high performance commutation equipments in other areas.
引文
[1]国家发改委. “十二五”节能减排综合性工作方案.2011
    [2]郭廷杰.深化电力体制改革确保完成“十二五”规划节能减排指标.节能,2012,32(7):4-6
    [3]王志轩,张晶杰.中国“十二五”电力节能减排展望.中国能源,2010,32(12):1-9
    [4]乔树通,姜建国,左东升.电解电源及其控制技术的现状与展望.氯碱工业,2006,(1):6-10
    [5]Rodriguez J R, Pontt J, Silva C, et al. Large current rectifiers:State of the art and future trends. IEEE Transactions on Industrial Electronics,2005,52(3): 738-746
    [6]Siebert A, Troedson A, Ebner S. AC to DC power conversion now and in the future. IEEE Transactions on Industry Applications,2002,38(4):934-940
    [7]林海雪.几种国外谐波电压标准的分析.供用电,2008,25(3):4-8
    [8]李冬林.整流装置非同相逆并联接线的原理.变压器,2009,46(3):29-30
    [9]阳楚君.同相逆并联在整流装置中的应用.中国氯碱,2005,(3):53-55
    [10]冯巧玲.自动控制原理.北京:航空航天大学出版社,2003
    [11]廖秀华.氯碱整流新技术应用动态.中国氯碱,2003,(1):4-7
    [12]乔树通,姜建国,黄瑞赞,芮智.全数字整流控制系统在电解铝供电系统中应用的节能研究.电气技术,2007,(8):58-61
    [13]魏玉斌,高峰,田亮.浅谈整流微机控制系统抗干扰.2010氯碱整流技术研讨会论文集,2010,1:94-96
    [14]齐敏,周立志.计算机及PLC技术在整流系统中的应用.氯碱工业,2005,(10):8-9
    [15]周鹏翀.新一代整流控制技术在金牛钾碱公司的应用.河北煤炭,2005,(10):6-10
    [16]周立志.数字技术在整流测控系统中的应用.中国氯碱,2003,(3):24-27
    [17]王卓,高鹏,夏国庆,路亚浩.基于模糊控制的电解整流电源系统设计.重型机械,2009,(3):47-50
    [18]胡刚,沈悦,刘延冰.用模糊控制器控制直流大电流的探讨.中国氯碱,1995,(8):35-37
    [19]黄海悦,申群泰.神经网络专家系统在整流直流电力经济运行中的应用.控 制与决策,2001,16(1):937-941
    [20]郑连清,王腾,邹涛.基于神经网络的三相全控桥整流电路故障诊断.重庆大学学报(自然科学版),2004,27(9):72-75
    [21]付青,罗安,吴良柱,等.基于自适应神经网络的大功率电解整流系统.电力电子技术,2004,38(6):77-79
    [22]李小英,匡宇国.模糊自适应整定PID-FS在整流电源中的应用.电力电子技术,2007,41(2):63-65
    [23]徐飞,胡志坤,安庆,等.大型整流装置专家系统的设计与实现.计算机测量与控制,2009,17(3):478-480
    [24]胡志坤,何多昌,阳春华,等.大型整流装置在线维护专家系统.变流技术与电力牵引,2007,(5):22-27
    [25]李玉玲,鲍建宇,张仲超.基于模型预测控制的单位功率因数电流型PWM整流器.中国电机工程学报,2006,26(19):60-64
    [26]汪正军,王军政,马立玲,等.大惯量随动系统解析模型预测控制.北京理工大学学报,2011,31(11):1307-1312
    [27]黄俊,王兆安.电力电子变流技术(第3版).北京:机械工业出版社,2003
    [28]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006
    [29]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿.北京:机械工业出版社,2006
    [30]Das J.C. Passive filters-potentialities and limitations. IEEE Transactions on Industry Applications,2004,40(1):232-241
    [31]陈国柱,吕征宇,钱照明.典型工业电网谐波及其混合有源滤波抑制.电网技术,2000,24(5):59-63
    [32]Nassif A.B. Xu W, Freitas W. An investigation on the selection of filter topologies for passive filter applications. IEEE Transactions on Power Delivery, 2009,24(3):1710-1718
    [33]Das J.C. Passive filters-potentialities and limitations. IEEE Transactions on Industrial Electronics,2004,40(1):232-241
    [34]Mattavelli P, Marafao F.P. Repetitive-based control for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics,2004,51(5):1018-1024
    [35]Rivas D, Moran L, Dixon J.W, et al. Improving passive filter compensation performance with active techniques. IEEE Transactions on Industrial Electronics, 2003,50(1):161-170
    [36]Detjen D, Jacobs J., De Doncker R.W., et al. A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with factor correction equipment. IEEE Transactions on Power Electronics,2001, 16(6):821-827
    [37]王立国,徐殿国,苗立杰,等.无源滤波装置的建模分析及参数摄动的影响.中国电机工程学报,2005,25(10):70-74
    [38]姜艳姝,徐殿国,刘宇,等.一种新颖的逆变器输出无源滤波器的研究.中国电机工程学报,2004,24(11):134-138
    [39]Terciyanli A., Ermis M., Cadirci I. A selective harmonic amplification method for reduction of kVA rating of current source converters in shunt active power filters. IEEE Transactions on Power Delivery,2011,26(1):65-78
    [40]Lascu C, Asiminoaei L., Boldea I., et al. Frequency response analysis of current controllers for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics,2009,56(2):337-347
    [41]Mishra M.K., Karthikeyan K. An investigation on design and switching dynamics of a voltage source inverter to compensate unbalanced and nonlinear loads. IEEE Transactions on Industrial Electronics,2009,56(8):2802-2810
    [42]Orts-Grau S., Gimeno-Sales F.J., Segui-Chilet S., et al. Selective compensation in four-wire electric systems based on a new equivalent conductance approach. IEEE Transactions on Industrial Electronics,2009,56(8):2862-2874
    [43]Lavopa E., Zanchetta P., Sumner M., et al. Real-time estimation of fundamental frequency and harmonics for active shunt power filters in aircraft electrical systems. IEEE Transactions on Industrial Electronics,2009,56(8):2875-2884
    [44]帅智康,罗安,刘定国,等.静止无功补偿器与有源电力滤波器联合运行系统.中国电机工程学报,2009,29(3):56-64
    [45]漆铭钧,罗安,刘定国,等.有源电力滤波器参考电流的预测方法及其实现.中国电机工程学报,2009,29(7):128-134
    [46]Corasaniti V F, Barbieri M B, Arnera P L, et al. Hybrid active filter for reactive and harmonics compensation in a distribution network. IEEE Transactions on Industrial Electronics,2009,56(3):670-677
    [47]He N., Xu D., Huang L. The application of particle swarm optimization to passive and hybrid active power filter design. IEEE Transactions on Industrial Electronics,2009,56(8):2841-2851
    [48]刘定国,罗安,帅智康.注入式混合型有源电力滤波器直流侧电压控制新问题及其解决方案.中国电机工程学报,2008,30(3):27-34
    [49]丁洪发,段献忠,朱庆春.混合型电能质量调节器及其控制策略.中国电机 工程学报,2006,26(8):33-38
    [50]张长征,陈乔夫,赵尤斌,等.一种新型的并联混合型有源电力滤波器.中国电机工程学报,2007,27(19):110-114
    [51]耿庆鲁.整流系统节能设计理念.中国氯碱,2007,(2):12-13
    [52]候彦方.大功率硅整流设备的节能优化分析.电工技术,2008,(7):74-75
    [53]黄炜.烧碱整流装置的节能措施.氯碱工业,2011,47(2):6-9
    [54]Aqueveque P E, Wiechmann E P, Burgos R P. On the efficiency and reliability of high-current rectifiers. IEEE Power Electronics Specialists Conference,2008, 4509-4516.
    [55]王俊年,申群太,周少武,等.锌电解整流供电系统的微粒群优化控制策略.控制与决策,2008,23(2):145-150
    [56]陈丹晖,陈万才.整流效率在线测控装置推动节能生产.中国计量,2010,(8):22-23
    [57]李广河,杨忠礼,宋国兵.温度预测法在变压器油温控制中的应用.华中电力,2004,17(2):49-51
    [58]张友昌.变压器冷却装置控制方式的改进措施.电工技术,2005,(11):10-11
    [59]宁志毫,罗隆福,李勇,等.基于感应滤波的大功率整流系统原理分析及综合节能设计.电工技术学报,2012,27(2):223-228
    [60]吴滨.中国有色金属工业节能现状及未来趋势.资源科学,2011,33(4):647-652
    [61]张龙.工业节能专项再掀减排风暴钢铁业率先发力.能源研究与利用,2011,(6):18-20
    [62]Yii-Shen Tzeng, Nanming Chen, Ruay-Nan Wu. Modes of Operation in Parallel-Connected 12-Pulse Uncontrolled Bridge Rectifiers Without an Interphase Transformer. IEEE Transactions on Industrial Electronics,1997, 44(3):344-355
    [63]Duro Basic, Victor S. Ramsden, Peeter K. Muttik. Harmonic Filtering of High-Power 12-Pulse Rectifier Loads With a Selective Hybrid Filter System. IEEE Transactions on Industrial Electronics,2001,48(6):1118-1127
    [64]Po-Tai Cheng, Subhashish Bhattacharya, Deepak M. Divan. Application of dominant harmonic active filter system with 12 pulse nonlinear loads. IEEE Transactions on Power Delivery,1999,14(2):642-647
    [65]Mostafa S. Hamad, Mahmoud I. Masoud, Stephen J. Finney, Barry W. Williams. Medium Voltage Series Connected 12-pulse Compensated Current Source Controlled Rectifier with a Novel Front End Transformer Configuration.4th IET Conference on Power Electronics, Machines and Drives, PEMD 2008,27-32
    [66]Akagi H, Kohei Isozaki. A Hybrid Active Filter for a Three-Phase 12-Pulse Diode Rectifier Used as the Front End of a Medium-Voltage Motor Drive. IEEE Transactions on Power Electronics,2012,27(1):69-77
    [67]Shoji Fukuda, Masaaki Ohta, Yoshitaka Iwaji. An Auxiliary-Supply-Assisted Harmonic Reduction Scheme for 12-Pulse Diode Rectifiers. IEEE Transactions on Power Electronics,2008,23(3):1270-1277
    [68]Longfu Luo, Yong Li, Jiazhu Xu, et al. A new converter transformer and a corresponding inductive filtering method for HVDC transmission system. IEEE Transactions on Power Delivery,2008,23(3):1426-1431
    [69]Yong Li, Longfu Luo, C. Rehtanz, et al. Study on characteristic parameters of a new converter transformer for HVDC systems. IEEE Transactions on Power Delivery,2009,24(4):2125-2131
    [70]Thanh Ngoc Tran, Longfu Luo, Jiazhu Xu, et al. Analysis of the Characteristics of the New Converter Transformer Based on the Matrix Model. IEEE Transactions on Power Delivery,2012,27(2):821-830
    [71]Pengfei Shao, Longfu Luo, Yong Li, et al. Electromagnetic vibration analysis of the winding of a new HVDC converter transformer. IEEE Transactions on Power Delivery,2012,27(1):123-130
    [72]Zhao ZhiYu, Luo longfu, Xu Jiazhu, Tran Thanhngoc, Zhang Zhiwen. Operational characteristics of a filtering rectifier transformer for industrial power systems. Turkish journal of electrical engineering & computer sciences. Turk. J. Elec. Eng.& Comp. Sci.,2013,21(5):1272-1283
    [73]刘福生,聂光前,肖乐军.阻抗匹配平衡变压器的模型试验及其性能分析.铁道学报,1992,(3):23-31
    [74]张志文,王耀南,唐求,等.多功能平衡变压器及配套滤波器对谐波治理的研究.电工技术学报,2004,19(3):25-30
    [75]C.B.瓦修京斯基(著),崔立君,杜恩田(译).变压器的理论与计算.北京:机械工业出版社,1983
    [76]崔立君.特种变压器理论与设计.北京:科学技术文献出版社,1996
    [77]张志文,熊芝耀,刘福生.多功能平衡变压器的等值电路.电工技术学报,2002,17(1):28-31
    [78]阳楚君.110 kV直降式整流的经济规模.中国氯碱,2009,(1):6-7
    [79]杨冬生.铝电解整流供电系统的应用和展望.轻金属,2008,(3):29-31
    [80]郭艳星.110 kV直降式整流装置使用探讨.中国氯碱,2008,(2):4-6
    [81]陈华山.换相电抗的测量与计算.变压器,1997,34(3):23-24
    [82]浙江大学发电教研组.直流输电.北京:水利电力出版社,1985
    [83]刘忏斌,冯公伟,崔督普,等.硅整流所电力设计.北京:冶金工业出版社,1983
    [84]许加柱,罗隆福,李季,等.新型换流变压器及其滤波系统的换相电抗的分析计算.电工技术学报,2007,22(10):49-54
    [85]罗隆福,尚荣艳,许加柱,等.基于新型换流变压器的直流输电系统改善换相的机理研究.中国电机工程学报,29(9):50-56
    [86]Yong Li, Longfu Luo, Christian Rehtanz, et al. Realization of Reactive Power Compensation Near the LCC-HVDC Converter Bridges by Means of an Inductive Filtering Method. IEEE Transactions on Power Electronics,2012, 27(9):3908-3923
    [87]刘文业,罗隆福,李勇,等.基于感应滤波的工业整流系统潜在谐波放大及防治措施.电工技术学报,2014,29(2):304-317.
    [88]李勇,罗隆福,刘福生,等.变压器感应滤波技术的发展现状与应用前景.电工技术学报,2009,24(3):86-92
    [89]李勇,罗隆福,张志文,等.应用感应滤波原理构建的直流供电系统.中国电机工程学报,2010,30(22):107-112
    [90]Yong Li, Longfu Luo, Rehtanz C, et al. An industrial dc power supply system based on an inductive filtering method. IEEE Transactions on Industrial Electronics,2012,59(2):714-722
    [91]邵鹏飞,罗隆福,宁志毫,等.感应滤波技术应用于工业定制电力系统的运行经验分析.电力自动化设备,2011,31(4):59-63
    [92]罗隆福,李勇,许加柱,等.新型换流变压器配套滤波装置的优化设计.电网技术,2007,31(9):22-26
    [93]李圣清,朱英浩,周有庆,等.基于交互式多目标遗传算法的无源滤波器优化设计.电工技术学报,2003,18(6):1-6
    [94]陆秀令,周腊吾,张松华,等.无源滤波器多目标优化设计.高电压技术,2007,33(12):177-182
    [95]涂春鸣,罗安,刘娟.无源滤波器的多目标优化设计.中国电机工程学报,2002,22(3):17-21
    [96]彭可,吴思聪,肖建宏,等.无源电力滤波器参数的混沌模拟退火优化设计.电力自动化设备,2009,29(8):55-58
    [97]汪力,程剑兵,王显强,等.基于多目标粒子群算法的无源电力滤波器优化设计.电力系统保护与控制,2011,39(8):51-55
    [98]郭金伟,张海忠,李育,张金平.整流变压器无源滤波优化设计.电力电容器与无功补偿,2010,31(2):6-10
    [99]韩俊,徐政,金宇.基于最佳偏调谐的无源滤波器优化设计.高压电器,2010,46(8):18-21
    [100]Coello C.A.C. A Comprehensive survey of evolutionary-based multi-objective optimization, techniques. Knowledge and Information Systems,1999,1(3): 269-308
    [101]Coello C.A.C, Pulido G.T., Lechuga M.S. Handling Multiple Objectives with Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation, 2004,8(3):256-279
    [102]Kennedy J., Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks,1995, IV:1942-1948
    [103]Parsopoulos K.E., Vrahatis M.N. Particle Swarm Optimization method in Multi-objective Problems. Proc. the 2002 ACM Symposium on Applied Computing,2002, I:603-607
    [104]刘佳,李丹,高立群,宋立新.多目标无功优化的向量评价自适应粒子群算法.中国电机工程学报,2008,28(31):22-28
    [105]Taruna J., Shailendra J., Ganga A., et al. Comparison of topologies of hybrid active power filter. IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007),2007,1: 503-509
    [106]Wiroj T., Hatada T., Wada K., et al. Design and performance of a transformerless shunt hybrid filter integrated into a three-phase diode rectifier. IEEE Trans. Power Electron.,2007,22(5):1882-1889.
    [107]Xiaoming Zha, Yunping Chen. The iterative learning control strategy for hybrid active filter to dampen harmonic resonance in industrial power system.2003 IEEE International Sysposium on Industrial Electronics,2003,2:848-853
    [108]李勇.感应滤波理论及其在直流输电系统中的应用研究.[湖南大学博士论文].长沙:湖南大学,2011,110-122
    [109]李季,罗隆福,张志文,等.新型换流变压器谐波模型及其配套滤波装置设计.湖南大学学报(自然科学版),2007,34(9):34-38
    [110]许加柱,白俊锋,罗隆福,等.谐波屏蔽变压器的谐波等效模型及其阻抗灵敏度分析.高电压技术,2010,36(8):2081-2087
    [111]罗隆福,李勇,刘福生,等.基于新型换流变压器的直流输电系统滤波装置.电工技术学报,2006,21(12):108-115
    [112][奥]Geroge J. Wakileh,徐政译.电力系统谐波-基本原理,分析方法和滤波器设计.北京:机械工业出版社,2003
    [113]范林涛,陈海清.直流大电流现场测量的研究.华中理工大学学报,2000,28(10):67-69
    [114]刘文业,罗隆福,张志文,等.一种大功率工业整流系统管变协同控制方法.大功率变流技术,2013,(5):8-13
    [115]李兴源.高压直流输电系统.北京:科学出版社,2010
    [116]罗隆福,宁志毫,张志文,等.一种基于交流检测的直流大电流间接测量的方法及装置.中国专利:ZL201010578601.2,2010
    [117]徐政.交直流电力系统动态行为分析.北京:机械工业出版社,2004:87-113
    [118]郑超,周孝信.基于电压源换流器的高压直流输电小信号建模及其阻尼控制器设计.中国电机工程学报,2006,26(2):7-12
    [119]郑超,周孝信,李若梅.新型高压直流输电的开关函数建模与分析.电力系统自动化,2005,29(8):32-35
    [120]李裕能.开关函数法用于变流装置的谐波分析.电网技术,2000,24(6):18-20
    [121]李琼林,刘会金,刘云.三相变流器的谐波/间谐波统一调制分析建模.高电压技术,2008,34(4):718-722
    [122]Rice D E. A detailed analysis of six-pulse converter harmonic currents. IEEE Transactions on Industry Applications,1994,30(2):294-304
    [123]宋晓.基于变压器电磁耦合瞬态模型的三相桥式整流电路的换相分析.变压器,2009,46(12):24-28
    [124]魏克银,刘德志,欧阳斌,等.三相四线制二极管整流桥的动态平均值模型.电工技术学报,2009,24(11):102-107
    [125]崔建华,陆俭国,张家安,等.三相全控整流桥的准动态模型.中国电机工程学报,2001,21(9):83-88
    [126]黎鹏.氯碱工业整流技术.天津:天津科学技术出版社,1992
    [127]王晶鑫,伍小杰,左东升,等.基于SIMADYND的全数字大功率整流控制系统.工矿自动化,2005,增(1):211-214
    [128]安艳萍.大功率整流供电优化与控制系统的研究与应用:[中南大学硕士学位论文].长沙:中南大学,2007,13-20
    [129]甄淑会.对整流设备选型的讨论.中国氯碱,2003,(6):8-9
    [130]王卓,王维泉,白庆华.电流闭环控制的铜电解整流电源的分析.工矿自动化,2007,(4):112-113
    [131]华桂林,芮智.铝电解全数字整流控制系统的节电效能. 江苏冶金,2008,(1):1-7
    [132]唐杰,罗安,欧剑波,赵伟,盘宏斌.配电静止同步补偿器的模糊自适应PI控制策略.电工技术学报,2008,23(2):120-126
    [133]殷自力,梁海峰,李庚银,周明,赵成勇.基于模糊自适应PI控制的柔性直流输电系统实验研究.电力自动化设备,2008,28(7):49-53
    [134]Nowacki O.Z., Wonzniak D. On the Robustness of Fuzzy Control of an Overhead Crane. Industrial Electronics, ISIE'96, Proceedings of the IEEE International Symposium,1996,1:433-437
    [135]谢树林.大功率整流装置模糊自适应控制系统.电气传动,2009,39(12):51-53
    [136]刘文业,罗隆福,董书大,等.基于嵌入式系统μC/OS-Ⅱ的新型大功率整流电源控制器.电网技术,2011,35(2):183-188
    [137]汤磊,张伯明.一种能量管理系统中实时数据的处理方法.电网技术,2001,25(5):15-19
    [138]陈革辉,申群太.基于DSP的晶闸管全数字控制器.中南工业大学学报(自然科学版),2003,34(6):670-673
    [139]王喜莲,王旭东.高精度晶闸管电压线性数字触发.电力电子技术,2000,34(3):40-42
    [140]Bose B.K. Expert system, fuzzy logic, and neural network application in power electronics and montion control. Proc. Of the IEEE,1994,82(8):1303-1323
    [141]Anderson K.L. A rule based adaptive PID controller, MS Thesis, Univ. of Maryland,1989
    [142]马小亮.可控整流装置有滞后吗.电气传动,1989,(5):55-58
    [143]张民,石岩.特高压直流单12脉动阀组的投退策略及其对交流系统无功冲击的影响.电网技术,2007,31(15):1-7
    [144]赵婉君.高压直流输电工程技术.北京:中国电力出版社,2004:26-164
    [145]朱韬析,王超.天广直流输电系统的基本控制策略.电网技术,2007,31(21):22-26
    [146]Zhu Taoxi, Wang Chao. Basic Control Strategy for HVDC Transmission System from Tianshengqiao to Guangzhou. Power System Technology,2007,31(21): 22-26
    [147]Vijay K.S. HVDC and FACTS Controllers applications of Static Converters in Power Systems. Boston:Kluwer Academic Publishers,2004
    [148]石岩,韩伟.特高压直流输电工程控制保护系统的初步方案.电网技术,2007,31(2):11-15
    [149]许加柱,罗隆福,李季,等.自耦补偿与谐波屏蔽换流变压器的接线方案和 原理研究.电工技术学报,2006,21(9):44-50
    [150]刘福生.自耦补偿与谐波屏蔽整流变压器.湖南电力,2005,2(4):4-7
    [151]罗隆福,李勇,许加柱,李季,刘福生.基于相分量法的新型换流变压器数学模型.电工技术学报,2007,22(1):34-40
    [152]李季,罗隆福,许加柱,李勇,等.滤波换相换流器阻抗频率特性分析.电网技术,2008,3(4):45-50
    [153]J. Li, L.F. Luo, J. Z. Xu. Study on Impedance-frequency Characteristic of HVDC Filter Commutate Converter.2008 International Conference on Electric Utility Deregulation and Restructuring, Nanjing,2008,1:1522-1526
    [154]宁志毫,罗隆福,张志文,等.节能滤波型变压器及其整流系统关键问题研究.电力自动化设备,2012,32(4):20-25
    [155]许加柱,罗隆福,李季,等.基于新型整流变压器的多重化整流系统.电气应用,2008,27(2):73-77
    [156]赵志宇,罗隆福,许加柱,等.新型整流变压器及其滤波系统的运行参数特性分析.中国电机工程学报,2012,32(22):86-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700