用户名: 密码: 验证码:
分数槽集中绕组永磁同步电机参数化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对分数槽集中绕组永磁同步电机的结构、性能特点以及参数设计进行了分析研究。
     论文首先分析了分数槽集中绕组电机的技术特点。在保证电机的性能指标和其他条件相同的前提下,分别对不同极槽配合的电机建立了有限元分析模型,通过仿真,从电机的效率、转矩性能、电机去磁风险等方面对不同的设计方案进行了对比分析。
     针对电机的转矩特性建立了数学模型,对影响电机低速转矩性能的几个关键参数进行分析,重点分析了定子裂比、每相串联匝数和永磁体参数对电机转矩性能的影响。针对转矩波动问题,分析了内置式永磁同步电机的极靴形状优化对转矩波动的影响,并以实际样机设计为例,具体说明了如何通过合理设计这几个电磁参数和优化极靴形状提高电机的低速转矩性能。
     弱磁扩速一直是永磁同步电机发展的瓶颈,论文对影响电机理想最高转速和功率输出能力的几个重要电磁参数进行了分析,重点对永磁磁链和直轴电感对电机弱磁扩速能力的影响进行了理论分析和有限元仿真。针对永磁同步电机低速转矩和弱磁扩速范围互相制约的问题,提出了兼顾电机的低速转矩性能和最高转速的参数设计方法。
     D、Q轴电感是影响永磁同步电机性能的重要参数,也是电机设计分析的难点;D、Q轴电感的预测直接关系到整个电机控制系统的性能。论文运用有限元软件对影响永磁电机电感的关键因素进行了分析和仿真,并就具体的电机设计了实验测试方法,对实验结果与仿真进行了对比分析。
     最后研制了实验样机,通过对样机实验数据和理论计算结果的对比,分析了实验和理论设计的误差来源,证明了本文对分数槽集中绕组永磁同步电机性能分析的正确性。
In this paper, the structure, the performance characteristics and the parameters design of permanent magnet synchronous motor with fractional-slot concentrated windings have been analyzed.
     First, the technical feature of a permanent magnet synchronous motor with fractional-slot concentrated windings is studied. And then the motor models with different slot/pole combination were set up using finite element analysis software. Ensuring the same electrical performance and other conditions, a comparative analysis is simulated from the different aspects, such as the efficiency of the motor, the torque performance and demagnetization risk of the motor.
     The motor mathematical model is established from the torque characteristics, then several key parameters for the impact of low-speed torque performance is analyzed. The effect of stator split ratio, the series turns/phase and the permanent magnet parameters on the performance of torque is demonstrated in detail. For torque fluctuations, the pole shoe’s shape optimization of the interior permanent magnet synchronous motor for the torque fluctuations is analyzed, and the prototype motor for example, illustrate how to design these electromagnetic parameters and optimize the pole shoe’s shape to improve the torque performance at low-speed region.
     Flux weakening is a development bottleneck for a permanent magnet synchronous motor. Several important electromagnetic parameters were studied affecting the highest speed and power output capacity of the ideal motor. The permanent magnet flux and D axis inductance for the effect of the flux weakening is analyzed theoretically and simulated using the finite element analysis in detail. Considering the constraints problem between low-speed torque and the flux weakening capacity for the permanent magnet synchronous motor the parameters design method is proposed take into account the low-speed torque performance and the maximum speed.
     The D- and Q-axis inductances are key parameters for performance of a permanent magnet synchronous motor, and are also the difficulty of the motor design. The D- and Q-axis inductance forecast directly related to the motor control system performance. The key factor impact of permanent magnet motor inductance is analyzed using the finite element software, and the experiment is set up with the prototype motor. The finite element analysis results were compared with the experimental results.
     Finally, the prototype motor has been developed. Through the comparison of the experimental and the theoretical results, the error between the experimental and theoretical analysis is studied to demonstrate the effectiveness of the analysis method for permanent magnet synchronous motor with fractional-slot concentrated windings.
引文
1.唐任远.稀土永磁电机的关键技术与高性能电机开发.沈阳工业大学学报第27卷第2期2005年4月:128~132
    2.黄苏融,钱慧杰,张琪,谢国栋.现代永磁电机技术研究与应用开发.电机与控制应用2007,(34):71~73
    3.邓万华,马善振.稀土永磁电机的优越性.节能与环保.2002:54:63~65
    4. Kim Junha, N am Kwanghee. Dualin verter control strategy or high speed operaion of EV induction motors. Proceedings of the 2002 28th Annual Conference of the IEEE Industrial Electronics Society, Seville, Spain, 2002: 163-168
    5. J. Wai, T. M. Jahns. A new control technique for achieving wide constant power speed operation with an interior PM alternator machine. 36th IAS Annual Meeting conference Record of the 2001 Industry Applications, Chicago, IL, 2001: 807-814
    6. Davis roy, D. Lorenz Robert. Engine torque ripple cancellation with an integrated starter alternator in a hybrid electric vehicle: Implementation and control. 37th IAS Annual Meeting and World conference on Industrial applications of Electrical Energy, Pittsburgh, PA, United States, 2002: 2016-2021
    7. B.Stumberger, A. Hamler, M. Analysis of Interior Permanent Magnet Synchronous Motor designed for flux weakening operation. IEEE transaction On magnetic.2001,37(5):3644-3647
    8. Rukmi Dutta, Saad Sayeef and M. F. Raman. Cogging Torque Analysis of a Segmented Interior Permanent Magnet Machine. Electric Machines & Drives Conference, 2007: 781 - 786
    9. B J. Chalmers, R. Akmese, L. Musaba, Design and field weakening performance of permanent-magnet/reluctance motor with two-part rotor. IEE proceedings, Vol.145, No.2, March 1998, pp.133-139.
    10. Tapia, J.A, Leonardo, F, Lipo, T.A. Consequent pole permanent magnet machine with field weakening capability. Electric Machines and Drives Conference. IEEE International.2001 Page(s):126–131
    11. Xu Yanliang, Xu Jiaqun, Wan Wenbin, Tang Renyuan. Development of Permanent Magnet Synchronous Motor Used in Electric Vehicle. IEEE .Electrical Machines and Systems, 2001, 2:884~887
    12. James H.Goldie, Kevin E.LeRow P.E. A Practical Permanent Magnet Based Traction System for Electric Vehicles. EVS-14, the United States, Dec.1997:1125-1136
    13. P, Lawrence“Brushless PM motor or alternator with variable axial rotor/stator alignment to increase speed capability”World Intellectual Property Organization: WO 03/077403 A1, 2003:168-176
    14. Kenji Endo, Akihide Mashimo. A High Performance Permanent Magnet Motor for Electric Vehicles. EVS-14, the United States, Dec.1997:579-588
    15. W.Xia, Philip S.M.Chin. Analysis of Different Permanent Magnet Brushless Motor Drives for Electric Vehicles. EVS-16,China, 1999:1029-1035
    16. Yasufumi Ikkai, Noriyoshi Nishiyama, Taro Kishibe. IPM Motor for EV with Segmented Stator Cores with Concentrated Windings. EVS-17, Canada, 2000
    17.徐衍亮,许家群,唐任远.永磁同步电动机空载气隙永磁磁密波形优化[J].微特电机.2002(6):5-7
    18. Sung-Il Kim, Ji-Hyung Bhan, et al. Optimization Technique for Improving Torque Performance of Concentrated Winding Interior PM Synchronous Motor with Wide Speed Range. Industry Applications Conference, IEEE.2006:1933-1940
    19. Sung-Il Kim, Ji-Young Lee, Young-Kyoun Kim. Optimization for reduction of torque ripples in interior permanent magnet motor by using the Taguchi method. Magnetics, IEEE Transactions on. 2005, 41(5): 1796– 1799
    20. Kioumarsi, A, Moallem, M, Fahimi, B. Mitigation of Torque Ripple in Interior Permanent Magnet Motors by Optimal Shape Design. Magnetics, IEEE Transactions on. 2006, 42(11):3706-3711
    21. Liang-Yi Hsu, Mi-Ching Tsai. Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples. Journal of Magnetism and Magnetic Materials.2004, 282(5):193-197
    22. Stefan Henneberger, Uwe Pahner, Kay Hameyer and Ronnie Belmans. Computation of a highly saturated permanent magnet synchronous motor for a hybrid electric vehicle. IEEE TRANSACTIONS ON MAGNETICS, 1997,33(5):4086-4088
    23. Alan Walker, Peethamparam Anpalahan. An Equivalent Circuit Model for Simulating Transient Motor Performance in a Hybrid-Electric Power train. EVS-21, Monaco, April, 2005:2318-2325
    24.徐衍亮,唐任远.电动汽车用永磁同步电动机场路结合设计计算[J].中小型电机.2003,30(2):17-21
    25.王成元,夏加宽,周美文,于冬梅,孙荣斌.高性能永磁同步电机主轴伺服系统设计研究.中国机械工程.1995,10,(10):135-138
    26.林德芳.提高永磁电机性能的新途径——力矩波动的减小.家用电器科技,1998,(5):31-33
    27.唐任远.现代永磁电机理论与设计.机械工业出版社.1997,12:182-191
    28.郭振宏.宽恒功率调速范围主轴永磁同步电动机及其传动系统研究.沈阳工业大学博士学位论文.1999.5:76-83
    29. J.Beretta, S Derou. Mdelhom. Optimization of Synchronous Machine for Electric Traction.EVS-14,theUnitedS tates,1997:2106-2120
    30. Xu anliang, Xu Jiaqun,Wan Wenbin,Tang Renyuan. Development of Permanent Magnet Synchronous Motor Used in Electric Vehicle.IEEE Electrical Machines and Systems.2001,2:884-887
    31.尹华杰,林金铭,金振荣.永磁同步电动机的弱磁扩速分析.微电机1995,28(2):ll-15
    32. M.Nasir Uddin, Tawfik S.Radwan, M.Azizur Rahman. Performance of Interior Permanent Magnet Motor Drive over Wide Speed Range.IEEE Transactions on Energy Conversion,2002,17(1):148-153
    33. SoongWL,MillerTJE.IEEE Proc-ElectorPow-er,1994,141(6):331-340
    34. Richard F. Schiferl. Power Capability of Salient Pole Permanent Magnet Synchronous Motors in Variable Speed Drive Applications. IEEE Transactions on Industry Applications Vol.26 No.1.January/February, 1990:115-123
    35.陈阳生,王文中.在恒转矩和弱磁控制状态下的各种永磁同步电机负载铁耗.中国电机工程学报.2007,22(9):45-50
    36.任雷,崔芮华,王宗培等.永磁同步电机绕组电感的饱和效应[J].电工技术学报,2000,15(1):21-25.
    37.张飞,唐任远,陈丽香等.永磁同步电机电抗参数研究[J].电工技术学报,2006:21(11):7-10.
    38. E.C.Bortoni, J.A.Jardini. A standstill frequency response method for large salient pole synchronous machines [J].IEEE Trans on E.C,2004.19(4):687-691.
    39. M.Hasni, S.Djema, O.Touhami et al Synchronous machine parameter identification in frequency and time domain [J].Serbian Journal of Electrical Engineering,2007,4(1):51-69.
    40. V.Graza, M.Biriescu, Gh.Liuba et al Experimental determination. of. synchronous Machines reactance from DC decay at standstill[C] IEEE Instrumentation and measurement. Technology conference, Budapest, 2001:1954-1957.
    41. D.Wentzloff. Experimental characterization of an integrated starter/generator [D].Cambridge:Massachusetts Institute of Technology,2002.
    42. R.Dutta,M.F.Rahman.A comparative analysis of two test methods of measuring d- and q-axes inductances of interior permanent-magnet machine [J].IEEE Transactions on Magnetics, 2006,42 (11):3712-3718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700