用户名: 密码: 验证码:
柴达木盆地西南缘新生代构造隆升的沉积记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在系统研究柴达木盆地西南缘新生代地层的沉积学特征、碎屑锆石的年代学及碎屑磷灰石的裂变径迹年代学基础上,结合其它研究果,对其源区—东昆仑地区的构造演化历史进行了讨论,初步得出以下认识:
     1、长尾台剖面主要发育湖泊相、三角洲相和冲积扇相三大沉积体系。剖面下部自下干柴沟组至上油砂山组下部皆发育湖相沉积,并经历过两次完整的湖泛和湖退过程,上干柴沟组和下油砂山组沉积时期是湖泊水体最深时期,也是湖盆基底最稳定时期,发育有大套的湖相叠层石灰岩。上油砂山组顶部水体逐步变浅,转变过渡环境。狮子沟组沉积时期,湖泊水体全面萎缩,主要发育一套盆地边缘相冲积扇沉积。
     2、系统总结了长尾台剖面主要碎屑颗粒的显微构造鉴别特征及阴极发光特征,并对长尾台剖面垂向含量进行了统计。结果显示:碎屑组分垂向上变化主要集中在上、下干柴沟组之间和上、下油砂山之间。发生在上、下干柴沟组地层之间的有:岩浆岩来源和喷出岩来源石英、微斜长石、岩屑总量、侵入岩岩屑和变质岩岩屑,而岩浆岩来源和喷出岩来源石英、斜长石、喷出岩岩屑、侵入岩岩屑在上、下油砂山组地层之间发生了明显跳跃。这些碎屑颗粒的改变可能代表了源区构造事件的发生。同时,碎屑颗粒的物源对比分析和古水流数据说明,祁漫塔格山是长尾台剖面的物源。
     3、对长尾台剖面碎屑锆石展开了因矿物学和同位素年代学的研究。结果发现绝大多数锆石为无色透明或烟灰色岩浆因锆石,少量的呈浅紫色、褐黄色、烟灰色变质因锆石,极少量的热液型锆石。各地层锆石标型特征存在明显差异,主要体现在狮子沟组与上油砂山之间的锆石颜色、大小和长宽比值的突变。此外,在上干柴沟组与下油砂山组之间的锆石长宽比值的也发生了轻微的改变。这些标型特征的改变或许暗示了在此期间物源区物质组分的改变。
     碎屑锆石U-Pb同位素年代学研究表明,锆石的年龄谱系特征显示出柴达木盆地新生代地层中碎屑锆石具有相似的U-Pb特征峰值,反映物源具有一定相似性。对比周缘造山带同位素年代学年龄组特征,显示出长尾台剖面自始新世以来碎屑锆石的年龄谱征与东昆仑山岩浆活动存在极为相似的峰值特征,暗示了东昆仑山自下干柴沟组沉积以来一直都是柴达木盆地的主要物源,同时意味着东昆仑山西段祁漫塔格山的初始隆起至少早于晚始新世。但是古生代碎屑锆石份子的垂向变化特征又显示出在柴达木盆地沉积时期,至少在上、下干柴沟组地层之间和上、下油砂山组地层之间,东昆仑山为盆地提供物源的物质组曾经发生过明显的改变。
     4、碎屑磷灰石裂变径迹年代学研究表明:东昆仑山地区存在自中生代中晚期以来的五期较大规模的构造活动事件,它们分别为晚侏罗世至早白垩世时期(150-120Ma)、晚白垩世(100-70Ma)、古新世-始新世(65-40Ma)、始新世至早中新世时期(30-15Ma)和中晚中新世以来(15-2Ma)。各个时期的构造热事件都得到东昆仑山地区及高原北缘地区同位素年代学和一些零星的地质记录所证实。
     研究区古新世-始新世的构造剥露运动是东昆仑山造山带构造-热活动最活跃也是最普遍的一期构造事件,代表了印度板块与欧亚板块新生代碰撞的早期,其远程碰撞效应就已经同步传递至青藏高原北部地区。晚白垩世时期的构造热事件频度也相当高,说明了该时期构造隆升的广泛存在性,它的发生可能联系到雅鲁藏布江洋盆向北俯冲。而晚侏罗-早白垩世时期构造活动较微弱,代表了特提斯构造演化中的班公湖—怒江缝合带与欧亚大陆的增生拼贴。始新世至早中新世时期和中晚中新世以来的构造事件的产生则主要源于印度板块持续向北俯冲挤压,而高原北缘地区刚性块体的俯冲挤压,且始新世至早中新世时期构造运动幅度较大,东昆仑山体基本上是“瞬间”幕式抬升。
Based on the systematic studies of sedimentology, single detrital zirconchronology and apatite fission-track thermochrology of the Cenozoic stratum of theChangweitai sections before the Qimantage Mountain in the west section of the eastKunlun Montain, Combined with other research results, the structure evolution historyin the East Kunlun region is discussed. Following views have been summarized.
     1. The Changweitai section mainly has three sedimentary systems: lake facies,delta facies and alluvial fan facies. Lake Facies developed from the XiaganchaigouFormation to the bottom of the Shangyoushashan Formation at the bottom of thesection, and it experienced two integrated lake-flooding and lake-withdrawal process.The Shangganchaigou Formation and the Xiayoushashan Formation period witnessedthe deepest lake water period, and the most stable lake basin period, with thedevelopment of the whole set of lake and laminated limestone. The water at the top ofthe Shangyoushashan Formation gradually became shallow and turns into transitionalenvironment. The lake experienced overall withering during the Shizigou sedimentaryperiod and mainly developed a whole set of basin marginal facies alluvial fansedimentary.
     2. The thesis conducts a systematic analysis of the microscopically identificationfeatures and cathode luminescence feature of the main detrital component in theChangweitai section, and statistics of the vertical content of the Changweitai section.The results show that vertically the change of the debris mainly concentrates betweenthe Shangganchaigou Formation and the Xiaganchaigou Formation, theShangyoushashan Formation and the Xiayoushashan Formation. Significant changeshave been noticed in the content of the quartz gross, microcline, intrusive rock debrisand metamorphic rock debris; while tremendous changes also occur between the top and bottom of the Youshashan Formation in the content of the quartz gross, quartzwith intrusive rock sources, quartz with the metamorphic rock sources, plagioclase,debris gross, effusive rock debris and intrusive rock debris. The changes of the debriscontent may represent the coming up of the tectonic event in the source region. At thesame time, contrastive analysis of the debris content also reveals that QimantageMontain is indeed the source of the Changweitai section.
     3. Single detrital zircon chronology in the Changweitai section has beenconducted. Most zircons are colorless and transparent or smoky gray magmatic originzircon, with only small amount of light purple, isabelline and smoky gray magmaticorigin, and even less amount of hydrothermal solution zircon. Typomorphicpeculiarities of the zircon between each stratum also reveal significant differences,mainly in the mutation of the color, size and ratio of the length and width in theShizigou Formation and Shangyoushashan Formation. Moreover, slight changes ofthe ratio of length and width of the zircon also took place in the ShangganchaigouFormation and Xiayoushashan Formation. The features perhaps indicate the changesof the material source during the period.
     The isotope chronological research of the debris zircon U-Pb shows that agespectrum characteristics has similar U-Pb characteristic peak in the Cenozoic stratumof the Qaidam Basin, suggesting they have similar source area. Comparison with theisotope chronological age characteristics of peripheral orogenic belts reveals that agespectrum of the debris zircon from the Cenozoic of the Changweitai section is similarwith the East Kunlun Mountain, which indicates that the East Kunlun Mountain hasalways been the main source area of the Qaidam Basin since the XiaganchaigouFormation, and also means that the initial uplift of the Qimantage Mountain in thewest part of the East Kunlun Mountain occurs early than at least the late Eocene.However the Paleozoic debris zircon features on the vertical direction show thatsignificant changes have taken place of the source components provided by the EastKunlun Mountain for the basin, at least between Shangganchaigou and XiaganchaigouFormation stratum, and Shangyoushashan and Xiayoushashan Formation stratum.
     4. Apatite fission-track thermochrological research shows there are five tectonicactivities events in the East Kunlun region since Middle and Late Mesozoic: LateJurassic to Early Cretaceous (150-120Ma), Late Mesozoic (100-70Ma), EarlyCenozoic (65-40Ma), from Eocene to Early and Middle Miocene (30-15Ma), andsince Middle and Late Miocene (15-2Ma). Tectothermal events in each period havebeen identified by isotope chronology of the Kunlun areas and northern margins of the plateau and also some sporadic tectonic records.
     The tectonic denudation movements of Early Cenozoic in the research areas isthe most common event in the orogenic belt of east Kunlun Mountain, which canexhibit the early period of Cenozoic collision of India Plate and Eurasian Plate. Theeffect of collision can be seen in the northern part of Qinghai-Tibet Plateau. Thephenomenon of structuring in the Mesozoic epoch is in great frequency, which showsthe existence and occurrence of tectonic uplift in this epoch. In the meantime, thephenomenon might be caused by the northern thrusting of the Yarlung Zangbo Riverbasin. However, the movement during the late Jurassic period and the earlyCretaceous period is not active, which can represent the Hyperplasia collage ofBangong Lake—Nujiang ophiolite belt and Eurasian continent in the evolution ofTethys structure. The tectonic events during the Eocene and the Miocene are mainlycaused by the constant thrusting and squeezing of India Plate. Because of the thrustingand squeezing of the rigid blocks from northern part of the plateau, and the greatmovements during Eocene to Early Miocene, the east Kunlun Mountain was formedlike a sudden rising curtain.
引文
[1] An Z S, Kutzbach J E, Prell W L, et al.2001. Evolution of Asian monsoons and phased upliftof the Himalaya-Tibetan Plateau since Late Miocene times [J]. Nature,411:62-66.
    [2] Andersen T.2005. Detrital zircons as tracers of sedimentary provenance: Limiting conditionsfrom statistics and numerical simulation [J]. Chem Geol,216:249-270.
    [3] Arnaud N O, Brunel M, Cantagrel J M, et al.1993. High cooling and denudation rates atKongur Shun, eastern Pamir (Xinjiang, China) revealed by40Ar/39Ar alkali feldsparthermochronology [J]. Tectonics,12(6):1335-1346.
    [4] Arnaud N, Tapponnier P, Wang S, et al.2003. Evidence for Mesozoic shear along thewestern Kunlun and Altyn-Tagh fault, northern Tibet(China)[J]. Journal of GeophysicalResearch,108(2053):12-1-12-27.
    [5] Beck R A, Burbank D W, Sercombe W J, et al.1995. Stratigraphic evidence for an earlycollision between northerwest India and Asia [J]. Nature,373:5557.
    [6] Bigazzi G.1981. The problem of the decay constant λfof238U [J]. Nuclear Tracks,5:35-44.
    [7] Boggs S J, Kwon Y I, Goles G G, et al.2002. Is quartz cathodoluminescence color a reliableprovenance tool? A quantitative examination [J]. Journal of Sedimentary Research,72:408–415.
    [8] Brandon M T, Mary K, Roden-Ticc, et al.1998. Late Cenozoic exhumation of the Cascadiaaccretionary wedge in the Olympic Mountains, northwest Washington State [J]. GeologicalSociety of America Bulletin,110(8):985-1009.
    [9] Brandon M T.1992. Decomposition of fissioirtrack gain-ale distributions[J]. AmericanJourual Science,292:535-564.
    [10] Brandon M T.2002. Decomposition of mixed gain age distributions using Binomfit [J]. OnTrack,24:13-18.
    [11] Bullen M E, Burbank D W, Garver J I, et al.2001. Late Cenozoic tectonic evolution of thenorthwestern Tien Shan: New age estimates for the initiation of mountain building[J].Geological Society of America Bulletin,113:1544-1559.
    [12] Carlson W D, Donelick R A, Ketcham R A.1999. Variability of apatite fission-trackannealing kinetics: I. Experimental results [J]. America Mineral,84(9):1213-1223.
    [13] Carver J I, Brandon M T.1994. Fission-track ages of detrital zircons from Cretaceous strata,southern British Columbia: Implications for the Baja BC hypothesis [J]. Tectonics,13(2):401-420.
    [14] Cederbom C E, Larson S A, Tullborg E L, et al.2000. Fission track thermochronologyapplied to Phanerozoic thermotectonic events in central and southern Sweden [J].Tectonophysics,316:153-167.
    [15] Cowgill E S.2001. Tectonic evolution of the Altyn Tagh-Western Kunlun fault system,northwestern China [D]. Los Angeles:University of California at Los angeles.
    [16] Dayrm, K. E, M olnar, P, Clark, M.K., et al.,2009. Far-field lithospheric deformation in Tibetduring continental collision [J]. Tectoics,28(10):1029-1039.
    [17] Dewey J F, Cande S, Pitman W C.1989. Tectonic evolution of the India/Eurasia collisionzone [J]. Eclogae Geological Helvetica,82:717-734
    [18] Dickinson W R and Gehrels G E.2003. U-Pb ages of deuital zircons from Permianand]urassic eolian eandetones of the Colorado Plateau, USA: paleogeographicimplications[J]. Sedimentary Geology,163:29-66.
    [19] Dickinson W R, Beard L S, Brakenridge G R, et al.1983. Provenance of North AmericanPhanerozoic sandstones in relation to tectonic setting [J]. Geological Society of AmericaBulletin,94:222-235.
    [20] Dickinson W R, Suczek C A.1979. Plate tectonics and sandstone compositions[J].American Association of Petroleum Geology Bulletin,63:2164-2182.
    [21] Ding L and Lai Q.2002. New geological evidence of crustal thickening in the Gangdeseblock prior to the Indo-Asian collision [J]. Chinese Science Bulletin.48:1604-1610.
    [22] Ding Z L, Yang S L, Liu D S, et al.1998. Preliminary magnetostratigraphy of a thick aeolianred clay-loess sequence at Lingtai, the Chinese Loss Plateau [J]. Geophysical Research letters,25(8):1225-1228.
    [23] Dodson M H, Compston W, Williams I S et al.1988. A search for ancient detrital zircons inZimbabwean sediments [J]. Journal of the Geological Society,145:977-983.
    [24] Duddy I R, Green P F, Laslett G M.1988. Thermal annealing of fission tracks in apatite3.Variable temperature behaviour [J]. Chemical Geology,73:25-38
    [25] Fitzgerald P G, Munoz J A, Coney P J, et al.1999. Asymmetric exhumation across thePyrenean orogen: implications for the tectonic evolution of a collisional orogen[J]. Earth andPlanetary Science Letters,173(3):157-170.
    [26] Fu Bihong, Awata Y.2007. Displacement and timing of left-lateral faulting in the KunlunFault Zone, northern Tibet, inferred from geologic and geomorphic features [J]. Journal ofAsian Earth Sciences,29:253-265
    [27] Gallagher K, Brown R, Johnson C.1998. Fission track analysis and its applications togeological problems [J]. Annual Review of Earth and Planetary Sciences,26:519-572.
    [28] Gao S, Rudnick R I, Yuan H L, et al.2004. Recycling lower continental crust in the NorthChina craton [J]. Nature,432:892-897.
    [29] Garver J, Brandon M, Roden-tice M, et al.1999. Exhumation history of orogenic Highlandsdetermined by detrital fission track thermochronology. Exhumation Processes: Normalfaulting Ductile flow and Erosion [J]. Journal of the Geological Society,283-304.
    [30] George A D, Marshallsea S J, Wyrwoll Karl-Heinz, et al.2001. Miocene cooling in thenorthern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatitefission-track and vitrinite-reflectance analysis [J]. Geology,29(10):939-942.
    [31] Gotze J and Zimmerle W.2000. Quartz and silica as guide to provenance in sediments andsedimentary rocks [J]. Contributions to Sedimentary Geology,21:1–91.
    [32] Green P F and Hurford A J.1984. Thermal neutron dosimetry for fission track dating[J].Nuclear Tracks,9:231-241.
    [33] Green P F, Duddy I R, Gleadow A J W, et al.1986. Thermal annealing of fission tracks inapatite1. A qualitative description[J]. Chemical Geology,59:237-253.
    [34] Green P F, Duddy I R, Laslett G M, et al.1989. Thermal annealing of fission tracks in apatite,4, Quantitative modeling techniques and extension to geological time-scale [J]. ChemicalGeology,79:155-182.
    [35] Harrison T M, Copeland P, Kidd W S F, et al.1992. Raising Tibet[J]. Science,255:1663-1670.
    [36] Harrison T M, Copeland P, Kidd W S F, et al.1995. Activation of the Nyainqentmglila sbearzone:Implications for uplift of the soutbem Tibetan Plateau[J]. Tectoncs,14:658-676.
    [37] Harrison T M, Leloup P H, Ryerson F J, et al.1996. Diachronous initiation of transtensionalong the Ailao Shan-Red River shear zone, Yunnan and Vietnam [C]. In: Yin A andHarrison TM. eds. The Tectonic Evolution of Asia. New York: Cambridge University Press.208-226.
    [38] Huigen Y, Andriessen P.2004. Thermal effects of Caledonian foreland basin formation,based on fission track analyses applied on basement rocks in central Sweden[J]. Physics andChemistry of the Earth,29:683-694.
    [39] Hurford A J, Green P F.1982. A users’ guide to fission track dating[J]. Earth and PlanetaryScience Letters,59:343-354.
    [40] Hurford A J, Green P F.1983. The zeta age calibration of fission-track dating[J]. IsotopeGeoscience,1:285-317.
    [41] Jolivet M, Brunel M, Seward D, et al.2001. Mesozoic and Cenozoic tectonics of the northernedge of the Tibetan plateau: fission-track constraints[J]. Tectonophysics,343:111-134.
    [42] Jolivet M. Roger F, Arnaud N. et al.1999. Exhumation history of the Altyn shan withevidence for the timing of the subduction of the Tarim block beneath the Atlyn Tagh system,North Tibet [J]. C R Acad Scl Paris, Sciences de la terre et des planets,329:749-755.
    [43] Klootwijk C T, Gee J S, Peirce J W, et al.1992. An early India-Asia contact: Paleomagneticconstraints from Ninetyeast Ridge, ODP Leg121[J].Geology,20:395-398.
    [44] Laslett G M, Green P F, Duddy I R, et al.1987. Thermal annealing of fission tracks in apatite2. A quantitative analysis [J]. Chemical Geology,65:1-13.
    [45] Lee T Y, Lawver L A.1995. Cenozoic plate reconstruction of Southeast Asia[J].Tectonophysics,251(1-4):85-138.
    [46] Li J J.1995. Uplift of the Qinghai-Tibet Plateau and global change [M]. Lanzhou: LanzhouUniversity Press.
    [47] Liu Y J, Gcenser J, Neubauer F, et al,2005.40Ar/39Ar mineral ages from basement rocks inthe Eastern Kunlun Mountains, N W China, and their tectonic implications[J].Tectorzophysics,398:199-224.
    [48] Liu Y J, Ye H W, Ge X H, et al.2000. Laser probe40Ar/39Ar dating of mica on the deformedrocks from Altyn fault and its tectonic implications, western China[J]. Chinese ScienceBulletin,46(4):322-325.
    [49] Ludwig K R.2003. User's manual for IsoPlot3.0. A Geochronological Toolkit for MicrosoftExcel[M]. Berkeley Geochronology Center Special Publication No.4, Berkeley,1-71.
    [50] Marshall D J, Giles J H, and Marino A.1988. Combined instrumentation for EDS elementalanalysis and cathodoluminescence studies of geological materials[C]. In Hagni R D (ed.),Process Mineralogy VI, Warrendale, PA, The Metallurgical Society Inc,117–135.
    [51] Mller A, O' Brien P J, Kennedy A, et al.2003. Linking growth episodes of zircon andmetamorphic textures to zircon chemistry: An example from the ultrahigh-temperaturegranulates of Rogaland (SW Norway)[J]. EMU Notes in Mineralogy,5:65-82.
    [52] Mock C, Arnaud N O, and Cantagrel J M.1999. An early unroofing in northeastern Tibet?Constraints from40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range(Qianghai, NW China)[J]. Earth and Planetary Science Letters,171:107–122.
    [53] Mojzsis S J, Harrison T M.2002. Establishment of a3.83Ga magmatic age for the Akiliatonalite (southern West Greenland)[J]. Earth and Planetary Science Letters,202:563-576.
    [54] Molnar P and Tapponnier P.1975. Cenozoic tectonics of Aisia,effets of a continentalcollision[J]. Science,189:419-426.
    [55] Molnar P, England P, Martinod J.1993. Mantle dynamics, the uplift of the Tibetan Plateau,and the Indian monsoon [J]. Review of Geophysics,31(4):357-396.
    [56] Molnar P.1988. A review of geophysical constraints on the deep structure of the'Tibetanplateau, the Himalaya and the Karakoram, and their tectonic implications[J]. Philosoficaltransactions of the royal society Lond: Series A,326:33-88.
    [57] Molnar P.2005. Mio-Pliocene growth of the Tibetan Plateau evolution of East Asian climate[J]. Palaeontologia Electronica,8(1):1-23.
    [58] Murrell G R, Andriessen P A M.2004. Unravelling a long-term multi-event thermal record inthe cratonic interior of southern Finland through apatite fission track thermochronology[J].Physics and Chemistry of the Earth,29:695-706.
    [59] Najman Y.2006. The detrital record of orogenesis: A review of approaches and techniquesused in the Himalayan sedimentary basins [J]. Earth-Science Reviews.74:1-72.
    [60] Patriat P, Achche J.1984. India-Eurasia collision chronology has implications for crustalshorting and deriving mechanism of plate [J]. Nature,311:615-621.
    [61] Platt P J, and England P G.1993. Convective removal of lithosphere beneath mountain belts:Thermal and mechanical consequences[J]. American Journal of Science,293:307-336.
    [62] Robinson A C, Yin A, Manning C E, et al.2004. Tectonic evolution of the northeasternParmir: Constraints from the northern portion of the Cenozoic Kongur Shan extensionalsystem, western China[J]. Geological Society of America Bulletin,116:953-973.
    [63] Rowley D B, Xue F, Tucker R D.1997. Ages of ultrahigh pressure metamorphism andprotolith orthogneisses from the eastern Dabie Shan: U/Ph zircon geochronology [J]. Earthand Planet Science Letters.151:191-203.
    [64] Ruiz G M H, Seward D and Winkler W.2004. Detrital thermochronology-a new perspectiveon hinterland tectonics, an example from the Andean. Amazon Basin, Ecuador [J]. BasinResearch,16:413-430.
    [65] Sam B J and David K.2006. Application of cathodoluminescence imaging to the study ofsedimentary rocks [D]. Cambridge University Press, Cambridge:47-135.
    [66] Sobel E R and Dpmitru T A.1997. Thrusting and exhumation around the margins of thewestern Tarim basin during the India-Asia collision [J]. Journal of Geophysical Research,102:5043-5063.
    [67] Sobel E R, Arnaud N, Jolivet M, et al.2001. Jurassic to Cenozoic exhumation history of theAltyn Tagh range, NW Cliina, constravied by40Ar/39Ar and apatite fission trackthermochronology[C]. in: Hendiix M S, Davis G R, eds. Paleozoic and Mesozoic TectoncEvolution of Central Asia, from Continental Assembly to intracontinental Deformation.Geological Society of America,194:247-267.
    [68] Sun D H, Shaw J, An Z S.1998. Magnetostratigraphy and paleoclimatic interpretation of acontinuous7.2Ma late cenozoic aeolian sediments from the Chinese Loess Plateau [J].Geophysical Research letters,25:85-88.
    [69] Tapponnier P, Xu Zhiqin, Roger F, et al.2001. Oblique stepwise rise and growth of the TibetPlateau[J]. Science.294:1671-1676.
    [70] Thomas W A, Becker T P, Samson S D, et al.2004. Detrital zircon evidence of a recycledorogenic foreland provenance for Alleghanian classic-wedge sandstones [J]. The Joumal ofGeology,112:23-37.
    [71] Vermeesch P.2004. How many grains are needed for a provenance study [J]. Earth andPlanetary Science Letters,224:441-451.
    [72] Wang C S, Zhao X X, Liu Z F, et al.2008. Constraints on the early uplift history of theTibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,105(13):4987-4992.
    [73] Wang E Q, Xu F Y, Zhou J X, et al.2006. Eastward migration of the Qaidam basin and itsimplications for Cenozoic evolution of the Altyn Tagh fault and associated river systems[J].Geological Society of America Bulletin,118:349-365.
    [74] Wang E, Wan J L, Liu J Q.2003. Late Cenozoic geological evolution of the foreland basinbordering the West Kunlun range in Pulu area: Constraints on timing of uplift of northernmargin of the Tibetan plateau[J]. Journal of Geophysical Research,108(B8),2401, doi:10.1029/2002JB001877.
    [75] Wang F, Lo, C.H., Li, Q., et al.2004. Onset timing of significant unroofing around Qaidambasin, northern Tibet, China: constraints from40Ar/39Ar and FT thermochronology ongranitoids[J]. Journal of Asian Earth Sciences,24:59–69.
    [76] Wang G C, Cao K, Zhang K X, et al.2011. Spatio-temporal framework of tectonic upliftstages of the Tibetan Plateau in Cenozoic [J]. Science China Earth Sciences,54:29-44.
    [77] Yi H S, Wang C S, Shi Z Q, et al.2008. Early Uplift History of the Tibetan Plateau: Recordsfrom Paleocurrents and Paleodrainage in the Hoh Xil Basin[J]. Acta Geologica Sinica,82(1):206-213.
    [78] Yin A and Harrison T M.2000. Geologic evolution of the Himalayair-Tibetan orogen[J].Annual Review of Earth and Planetary Sciences:211-280.
    [79] Yin A, Dang Y Q, Zhang M, et al.2007. Cenozoic tectonic evolution of Qaidam basin and itssurrounding regions (part2): Wedge tectonics in southern Qaidam basin and the EasternKunlun Range[J]. The Geological Society of America,433:369-390.
    [80] Yuan H L, Gao S, Liu X M, et al.2004. Accurate U-Pb age and trace element determinationsof zircon by laser ablation inductively coupled plasma mass spectrometry[J]. Geostandardand Geoanalytical Research,28:353-370.
    [81] Yuan W M, Dong J Q, Wang S C, et al.2006. Apatite fission track evidence for Neogeneuplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau[J]. Journal of AsianEarth Sciences,27:847–856.
    [82] Yue Y, Graham S A, Ritts B D, et al.2005. Detrital zircon provenance evidence forlarge-scale extrusion along the Altyn Tagh fault[J]. Tectonophysics,406:165-l78.
    [83] Zeitler P K, Johnson N M, Naeser C W, et al.,1982. Fission-track evidence for Quaternaryuplift of the Nanga Parbat region, Pakistan[J]. Nature,298:255-257.
    [84] Zeitler P K.1985. Cooling history of the NW Himalaya, Pakistan[J]. Tectonics,4:127-151.
    [85] Zheng D W, Zhang P Z, Wan J L, et al.2006. Rapid exhpmation at-8Ma on the Liupan Shanthrust fault from apatite fission-track thermochronology: Implications for growth of thenortheastern Tibetan Plateau margin[J]. Earth and Plan Science Letters,248:198-208.
    [86] Zhu W B, Wan J L, Shu L S, et al.2005. Mesozoic-Cenozoic thermal history of Trupan-HamiBasin: apatite fission track constrains[J]. Progress in Natural Science,15(3):331-336.
    [87] Zinkernagel U.1978. Cathodoluminescence of quartz and its application to sandstonepetrology[D]. Contributions to Sedimentology,8:1–69.
    [88]安芷生,张培震,王二七,等.2006.中新世以来我国季风—干旱环境[J].第四纪研究,26(5):678-693.
    [89]柏道远,孟德保,刘耀荣,等.2003.青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录[J].中国地质,30(3):240-246.
    [90]拜永山,任二峰,范桂兰,等.2008.青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据[J].地质通报,27(7):1044-1048.
    [91]包亚范,刘延军,王鑫春.2008.东昆仑西段巴什尔希花岗岩与白干湖锡矿床的关系[J].吉林地质,27(3):56-69.
    [92]边千韬,罗小全,李红生,等.1999.阿尼玛卿山早古生代和早石炭-早二叠世蛇绿岩的发现[J].地质科学,34(4):523-524.
    [93]曹国强.2004.柴达木盆地西部地区第三系沉积相研究[D].中国科学院研究生院(广州地球化学研究所)博士学位论文.
    [94]曹凯,王国灿,刘超,等.2009.西昆仑及邻区新生代差异隆升的热年代学证据[J].地球科学-中国地质大学学报,34(6):895-906.
    [95]车自,刘良,刘洪福,等.1995.阿尔金山地区高压变质泥质岩石的发现及其产出环境[J].科学通报,40(14):1298-1330.
    [96]车自,孙勇.1996.阿尔金麻粒岩相杂岩的时代及塔里木盆地的基底[J].中国区域地质,1:51-57.
    [97]陈能松,李晓彦,张克信,等.2006.东昆仑山香日德南部白沙河岩组的岩石组合特征和形年代的锆石Pb-Pb定年启示[J].地质科技情报,25(6):1-7.
    [98]陈宣华, Mcrivette M W,李丽,等.2011.东昆仑造山带多期隆升历史的地质热年代学证据[J].地质通报,30(11):1647-1659.
    [99]陈宣华,尹安, George E, et al.2002.青藏高原北缘中生代伸展构造40Ar/39Ar测年和MDD模拟[J].地球学报,23(4):305-310.
    [100]陈正乐,宫红良,李丽,等.2006.阿尔金山脉新生代隆升—剥露过程[J].地学前缘,13(4):91-99.
    [101]崔军平,任战利.2011.内蒙古海拉尔盆地乌尔逊凹陷热演化史[J].现代地质,25(4):668-674.
    [102]崔军文,唐哲明,邓晋福.1999.阿尔金断裂系[M].北京:地质出版社.
    [103]崔之久,伍永秋,刘耕年,等.1998.关于“昆仑—黄河运动”[J].中国科学(D辑),28(1):53-59.
    [104]戴霜,方小敏,宋春晖,等.2005.青藏高原北部的旱期隆升[J].科学通报,50(7):673-683.
    [105]邓万明.1992.青藏高原的陆内俯冲带及其岩浆活动[C].见:中国青藏高原研究会.中国青藏高原研究会第一届学术讨论会论文集.北京:科学出版社:256-262
    [106]丁超,陈刚,李振华,等.2011.鄂尔多斯盆地东北部构造热演化史的磷灰石裂变径迹分析[J].现代地质,25(3):581-616.
    [107]丁林,来庆洲.2003.冈底斯地壳碰撞前增厚及隆升的地质证据-岛弧拼贴对青藏高原隆升及扩展历史的制约[J].48(8):836-842.
    [108]丁林,钟大赉,潘裕生,等.1995.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J].科学通报,44(16):1497-1500.
    [109]方小敏,李吉均.2003.高原隆升的阶段性[C].见青藏高原形环境与发展.石家庄:河北科学技术出版,37-48.
    [110]方小敏,宋春晖,戴霜,等.2007.青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录[J].地学前缘,14:230-242.
    [111]丰友,张德个,党兴彦,等.2005.青海格尔木地区驼路沟钻(金)矿床石英钠长石岩锆石SHRIMP U-Pb定年—对“纳赤台群”时代的制约[J].地质通报,24(6):501-505.
    [112]傅开道,方小敏,高军平,等.2006.青藏高原北部砾石粒径变化对气候和构造演化的响应[J].地球科学,36(8):733-742.
    [113]高峰,王岳军,刘顺生.2000.利用磷灰石裂变径迹研究鄂尔多斯盆地西缘热历史[J].大地构造与矿学,24(1):87-91.
    [114]高军平,方小敏,宋春晖,等.2011.青藏高原北部中-新生代构造-热事件:来自柴西碎屑磷灰石裂变径迹的制约[J].吉林大学学报(地球科学版),41(5):1466-1475.
    [115]高晓峰,校培喜,谢从瑞,等.2010.东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J].地质通报,29(7):1001-1008.
    [116]古凤宝,吴向农.1996.东昆仑华力西-印支期花岗岩组合及构造环境[J].青海地质,1:18-36.
    [117]广西壮族自治区地质调查院.2002.1:25万瓦石峡幅、阿尔金山幅区域地质调查报告及地质图.
    [118]郭庆银.2010.鄂尔多斯盆地西缘构造演化与砂岩型铀矿矿作用[D].中国地质大学(北京)博士学位论文.
    [119]郭召杰,张志诚,王建群.1998.阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义.科学通报,43(18):1981-1984.
    [120]胡受权,曹运江,黄继祥,等.1999.柴达木盆地侏罗纪盆地原型及其形于演化探讨[J].石油实验地质,21(3):189-194.
    [121]湖南省地质调查院.2002.1:25且末一级电站幅区域地质调查报告及地质图.
    [122]惠博.2010.柴达木盆地新生代沉积转型事件及区域对比研究[D].都理工大学硕士学位论文.
    [123]姜春发,杨经绥,冯秉贵,等.1992.昆仑开合构造[M].北京:地质出版社,1-24.
    [124]姜在兴.2003.沉积学[M].北京:石油工业出版社.
    [125]蒋荣宝,陈宣华,党玉琪等.2008.柴达木盆地东部中新生代两期逆冲断层作用的FT定年[J].地球物理学报,51(1):116-124.
    [126]解玉月,刘永,拜永山,等.2000.东昆仑东段32-35亿年古老岩石同位素地球化学特征[J].青海地质,2:36-41.
    [127]解玉月.1998.昆中断裂东段不同时代蛇绿岩特征及形环境[J].青海国土经略,(1):27-36.
    [128]金振民.1999.喜马拉雅造山带西构造结含柯石英榴辉岩的发现及其启示[J].地质科技情报,18(3):1-5.
    [129]康铁笙和王世.1991.地质热历史研究的裂变径迹法[M].北京:科技出版社.
    [130]黎敦朋,赵越,胡健民,等.2007.青藏高原西北缘高原面与陡坡地貌形过程的裂变径迹热年代学约束[J].岩石学报,23(5):900-910.
    [131]李长民.20009.锆石因矿物学与锆石微区定年综述[J].地质调查与研究,33(3):161-174.
    [132]李海兵,杨经绥.2004.青藏高原北部白垩纪隆升的证据[J].地学前缘,11(4):345-359.
    [133]李怀坤,陆松年,相振群,等.2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究[J].地学前缘(中国地质大学(北京),北京大学),13(6):311-321.
    [134]李惠民,陆松年,郑健康,等.2001.阿尔金山东端花岗片麻岩中3.6Ga锆石的地质意义[J].矿物岩石地球化学通报,20(4):259-262.
    [135]李吉均,方小敏,潘保田,等.2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,1(5):381-391.
    [136]李吉均,方小敏.1998.青藏高原隆起与环境变化研究[J].科学通报,43(15):1569-1574.
    [137]李吉均,文世宣,张青松,等.1979.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学,22(6):608-616.
    [138]李继亮,肖文交,闫臻.2003.盆山祸合与沉积作用[J].沉积学报,21(1):52-60.
    [139]李荣社,计文化,杨永,等.2008.昆仑山及邻区地质.北京:地质出版社.
    [140]李廷栋,肖序常.1996.青藏高原地体构造分析[C].见:中国地质科学院岩石圈研究中心、地质矿产部地质研究所著,青藏高原岩石圈结构和形演化.北京:地质出版社.
    [141]李玮,胡健民,渠洪杰.2010.准噶尔盆地周缘造山带裂变径迹研究及其地质意义[J].地质学报,84(2):171-182.
    [142]李勇,王善,曾允孚.2000.造山作用与沉积响应[J].矿物岩石,20(2):49-56.
    [143]林秀斌.2009.六盘山地区中新生代构造事件及沉积响应[D].浙江大学博士学位论文.
    [144]刘和甫.2001.盆地-山岭祸合体系与地球动力学机制[J].地球科学,26(6):581-596.
    [145]刘建辉,张培震,郑德文,等.2010.贺兰山晚新生代隆升的剥露特征及其隆升模式[J].中国科学:地球科学,40(1):50-60.
    [146]刘良,车自,罗金海,等.1996.阿尔金山西段榴辉岩的确定及其地质意义[J].科学通报,41(16):1485-1488.
    [147]刘良,车自,王焰,等.1999.阿尔金高压变质岩带的特征及其构造意义[J].岩石学报,15(1):57-64.
    [148]刘树根,罗志立,赵锡奎,等.2003.中国西部盆山系统的祸合关系及其动力学模式[J].地质学报,77(2):177-186.
    [149]刘永江, Franz N,葛肖虹,等.2007.阿尔金断裂带年代学和阿尔金山隆升[J].地质科学,42(1):134-146.
    [150]刘永江,葛肖虹, J.Genser,等.2003.阿尔金断裂带构造活动的40Ar/39Ar年龄证据[J].科学通报,48(12):1335-1341.
    [151]刘永江,葛肖虹,叶慧文,等.2001.晚中生代以来阿尔金断裂的走滑模式[J].地球学报,22(1):23-28.
    [152]刘云田.2002.柴西第三系构造沉积演化与油气藏[D].中国科学院研究生院(广州地球化学研究所)博士学位论文.
    [153]刘战庆,裴先治,李瑞报,等.2011.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J].地质学报,85(2):187-194.
    [154]陆济璞,李江,覃小锋,等.2005.东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J].沉积与特提斯地质,25(4):46-54.
    [155]陆露,吴珍汉,胡道功,等.2010.东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J].岩石学报,26(4):1150-1158.
    [156]陆松年,王惠初,李怀坤,等.2002.柴达木盆地北缘“达肯大坂群”的再厘定[J].地质通报,21(1):19-23.
    [157]陆松年,袁桂邦.2003.阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据[J].地质学报,77(1):61-68.
    [158]马永寿,拜永山,何皎,等.2010.祁漫塔格地区泛非期二长花岗岩的发现及意义[J].青海大学学报(自然科学版),28(5):56-60.
    [159]孟艳宁,王国灿,张克信等.2010.札达盆地碎屑裂变径迹揭示的盆山耦合过程[J].地球科学(中国地质大学学报),35(5):747-758.
    [160]潘桂棠,丁俊,姚东生,等.2004.1:150万青藏高原及邻区地质图说明书[M].都:都地图出版社.
    [161]潘裕生,孔祥儒,钟大赉.1998.青藏高原岩石圈结构、演化和动力学[C].见:孙鸿烈,郑度编,青藏高原形演化与发展.广州:广东科技出版社.
    [162]彭杨伟.2006.酒泉、肃北盆地新生代磷灰石裂变径迹年龄及其意义[D].兰州大学博士学位论文.
    [163]青海地质调查院.2003.1:5万万宝沟幅区域地质调查报告及地质图.
    [164]青海省地质调查院.2000.1:25万兴海县幅区域地质调查报告及地质图.
    [165]青海省地质调查院.2003.1:25万布喀达坂峰幅区域地质调查报告及地质图.
    [166]青海省地质调查院.2003.1:25万库朗米其提幅区域地质调查报告及地质图.
    [167]任战利,萧德铭,迟元林,等.2011.松辽盆地基底石炭-二叠系热演化史[J].石油与天然气地质,32(3):430-439.
    [168]陕西省地质调查院.2002.1:25万阿牙克库木湖幅区域地质调查报告及地质图.
    [169]施雅风,李吉均,李炳元,等.1998.高原隆升与环境演化[C].见青藏高原形演化与发展.广州:广东科技出版社,73-137.
    [170]施雅风,汤悉苍,马玉贞.1998.青藏高原二期隆升与亚洲季风孕育关系探讨[J].中国科学(D辑):263-271.
    [171]宋春晖,方小敏,李吉均,等.2001.青藏高原北缘酒西盆地13Ma以来沉积演化与高原隆升[J].中国科学D辑:地球科学,31(增刊):155-162.
    [172]宋春辉.2006.青藏高原北缘新生代沉积演化与高原构造隆升过程[D].兰州大学博士学位论文.
    [173]宋鹰.2010.松辽盆地裂后期构造反转及其动力学背景分析[D].中国地质大学(武汉)博士学位论文.
    [174]孙知明,杨振宇,葛肖虹,等.2004.柴达木盆地西北缘古近系磁性年代研究进展[J].地质通报,23(9-10):899-902.
    [175]唐哲民,郭宪璞,乔秀夫.2011.龙门山中、南段中-新生代隆升史:来自裂变径迹的证据[J].岩石学报,27(11):3471-3478.
    [176]唐智博,李理,时秀朋,等.2011.鲁西隆起蒙山晚白垩世-新生代抬升的裂变径迹证据[J].中山大学学报(自然科学版),50(2):127-133.
    [177]唐卓,马中平,李向民,等.2011.阿尔金山南缘清水泉地区斜长角闪岩锆石LA-ICP-MSU-Pb测年及其地质意义[J].地质通报,30(1):51-57.
    [178]万景林,李齐,王瑜.2000.华山岩体中、新生代抬升的裂变径迹证据[J].地震地质,22(1):53-58.
    [179]万景林,王瑜,李齐,等.2001.阿尔山北段晚新生代山体抬升的裂变径迹证据[J].矿物岩石地球化学通报,20(4):222-224.
    [180]万景林,郑德文,郑文俊等.2011. MDD法和裂变径迹法相结合模拟样品的低温热历史—以柴达木盆地北缘赛什腾山中新生代构造演化为例[J].地震地质,33(2):369-382.
    [181]王岸,王国灿,谢德凡,等.2007,东昆仑山小南川岩体裂变径迹年代与中新世晚期以来的构造地貌演化[J].地球科学-中国地质大学学报,32(1):51-57.
    [182]王岸,王国灿,张克信,等.2010.东昆仑造山带新生代早期构造事件的碎屑裂变径迹年代学证据[J].地球科学(中国地质大学学报),35(3):737-746.
    [183]王善,丁学林.1998.青藏高原隆升研究新进展综述[J].地球科学进展,13(6):526-532.
    [184]王国灿,曹凯,张克信,等.2011.青藏高原新生代构造隆升阶段的时空格局[J].中国科学:地球科学,41(3):332-349.
    [185]王国灿,向树元,王岸,等.2007.东昆仑及相邻地区中生代—新生代早期构造过程的热年代学记录[J].地球科学(中国地质大学学报),32(5):605-680.
    [186]王国灿,张克信,曹凯,等.2010.从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形过程[J].地球科学(中国地质大学学报),35(5):713-727.
    [187]王军.1998.西昆仑卡日巴生岩体和苦子干岩体的隆升—来自磷灰石裂变径迹分析的证据[J].地质论评,44(4):435-442.
    [188]王松,丰友,李世金,等.2009.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质,36(1):74-84.
    [189]王小凤,陈宣化,陈正乐,等.2004.阿尔金地区征地质条件与远景预测[M].北京:地质出版社,1-132.
    [190]王修喜,李吉均,宋春晖.2006.青藏高原东北缘西秦岭新生代抬升——天水盆地碎屑颗粒磷灰石裂变径迹记录[J].沉积学报,24(6):783-789.
    [191]王彦斌,王军,刘训,等.2001.天山、西昆仑山中、新生代幕式活动的磷灰石裂变径迹记录[J].中国区域地质,20(1):94-99.
    [192]王瑜,万景林,李齐等.2002.阿尔金山北段阿克塞—当金山口一带新生代山体抬升和剥蚀的裂变径迹证据[J].地质学报,76(2):191-198.
    [193]王云山,陈基娘.1987.青海省及毗邻地区变质带与变质作用.地质专报-岩石矿物地球化学第6号.北京:地质出版社.
    [194]吴才来,杨经绥,姚尚志, et al.2005.北阿尔金巴什考供盆地南缘花岗杂岩体特征及锆石SHRIMP定年[J].岩石学报,21(2):846-858.
    [195]吴根耀,马力.2004.“盆”“山”耦合和脱耦:进展,现状和努力方向[J].大地构造与矿学,28(1):81-97.
    [196]吴元保,郑永飞.2004.锆石因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,49(16):1589-1604.
    [197]吴珍汉,胡道功,宋彪,等.2005.昆仑山南部西大滩盆北花岗岩的年龄与热历史[J].地质学报,79(5):628-635.
    [198]吴珍汉,胡道功,吴中海,等.2006.东昆仑南部西大滩断裂的地震鼓包及形时代[J].地质论评,52(1):15-24.
    [199]西安地质矿产研究所.2002.1:25万苏吾什杰幅区域地质调查报告及地质图.
    [200]新疆维吾尔自治区地质矿产局.1993.新疆维吾尔自治区区域地质志.北京:地质出版社.
    [201]修群业,于海峰,刘永顺,等.2007.阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄.地质学报,81(6):787-794.
    [202]徐惠芬,崔京钢,邱小平.2006.阴极发光技术在岩石学和矿床学中的应用[M].北京:地质出版社.
    [203]徐亚军,杜远生,杨江海.2007.沉积物物源分析研究进展[J].地质科技情报,26(3):26-32.
    [204]许志琴,李海兵,杨经绥,等.2001.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J].地质学报,75(2):156-164.
    [205]杨藩,马志强,许同春,等.1992.柴达木盆地第三纪磁性地层[J].石油学报,13(2):97-101.
    [206]杨经绥,史仁灯,吴才来,等.2008.北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J].岩石学报,24(7):1567-1584.
    [207]杨树锋,陈汉林,程晓敢,等.2003.南天山新生代隆升和去顶作用过程[J].南京大学学报(自然科学版),39(1):1-8.
    [208]杨振宇, Besse J,孙知明,等.1998.印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化[J].地质学报,72(2):112-125.
    [209]袁四化,刘永江,葛肖虹,等.2006.阿尔金山中-新生代隆升历史研究进展[J].世界地质,25(2):164-171.
    [210]袁万明,董金泉,王世,等.2005.东昆仑南部带磷灰石裂变径迹分析的地质意义[J].核技术,28(9):707-711.
    [211]袁万明,杨志强,张招崇.2011.安徽省黄山山体的隆升与剥露[J].41(10):1435-1443.
    [212]袁万明,张雪亭,董金泉,等.2004.东昆仑隆升作用的裂变径迹研究[J].原子能科学技术,38(3):166-168.
    [213]曾允孚,夏文杰.1986.沉积岩石学[M].北京:地质出版社.
    [214]张建新,张泽明,许志琴,等.1999.阿尔金西段孔兹岩系的发现及岩石学、同位素代学初步研究[J].中国科学D辑,29(4):298-305.
    [215]张建新,孟繁聪,于胜尧,等.2007.北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义[J].中国地质,34(4):558-564.
    [216]张耀玲,张绪教,胡道功,等.2010.东昆仑造山带纳赤台群流纹岩SHRIMP锆石U-Pb年龄[J].地质力学学报,16(1):21-27.
    [217]张志诚,龚建业,王晓丰.2008.阿尔金断裂带东端40Ar/39Ar和裂变径迹定年及其地质意义[J].岩石学报,24(5):1041-1053.
    [218]张志诚,郭召杰,宋彪.2009.阿尔金山北缘蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报,25(3):568-576.
    [219]赵红格,刘池洋,姚亚明,等.2007.鄂尔多斯盆地西缘差异抬升的裂变径迹证据[J].西北大学学报(自然科学版),37(3):470-474.
    [220]郑德文,张培震,万景林,等.2006.构造、气候与砾岩-以积石山和临夏盆地为例[J].第四纪研究,26(1):63-68.
    [221]郑德文,张培震,万景林.2000.碎屑颗粒热年代学—一种揭示盆山耦合构的年代学方法[J].地震地质,22:25-36.
    [222]郑德文,张培震,万景林.2003.青藏高原东北边缘晚新生代构造变形的时序—临夏盆地碎屑颗粒磷灰石裂变径迹记录[J].中国科学(D辑),33(增刊):190-197.
    [223]郑健康.1992.东昆仑区域构造的发展演化.青海地质,1:15-25.
    [224]中国地质大学(武汉).2002.1:25万阿拉克湖幅区域地质调查报告及地质图.
    [225]中国地质大学(武汉).2002.1:25万冬给措纳湖幅区域地质调查报告及地质图.
    [226]中国地质大学(武汉).2005.1:25万不冻泉幅区域地质调查报告及地质图.
    [227]钟大赉,丁林.1996.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑),26(4):289-295.
    [228]周春景,胡道功, Barosh P J,等.2010.东昆仑三道湾流纹英安斑岩锆石U-Pb年龄及地质意义[J].地质力学学报,16(1):28-35.
    [229]周剑雄和陈振宇.2007.电子探针下锆石阴极发光的研究[M].都:电子科技大学出版社.
    [230]朱文斌,万景林,舒良树,等.2005.裂变径迹定年技术在构造演化研究中的应用[J].高校地质学报,11(4):593-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700