用户名: 密码: 验证码:
松墨天牛和天敌花绒寄甲对几种树木挥发物的电生理及行为反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松材线虫病又称松树萎蔫病,在我国是松树的毁灭性病害,其病原松材线虫(Bursaphelenchus xylophilus)借助松墨天牛(Monochamus alternatus)等媒介昆虫通过补充营养和取食在松树间传播。松墨天牛成虫羽化后取食松嫩枝补充营养,雌虫性成熟后多选择衰弱木或新伐木产卵。花绒寄甲(Dastarcus helophoroides)属鞘翅目寄甲科(Coleoptera:Bothrideridae),莱氏猛叩甲(Tetrigus lewisi)属鞘翅目叩甲科(Coleoptera:Elateridae),分别是松墨天牛重要的寄生性天敌和捕食性天敌。本文主要从以下方面开展了研究:松墨天牛的寄主树种马尾松(Pinus massoniana)和黑松(P. thunbergii)不同发病阶段的挥发物变化,松林群落中主要6种阔叶乔木(香樟Cinnamomum camphora、枫香Liquidambar formosanat、构树Broussonetia papyrifera、黄檀Dalbergia hupeana、合欢Albizia julibrissin和檫木Sassafras tzumu)的挥发性物质组分;并测定了松墨天牛和天敌花绒寄甲对上述植物挥发物的电生理和行为学反应,主要结果如下:
     1、明确了松材线虫侵染后各发病阶段马尾松与黑松上松墨天牛及天敌的株虫口密度和生态位:处于健康期的松树上无松墨天牛;发病初期的马尾松和黑松上分布有松墨天牛当年刻槽,但这一时期内其幼虫的生态位较窄;发病早期至后期松树上松墨天牛的当年刻槽多,幼虫生态位宽度显著高于其它时期,且株虫口密度高。同时,松墨天牛捕食性天敌莱氏猛叩甲的分布、株虫口密度与松墨天牛的生态位、株虫口密度显著相关,说明其对松墨天牛有跟随作用;在所调查的30棵发病松树上,均未发现花绒寄甲
     2、揭示了各发病阶段马尾松和黑松挥发物质成分与挥发量的变化规律:随着发病程度加深,松树挥发性物质的总量逐渐减少,在发病后期和末期最少。发病初期或早期的马尾松树干、枝叶及黑枝叶、树干挥发物中limonene和3-carene的挥发量呈上升趋势,黑松树干挥发的α-pinene有同样趋势。发病中期,黑松和马尾松树干的主要挥发物质成分为α-pinene, β-pinene, limonene和3-carene,同时期枝叶主要挥发性物质除上述4种外还包括β-phellandrene。从健康期到发病中期,黑松和马尾松树干挥发物中α-pinene所占比例上升,β-pinene的比例下降,limonene,3-carene的比例先上升后下降;黑松和马尾松枝叶挥发物中3-carene和β-pinene的比例均上升,a-pinene的比例下降。3、测定了松墨天牛对发病初期至后期的黑松和松林群落中6种阔叶乔木挥发性物质的触角电位和行为反应:天牛雌雄成虫在EAG试验中反应敏感且在行为试验中具有趋向反应的物质包括3-carene,(R)-(+)-a-pinene,(S)-(-)-a-pinene, camphene,(R)-(+)-limonene,(S)-(-)-limonene, β-phellandrene,β-myrcene(发病黑松与阔叶树均挥发),linalool, cis-3-hexene-l-ol和methyl salicylate(仅阔叶树挥发);行为测定中仅雌虫趋向的化学物质为α-terpinene,(-)-α-cedrene(仅发病黑松挥发)和(-)-β-caryophyllene(发病黑松与阔叶树均挥发);雌雄虫均趋避的物质包括camphor, octanal,ocimene以及α-farnesene(仅阔叶树挥发);衰弱寄主植物的挥发物对松墨天牛具有吸引作用,而非寄主植物的挥发物会干扰松墨天牛的寄主找寻。
     4、测定了花绒寄甲对发病黑松和阔叶乔木挥发性物质的触角电位与行为反应:雌雄花绒寄甲的EAG反应随着待测物质浓度的加大而增大;引起花绒寄甲产生较强反应的物质为nonanal和octanal(仅阔叶树挥发),其次为cis-3-hexen-l-ol(仅阔叶树挥发),3-carene,(R)-(+)-α-pinene,(S)-(-)-α-pinene,(R)-(+)-limonene以及(S)-(-)-limonene(发病黑松与阔叶树均挥发)。行为测定中,花绒寄甲被(R)-(+)-α-pinene和(S)-(-)-α-pinene在高浓度下吸引;被3-carene,cis-3-hexen-l-ol,nonanal和octanal低浓度下所吸引;可被(R)-(+)-limonene在所有浓度下吸引。
     5、明确了松墨天牛求偶识别和产卵探测行为中主要功能感器的形态和超微结构:松墨天牛雄虫的触角,下颚须和下唇须均参与求偶识别;雌虫的触角、下颚须、下唇须、第8腹节和产卵器参与了产卵位置的找寻和探测。松墨天牛触角上总共有7种感器,下颚须和下唇须上分别着生有相同的6种感器,腹部末节和产卵器上共有5种感器;观察并记录了感器基座、基座下神经结构、感器壁开口的结构(顶孔、壁孔、辐射状通道)、外树突节的多种树突结构和部分神经细胞结构等重要感器特征;分析感器的超微神经结构显示着生于不同位置的感器具有不同的功能,总体包括机械感受、嗅觉化学感受、接触性化学感受(味觉感受)以及温湿度感受。
     6、观察明确了寄生性天敌花绒寄甲和捕食性天敌莱氏猛叩甲触角上感器的形态和超微结构:花绒寄甲雌雄虫触角上的感器数量少、种类简单;感器的超微结构显示毛形感器和锥形感器淋巴腔中具有树突,具有化学感受的功能。莱氏猛叩甲触角具有明显的雌雄二型现象;感器种类有刺形感器、锥形感器、毛形感器、耳形感器、腔锥形感器、钟形感器和Bohm's鬃毛,分析这些感器的超微神经结构显示其功能包括机械感受、嗅觉化学感受、接触性化学感受(味觉感受)以及温湿度感受。
     综上所述,本文研究了混交林内复杂化学信息中植物-植食性昆虫-天敌三者之间的关系:(1)松墨天牛与寄生性天敌花绒寄甲可同时被发病后衰弱黑松的挥发性物质3-carene,limonene,α-pinene所吸引,并同时被阔叶树所挥发的cis-3-hexen-l-ol所吸引;松墨天牛被吸引产卵的同时,花绒寄甲也可被吸引前往寻找寄主天牛。(2)花绒寄甲可被广谱植物挥发物nonanal和octanal所吸引,增加了其找到除松墨天牛外其他合适寄主的几率。(3)松墨天牛对6种阔叶树的挥发物即有趋避反应也有趋向反应;这些树种的挥发物可以在一定程度上干扰松墨天牛的寄主找寻行为,说明混交松林内的化学信息多样性可以提高其对松墨天牛的抵御性。
Pine wood wilt is a devastating epidemic disease in China that infests pine trees in coniferous forests caused by the pine wood nematode (Bursaphelenchus xylophilus). Short-distance natural diffusion of pine wood nematode disease primarily depends on the flight and feeding of its vectors, the Japanese pine sawyer beetle (Monochamus alternatus Hope)(Coleoptera:Cerambycidae). Adult M. alternatus beetles emerge in early summer. They feed on fresh branches of healthy trees until they are sexually mature. The beetles copulate repeatedly and then females lay their eggs under the bark of weak or stressed host trees. The parasitoid beetle Dastarcus helophoroides (Fairmaire)(Coleoptera:Bothrideridae) is an important parasite of longicorn beetles (Cerambycidae). Tetrigus lewisi Candezeis is a predatory click beetle that can feed on M. alternatus. In this research we focused on the volatiles released by pines in different infection stages, volatiles released by other broad-leaf trees (Cinnamomum camphora, Liquidambar formosanat, Broussonetia papyrifera, Dalbergia hupeana, Albizia julibrissin and Sassafras tzumu) in the same plant community; ecological niche of larvae M. alternatus and its nature enemies on pines in different infection stages; as well as electroantennogram and behavior responses of M. alternatus and D. helophoroides to the above volatiles. Main conclusions are as follow:
     1. The ecological niche and the population distribution of larvae M. alternatus and its nature enemies on P. massoniana and P. thunbergii in different infection stages were investigated:no sign of M. alternatus was observed on pines in the HW stage. The current year oviposition scars were observed on pines in the IP stage, while ecological niche of the current year larvae was low. A great number of the current year oviposition scars were observed on pines in the EP till the PP stages, and ecological niche of the larvae reached maximum within those stages. The ecological niche of M. alternatus was significantly related with the ecological niche of T. lewisi. No D. helophoroides was found on the30infection pines that were investigated.
     2. Volatiles released by P. massoniana and P. thunbergii in different infection stages were collected and measured:total mass of the volatile decreased as the pines became weaker, it was extremely few at the stages of PP and TP. At the stages of IP and EP, the mass of limonene and3-carene released by the masson pines and leaves of the black pines showed increasing trend, same with a-pinene released by stem of the black pines. After infection with PWN, the major volatile compounds of stems of P. massoniana and P. thunbergii included α-pinene, β-pinene, limonene and3-carene, the major volatile compounds of leaves and branches were a-pinene, β-pinene, limonene,3-carene and β-phellandrene. Within the volatiles released by stems of the pines in HW to MP stage, the percentage of α-pinene increased, the percentage of β-pinene decreased, the percentage of limonene,3-carene increased then decreased; while within the volatiles released by leaves and branches of pines from the HW to MP stage, the percentage of3-carene and β-pinene increased, the percentage of a-pinene decreased, the percentage β-pinene remained.
     3. EAG responses and behaviour orientation of M. alternatus towards volatiles released by host and non-host trees were tested:the following compounds elicited positive responses in both EAG and behaviour responses,3-carene,(R)-(+)-a-pinene,(S)-(-)-a-pinene, camphene,(R)-(+)-limonene,(S)-(-)-limonene, β-phellandrene, β-myrcene (released by both infection black pine and broad-leaf trees), linalool, cis-3-hexene-l-ol and methyl salicylate (released by broad-leaf trees). Female beetles showed positive responses to α-terpinene,(-)-α-cedrene (released by infection black pine) and (-)-β-caryophyllene (released by both) in behaviour tests. Both genders showed repellent action towards camphor, octanal, ocimene and α-farnesene (released by broad-leaf trees). Results indicted that volatiles from both host and non-host tress could affect the behaviours and actions of M. alternatus.
     4. The electroantennogram (EAG) technique and a dynamic two choices olfactometer were used to measure the responses of male and female D. helophoroides to the selected synthetic host-related plants volatiles. Significant dose-dependent EAG responses were elicited by nonanal, octanal cis-3-hexen-l-ol (released by broad-leaf trees),3-carene,(R)-(+)-α-pinene,(S)-(-)-α-pinene,(R)-(+)-limonene and (S)-(-)-limonene released by both infection black pine and broad-leaf trees) in both genders. D. helophoroides were attracted by nonanal, octanal cis-3-hexen-l-ol,3-carene,(R)-(+)-α-pinene,(S)-(-)-α-pinene,(R)-(+)-limonene and (S)-(-)-limonene at certain concentration, and repelled to cis-3-hexen-l-ol at the concentration of10-1mg/mg in the behavior bioassay. The results of this study have represented an initial attempt to demonstrate the electrophysiological sensitivities and orientation behaviors of D. helophoroides to the selected host-related plant volatiles.
     5. Mate recognization and oviposition site detection of M. alternatus were observed and focused on the major functional sensilla involved:antenna, maxillary and labial palps played key roles in mate recognization; while antenna, maxillary and labial palps, the8th abdomen together with the ovipositor all involved with the oviposition site detection behaviors. The morphology, typology and fine structures of sensilla located on antenna, maxillary palp, labial palp and ovipositor were observed systematically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Seven types of sensilla were identified on the antenna, six types were found on the maxillary and labial palps, and five types were found on the8th abdomen and ovipositor. Important sensillar characters such as forms of the socket, connections with the antenna cuticle, openings of the sensillar cuticle (pores, spoke channels or uniporous tip) and varied dendrite structures in the outer dendritic segment were observed. The putative functions including mechanoreception, chemoreception and hygro-or thermo reception of those sensilla were compared and discussed.
     6. The antennal morphology and sensillar ultrastructure of D. helophoroides and T. lewis were observed:four types of antennal sensilla were found on D. helophoroides; ultrastructural studies revealed porous structures on the cuticle wall and dendritic branches in the inner lumen of Tr.l, Tr.2, Ba.l, and Ba.2, thereby suggesting chemoreception function. Eight types of sensilla were observed on the antennae of T. lewisi, including sensilla chaetica, sensilla basiconica, sensilla trichodea, as well as sensilla auricillica, sensilla coeloconica, sensilla campaniformia, sensilla styloconica and Bohm's bristles; the chemoreception, mechanoreception and thermo-/hygro-reception functions were deduced from fine structures on the cuticular walls and the dendrites of different sensilla types.
     The relationship among plants, herbivorous insects, and its natural enemies in the aspect of semiochemical communication in mingled forest have been studies in this thesis.(1) M. alternatus and its parasitoid beetle D. helophoroides could both be attracted by volatiles released by infected black pines (3-carene, limonene, a-pinene), and a common green leaf volatile-cis-3-hexen-l-ol, thus D. helophoroides could locate M. alternatus by approaching the above chemicals.(2) D. helophoroides could also be attracted by nonanal and octanal which released by lots of plants, that increased the possibility of successful parasitism on other hosts.(3) M. alternatus could recognize and response as attracting or repellenting towards different compounds released by6species of non-host broad-leaf trees; those volatiles would interfere the host location of M.alternatus; the mingled pine forest with complex semiochemical information would possess higher resistance to possible damage from M.alternatus.
引文
1. 柴希民,蒋平.松材线虫病的发生和防治[M].北京:中国农业出版社,2003.
    2. 程瑚瑞.马尾松发生松材线虫萎蔫病的紧急警报[J].植物检疫,1987,(01):77-79.
    3. 杜永均,严福顺,唐觉.大豆蚜触角嗅觉感器结构及其功能[J].昆虫学报,1995,(01):1-7.
    4. 丁玉洲,吕传海,韩斌,等.树木生长势与松墨天牛种群密度及松材线虫发病程度关系[J].应用生态学报,2001,(03):351—354.
    5. 樊建庭,韦卫,孙江华.松墨天牛是否存在雌性接触信息素?[J].昆虫知识,2007,(01):125-129.
    6. 郭道森,赵博光,李周直.松材线虫病致病机理的研究进展[J].南京林业大学学报,2000,(04):64-68.
    7. 郝德君,张永慧,戴华国,等.松墨天牛对寄主树木的产卵选择[J].昆虫学报,2005,(03):460-464.
    8. 郝德君,马凤林,王焱,等.松墨天牛对不同生理状态黑松挥发物的触角电生理和行为反应[J].应用生态学报,2006,(06):1070-1074.
    9. 郝德君,马凤林,王焱,等.松墨天牛对马尾松挥发物的触角电位和行为反应[J].昆虫知识,2007,(04):541-544.
    10.郝德君,杨剑霞,戴华国.松墨天牛化学生态学[J].生态学杂志,2008a,(07):1227-1233..
    11.郝德君,杨建霞,唐进根,等.松墨天牛对雪松挥发物的触角电位和嗅觉反应[J].福建林学院学报,2008b,(03):329-332.
    12.何淼,张建华.不同月份小叶杨叶片挥发物的成分分析[J].石河子大学学报(自然科学版),2011,(05):557-560.
    13.黄大庄,杨忠岐,贝蓓,等.花绒寄甲在中国的地理分布区[J].林业科学,2008,(06):171-175.
    14.黄焕华,许再福,杨忠岐,等.松褐天牛的重要天敌——花绒坚甲[J].广东林业科技,2003,(04):76-77+82.
    15.黄秋燕.浙江松材线虫入侵区马尾松林松褐天牛天敌的初步研究——以莱氏猛叩甲为例[D].北京:北京林业大学,2005.
    16.金凤,嵇保中,刘曙雯等.桑天牛雌成虫产卵器解剖和刻槽及产卵习性研究[J].林业科学研究,2007,(03):394-398.
    17.江世宏.中国经济叩甲图志[M].北京:中国农业出版社,1999.
    18.江望锦.松墨天牛成虫与寄主间化学信息联系机制的初步研究[D].南京:南京林业大学,2005.
    19.雷琼,陈建锋,黄娜,等.花绒坚甲成虫人工饲料的筛选研究[J].中国农学通报,2005,(03):259-261+271.
    20.李孟楼,李有忠,雷琼,等.释放花绒寄甲卵对光肩星天牛幼虫的防治效果[J].林业科学,2009,(04):78-82.
    21.李水清,张钟宁.马尾松枝条挥发性组分的鉴定及松墨天牛对其触角电生理反应[J].昆虫知识,2007,(03):385-389.
    22.李水清,张钟宁.松墨天牛成虫对幼虫虫粪挥发性物质的触角电位反应及林间驱避试验[J].昆虫学报,2008,(03):284-289.
    23.刘博.松墨天牛化学通讯机理研究与高效引诱剂的研制[D].杭州:浙江农林大学,2012.
    24.刘博,徐华潮,孟俊国,等.视觉因素在松墨天牛定位寄主和交配中的作用[J].浙江农林大学学报,2012,(04):617-620.
    25.刘建武,迟德富,王广利,等.奇变瓢虫触角的电镜扫描观察[J].东北林业大学学报,2006,(04): 114-117.
    26.马瑞燕,杜家纬.昆虫的触角感器[J].昆虫知识,2000,(03):179-183.
    27.孟俊国,刘博,徐华潮,等.松墨天牛幼虫在马尾松上的分布规律研究[J].浙江林业科技,2012,(02):41-44.
    28.宁眺,方宇凌,汤坚,等.松材线虫及其关键传媒墨天牛的研究进展[J].昆虫知识,2004,(02):97-104.
    29.宁眺,樊建庭,方宇凌,等.不同危害状态下寄主萜烯挥发物含量的变化及松墨天牛对其组分的触角电位反应[J].昆虫学报,2006,(02):179-188.
    30.乔飞,陈京元,桂连友.不同日龄松墨天牛对雪松精油的选择行为反应[J].安徽农业科学,2010,(05):2417-2418+2460.
    31.乔飞,陈京元,夏剑萍,等.松墨天牛对雪松精油及其单烯的选择行为反应[J].贵州农业科学,2011,(0]):96-99.
    32.秦锡祥,高瑞桐.花绒坚甲生物学特性及应用研究[J].昆虫知识,1988,(02):109-112.
    33.彭金华.植物抗病信号物质实时富集与检测方法的研究[D].北京:中国农业科学院,2011.
    34.任杰群,陈力.脊虎天牛属八种雌性生殖器比较研究(鞘翅目,天牛科,天牛亚科,虎天牛族)[J].动物分类学报,2013,(03):488-495.
    35.任琴.马尾松快速诱导抗性及化学信号物质的研究[D].北京:北京林业大学,2006.
    36.宋冀营.浙江松材线虫侵染后松林钻蛀性昆虫群落结构和功能[D].北京:北京林业大学,2007.
    37.宋冀营,骆有庆,严晓素,等.松褐天牛的捕食性天敌莱氏猛叩甲的生态位[J].昆虫知识,2007,(05):707-710.
    38.宋士涵,张连芹,黄焕华,等.松墨天牛生物学的初步研究[J].林业科技通讯,1991,(06):9-13.
    39.尚梅,苏宝锋,李孟楼.花绒寄甲幼虫人工饲料的研究[J].西北林学院学报,2009,(01):136-139.
    40.谈家金,杨荣铮,吴慧平.不同地理种群的松材线虫对马尾松的致病力差异[J].植物检疫,2000,(06):324-325.
    41.唐桦,杨忠岐,张翌楠,等.天牛主要寄生性天敌花绒寄甲活体雌雄性成虫的无损伤鉴别[J].动物分类学报,2007,(03):649-654.
    42.王健,付甫永,司徒春南.花绒寄甲对松墨天牛寄生性试验初报[J].中国森林病虫,2010,(04):38-39.
    43.王玲萍,陈顺立,武福华,等.松墨天牛幼虫空间格局的研究[J].福建林学院学报,2002,(01):78-81.
    44.王文凯.天牛总科雌性生殖器解剖结构及标本制作方法[J].森林病虫通讯,1999,(05):2-3+8.
    45.王小东,黄焕华,许再福,等.花绒坚甲的生物学和生态学特性研究初报[J].昆虫天敌,2004,(02):60-65.
    46.王亚红,来燕学,岑定浩,等.花绒寄甲产卵行为和产卵量及对松褐天牛幼虫的寄生作用[J].环境昆虫学报,2011,(04):517-522.
    47.王壮,章彦,石娟,等.松材线虫入侵对浙江平湖地区松林植物群落功能的影响[J].北京林业大学学报,2012,(01):75-79.
    48.魏建荣,杨忠岐,马建海,等.花绒寄甲研究进展[J].中国森林病虫,2007,(03):23-25.
    49.魏建荣,杨忠岐,唐桦,等.花绒寄甲成虫的行为观察[J].林业科学,2008,(07):50-55.
    50.魏建荣,杨忠岐,牛艳玲,等.花绒寄甲的分布与生态学习性补充调查[J].中国森林病虫,2009,(01):16-18.
    51.萧刚柔.中国森林昆虫[M].北京:中国林业出版社,1992.
    52.谢立群,巨云为,赵博光.松材线虫传播机理的研究进展[J].安徽农业科学,2007,(19):5798-5800+5867.
    53.徐华潮,骆有庆,张廷廷,等.松材线虫自然侵染后松树不同发病阶段针叶光谱特征变化[J].光谱学与光谱分析,2011,(05):1352-1356.
    54.杨忠岐,李孟楼,雷琼,等.温度对花绒寄甲发育和生殖的影响[J].中国生物防治学报,2012,(01):9-14.
    55.叶为民,冯志新.松材线虫个体发育研究[J].华南农业大学学报,1993,(02):78-83.
    56.尹文英,郦一平.棉红铃虫触角感觉器的扫描电镜观察[J].昆虫学报,1980,(02):123-129+233-234.
    57.张建军,张润志,陈京元.松材线虫媒介昆虫种类及其扩散能力[J].浙江林学院学报,2007.350-356.
    58.章彦.松林生态系统对松材线虫的可入侵性和抵御能力的研究[D].北京:北京林业大学,2010.
    59.张彦龙,杨忠岐,王小艺,等.松褐天牛肿腿蜂对寄主松褐天牛三龄幼虫的功能反应[J].昆虫学报,2012,(04):426-434.
    60.张翌楠,杨忠岐.松褐天牛的天敌及其对寄主的控制能力研究[J].植物保护,2006,(02):9-14.
    61.张翌楠,杨忠岐,黄焕华,等.松褐天牛的重要捕食性天敌—天牛霉纹斑叩甲[J].中国生物防治,2008,(03):215-219.
    62.朱克恭,姚仕义,张井义.关于松材线虫病侵染源的研究[J].山东林业科技,1992,(04):45-48.
    63.朱克恭.松材线虫病研究综述[J].世界林业研究,1 995,(4):28-33.
    64. Aceves-Pina E O, Quinn W G. Learning in normal and mutant Drosophila larvae [J]. Science,1979, 206 (4414):93-96.
    65. Alborn H T, Turlings T C J, Jones T H, et al. An elicitor of plant volatiles from beet armyworm oral secretion [J]. Science,1997,276 (5314):945-949.
    66. Alexander D E. Wind tunnel studies of turns by flying dragonflies [J]. Journal of Experimental Biology,1986,122 (1):81-98.
    67. Allison J D, Borden J H, Seybold S J. A review of the chemical ecology of the Cerambycidae (Coleoptera) [J]. Chemoecology,2004,14 (3-4):123-150.
    68. Alm S R, Hall F R. Antennal sensory structures of Conotrachelus nenuphar (Coleoptera: Curculionidae) [J]. Annals of the Entomological Society of America,1986,79 (2):324-333.
    69. Altner H, Loftus R. Ultrastructure and Function of Insect Thermo-And Hygroreceptors [J]. Annual Review of Entomology,1985,30 (1):273-295.
    70. Altner H, Routil C, Loftus R. The structure of bimodal chemo-, thermo-, and hygroreceptive sensilla on the antenna of Locusta migratoria [J]. Cell and Tissue Research,1981,215 (2):289-308.
    71. Altner H, Sass H, Altner I. Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana [J]. Cell and Tissue Research,1977,176 (3): 389-405.
    72. Altner H, Schaller-Selzer L, Stetter H, et al. Poreless sensilla with inflexible sockets. A comparative study of a fundamental type of insect sensilla probably comprising thermo- and hygroreceptors [J]. Cell and Tissue Research,1983,234 (2):279-307.
    73. Anbutsu H, Togashi K. Deterred oviposition response of Monochamus alternatus (Coleoptera: Cerambycidae) to oviposition scars occupied by eggs [J]. Agricultural and Forest Entomology,2000, 2(3):217-223.
    74. Anbutsu H, Togashi K. Oviposition deterrent by female reproductive gland secretion in Japanese Pine Sawyer, Monochamus alternatus [J]. Journal of Chemical Ecology,2001,27 (6):1151-1161.
    75. Anbutsu H, Togashi K. Oviposition deterrence associated with larval frass of the Japanese Pine Sawyer, Monochamus alternatus (Coleoptera:Cerambycidae) [J]. Journal of Insect Physiology,2002, 48 (4):459-465.
    76. Anderson P, Hallberg E. Structure and distribution of tactile and bimodal taste/tactile sensilla on the ovipositor, tarsi and antennae of the flour moth, Ephestia kuehniella (Zeller) (Lepidoptera:Pyralidae) [J]. International Journal of Insect Morphology and Embryology,1990,19 (1):13-23.
    77. Anderson P, Hallberg E, Subchev M. Morphology of antennal sensilla auricillica and their detection of plant volatiles in the Herald Moth, Scoliopteryx libatrix L. (Lepidoptera:Noctuidae) [J]. Arthropod Structure and Development,2000,29(1):33-41.
    78. Arimura G-I, Kost C, Boland W. Herbivore-induced, indirect plant defences [J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids,2005,1734 (2):91-111.
    79. Arn H, Stadler E, Rauscher S. Electroantennographic detector--a selective and sensitive tool in the gas chromatographic analysis of insect pheromones [J]. Z Naturforsch Sect C Biosci,1975.
    80. Austin A D, Browning T O. A mechanism for movement of eggs along insect ovipositors [J]. International Journal of Insect Morphology and Embryology,1981,10(2):93-108.
    81. Ausursu H, Togashi K. Oviposition behavior and response to the oviposition scars occupied by eggs in Monochamus saltuarius (Coleoptera:Cerambycidae) [J]. Applied Entomology and Zoology,1997, 32(4):541-549.
    82. Baehrecke E H, Williams H J, Vinson S B. Electroantennogram responses of Campoletis sonorensis (Hymenoptera:Ichneumonidae) to chemicals in cotton (Gossypium hirsutum L.) [J]. Journal of Chemical Ecology,1989,15(1):37-45.
    83. Baker G T. Distribution patterns and morphology of sensilla on the apical segment of the antennae and palpi of Hydradephaga (Coleoptera:Adephaga) [J]. Microscopy Research and Technique,2001, 55 (5):330-338.
    84. Baker G T, Ellsbury M M. Morphology of the mouth parts and antenna of the larva of the clover stem borer, Languria mozardi Latreille (Coleoptera:Languriidae) [J]. Proceedings of the Entomological Society of Washington,1989,(91):15-21.
    85. Baker G T, Monroe W A. Sensory receptors on the adult labial and maxillary palpi and galea of Cicindela sexguttata (Coleoptera:Cicindelidae) [J]. Journal of Morphology,1995,226(1):25-31.
    86. Baldwin I T. Methyl jasmonate-induced nicotine production in Nicotiana attenuata:inducing defenses in the field without wounding [J]. Entomologia Experimentalis et Applicata,1996,80 (1): 213-220.
    87. Barlin M R, Vinson S B, Piper G L. Ultrastructure of the antennal sensilla of the cockroach-egg parasitoid, Tetrastichus hagenowii (Hymenoptera:Eulophidae) [J]. Journal of Morphology,1981, 168(1):97-108.
    88. Bartlet E, Romani R, Williams I H, et al. Functional anatomy of sensory structures on the antennae of Psylliodes chrysocephala L. (Coleoptera:Chrysomelidae) [J]. International Journal of Insect Morphology and Embryology,1999,28 (4):291-300.
    89. Battisti A. Field studies on the behaviour of two egg parasitoids of the pine processionary moth Thaumetopoea pityocampa [J]. Entomophaga,1989,34(1):29-38.
    90. Benhamou N. Elicitor-induced plant defence pathways [J]. Trends in Plant Science,1996,1 (7):233-240.
    91. Bland R G. Antennal sensilla of the adult alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae) [J]. International Journal of Insect Morphology and Embryology,1981,10 (3):265-274.
    92. Bleeker M A K, Smid H M, Van Aelst A C, et al. Antennal sensilla of two parasitoid wasps:A comparative scanning electron microscopy study [J]. Microscopy Research and Technique,2004,63 (5):266-273.
    93. Blight M M, Le Metayer M, Delegue M-H P, et al. Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera [J]. Journal of Chemical Ecology,1997,23 (7):1715-1727.
    94. Bruce T J A, Wadhams L J, Woodcock C M. Insect host location:a volatile situation [J]. Trends in Plant Science,2005, (10):269-274.
    95. Boeckh J, Priesner E, Schneider D, et al. Olfactory receptor response to the cockroach sexual attractant [J]. Science,1963,141 (3582):716-717.
    96. Boer J G, Hordijk C A, Posthumus M A, et al. Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction [J]. Journal of Chemical Ecology,2008, 34 (3):281-290.
    97. Bogner F, Boppre M, Ernst K D, et al. CO2 sensitive receptors on labial palps of Rhodogastria moths (Lepidoptera:Arctiidae):physiology, fine structure and central projection [J]. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,1986,158 (6):741-749.
    98. Borg G. The perception of physical performance [J]. Frontiers of Fitness,1971, (4):280-294.
    99. Bowen M F. Sensilla basiconica (grooved pegs) on the antennae of female mosquitoes: electrophysiology and morphology [J]. Entomologia Experimentalis et Applicata,1995,77 (2):233-238.
    100. Bromley A K, Dunn J A, Anderson M. Ultrastructure of the antennal sensilla of aphids [J]. Cell and tissue research,1979,203 (3):427-442.
    101. Brown P E, Anderson M. Morphology and ultrastructure of sense organs on the ovipositor of Trybliographa rapae, a parasitoid of the cabbage root fly [J]. Journal of Insect Physiology,1998,44 (11):1017-1025.
    102. Carde R T, Hagaman T E. Behavioral responses of the gypsy moth in a wind tunnel to air-borne enantiomers of disparlure [J]. Environmental Entomology,1979,8 (3):475-484.
    103. Cesari M, Marescalchi O, Francardi V, et al. Taxonomy and phylogeny of European Monochamus species:first molecular and karyological data [J]. Journal of Zoological Systematics and Evolutionary Research,2005,43 (1):1-7.
    104. Chadha G K, Roome R E. Oviposition behaviour and the sensilla of the ovipositor of Chilo partellus and Spodoptera littoralis (Lepidoptera:Noctuidae) [J]. Journal of Zoology,1980,192 (2):169-178.
    105. Chapman R F. The insects:structure and function [M]. UK:Cambridge university press,1998.
    106. Chen L, Fadamiro H Y. Differential electroantennogram response of females and males of two parasitoid species to host-related green leaf volatiles and inducible compounds [J]. Bulletin of Entomological Research,2007,97 (05):515-522.
    107. Chen L, Fadamiro H Y. Antennal sensilla of the decapitating phorid fly, Pseudacteon tricuspis (Diptera:Phoridae) [J]. Micron,2008,39 (5):517-525.
    108. Chiu-Alvarado P, Rojas J C. Behavioural responses of Bethylid parasitoid species of the Coffee Berry borer to chemicals cues from host and non-host dust/frass [J]. BioControl,2010,56 (1):45-53.
    109. Cork A. Identification of electrophysiologically-active compounds for New World screwworm, Cochliomyia hominivorax, in larval wound fluid [J]. Medical and Veterinary Entomology,1994,8 (2):151-159.
    110. Cosse A A, Todd J L, Millar J G, et al. Electroantennographic and coupled gas chromatographic-electroantennographic responses of the mediterranean fruit fly, Ceratitis capitata, to male-produced volatiles and mango odor [J]. Journal of Chemical Ecology,1995,21 (11):1823-1836.
    111. Dai H G, Honda H. Sensilla on the antennal flagellum of the yellow spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera:Cerambycidae) [J]. Applied Entomology and Zoology,1990, 25 (2):273-282.
    112. Daly P J, Ryan M F. Ultrastructure of antennal sensilla of Nebria brevicollis (Fab.) (Coleoptera: Carabidae) [J]. International Journal of Insect Morphology and Embryology,1979,8 (3):169-181.
    113. Day M F. A new sense organ in the head of the mosquito and other nematocerous flies [J]. Australian Journal of Zoology,1955,3 (3):331-335.
    114. De Boer J G, Dicke M. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis [J]. Journal of Chemical Ecology,2004,30 (2):255-271.
    115. Delong M R, Georgopoulos A P, Crutcher M D, et al. Functional organization of the basal ganglia: contributions of single-cell recording studies; proceedings of the Ciba Foundation Symposium 107-Functions of the Basal Ganglia, F,1984 [C]. Wiley Online Library.
    116. Dethier V G, Kuch J H. Electrophysiological studies of gustation in lepidopterous larvae [J]. Zeitschrift fur vergleichende Physiologie,1971,72 (4):343-363.
    117. Dicke M. The role of microorganisms in tri-trophic interactions in systems consisting of plants, herbivores, and carnivores -Microbial diversity in time and space [M].US:Springer,1996:71-84.
    118. Dickens J C. Olfaction in the boll weevil, Anthonomus grandis Boh.(Coleoptera:Curculionidae): Electroantennogram studies [J]. Journal of Chemical Ecology,1984,10 (12):1759-1785.
    119. Dickens J C, Payne T L. Structure and function of the sensilla on the antennal club of the southern pine beetle, Dendroctonus frontalis (Zimmerman) (Coleoptera:Scolytidae) [J]. International Journal of Insect Morphology and Embryology,1978,7 (3):251-265.
    120. Dietz A, Humphreys W J. Scanning electron microscopic studies of antennal receptors of the worker honey bee, including sensilla campaniformia [J]. Annals of the Entomological Society of America, 1971,64 (4):919-925.
    121. Doke N, Miura Y, Sanchez L M, et al. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence-a review [J]. Gene,1996,179 (1):45-51.
    122. Duffey S S, Stout M J. Antinutritive and toxic components of plant defense against insects [J]. Archives of Insect Biochemistry and Physiology,1996,32 (1):3-37.
    123. Dweck H K M, Svensson G P, Gunduz E A, et al. Kairomonal response of the parasitoid, Bracon hebetor Say, to the male-produced sex pheromone of its host, the Greater Waxmoth, Galleria mellonella (L.) [J]. Journal of Chemical Ecology,2010,36 (2):171-178.
    124. Dyer L J, Seabrook W D. Sensilla on the antennal flagellum of the sawyer beetles Monochamus notatus (Drury) and Monochamus scutellatus (Say)(Coleoptera:Cerambycidae) [J]. Journal of Morphology,1975,146(4):513-531.
    125. Eiras A E, Jepson P C. Host location by Aedes aegypti (Diptera:Culicidae):a wind tunnel study of chemical cues [J]. Bulletin of Entomological Research,1991,81 (02):151-160.
    126. Eisemann C H, Rice M J. Oviposition behaviour of Dacus tryoni:The effects of some sugars and salts [J]. Entomologia Experimentalis et Applicata,1985,39 (1):61-71.
    127. Elzen G W, Williams H J, Vinson S B. Wind tunnel flight responses by hymenopterous parasitoid Campoletis sonorensis to cotton cultivars and lines [J]. Entomologia Experimentalis et Applicata, 1986,42 (3):285-289.
    128. Fan J, Kang L, Sun J. Role of host volatiles in mate location by the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera:Cerambycidae) [J]. Environmental Entomology,2007, 36 (1):58-63.
    129. Fan J, Sun J, Shi J. Attraction of the Japanese pine sawyer, Monochamus alternatus, to volatiles from stressed host in China [J]. Annals of Forest Science,2007,64 (1):67-71.
    130. Fan J T, Sun J H. Influences of host volatiles on feeding behaviour of the Japanese pine sawyer, Monochamus alternatus [J]. Journal of Applied Entomology,2006,130 (4):238-244.
    131. Faucheux M J. Morphology and distribution of antennal sensilla in the female and male clothes moth, Tineola bisselliella Humm. (Lepidoptera:Tineidae) [J]. Canadian Journal of Zoology,1985,63 (2): 355-362.
    132. Faucheux M J. Antennal sensilla of the yellow longicorn beetle Phoracantha recurva Newman,1840: distribution and comparison with Phoracantha semipunctata (Fabricius,1775)(Coleoptera: Cerambycidae) [J]. Applied Entomology and Zoology,1990,25 (2):271-282.
    133. Faucheux M J. Mouthparts and associated sensilla of a South American moth, Synempora andesae (Lepidoptera:Neopseustidae) [J]. Revista de la Sociedad Entomologica Argentina,2008,67 (1-2): 21-33.
    134. Faucheux M J. Ovipositor sensilla of the Yellow longicorn beetle Phoracantha recurva Newman, 1840 (Coleoptera:Cerambycidae) [J]. Bulletin de l'Institut Scientifique, Rabat, section Sciences de la Vie,2012,34(1):11-18.
    135. Fauziah B A, Hidaka T, Tabata K. The reproductive behavior of Monochamus alternatus Hope (Coleoptera:Cerambycidae) [J]. Applied Entomology and Zoology,1987,22 272-285.
    136. Fein B L, Reissig W H, Roelofs W L. Identification of apple volatiles attractive to the apple maggot, Rhagoletis pomonella [J]. Journal of Chemical Ecology,1982,8 (12):1473-1487.
    137. Fischer D C, Kogan M. Chemoreceptors of adult Mexican bean beetles:External morphology and role in food preference [J]. Entomologia Experimentalis et Applicata,1986,40 (1):3-12.
    138. Fitzpatrick S, Mcneil J, Miller D. Age-specific titer and antennal perception of acetic acid, a component of male Pseudaletia unipuncta (Haw.) hairpencil secretion [J]. Journal of Chemical Ecology,1989,15 (2):641-648.
    139. Gaffal K P, Tichy H, TheiB J, et al. Structural polarities in mechanosensitive sensilla and their influence on stimulus transmission (Arthropoda) [J]. Zoomorphologie,1975,82 (2-3):79-103.
    140. Germinara G S, De Cristofaro A, Rotundo G. Behavioral responses of adult Sitophilus granarius to individual cereal volatiles [J]. Journal of Chemical Ecology,2008,34 (4):523-529.
    141. Giessen W A, Fescemyer H W, Burrows P M, et al. Quantification of electroantennogram responses of the primary rhinaria of Acyrthosiphon pisum (Harris) to C4-C8 primary alcohols and aldehydes [J]. Journal of Chemical Ecology,1994,20 (4):909-927.
    142. Ginzel M, Blomquist G, Millar J, et al. Role of contact pheromones in mate recognition in Xylotrechus colonus [J]. Journal of Chemical Ecology,2003,29 (3):533-545.
    143. Ginzel M, Hanks L. Contact pheromones as mate recognition cues of four species of Longhorned Beetles (Coleoptera:Cerambycidae) [J]. Journal of Insect Behavior,2003,16 (2):181-187.
    144. Gonzalez R, Alvarez A, Campos M. An electroantennogram apparatus for testing the activity of semiochemicals on the olive beetle, Phloeotribus scarabaeoides (Coleoptera:Scolytidae):first recordings of the response to ethylene [J]. Physiological entomology,1994,19 (4):301-306.
    145. Hallberg E. Fine-structural characteristics of the antennal sensilla of Agrotis segetum (Insecta: Lepidoptera) [J]. Cell and Tissue Research,1981,218 (1):209-218.
    146. Hallberg E. Sensory Organs in Ips typographus(Insecta:Coleoptera) Fine structure of the sensilla of the maxillary and labial palps [J]. Acta Zoologica,1982,63 (4):191-198.
    147. Hallberg E, Hansson B S, Steinbrecht R A. Morphological characteristics of antennal sensilla in the European cornborer Ostrinia nubilalis (Lepidoptera:Pyralidae) [J]. Tissue and Cell,1994,26 (4): 489-502.
    148. Hammack L. Corn volatiles as attractants for northern and western corn rootworm beetles (Coleoptera:Chrysomelidae:Diabrotica spp.) [J]. Journal of Chemical Ecology,1996,22 (7):1237-1253.
    149. Han B, Chen Z. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii [J]. Journal of Chemical Ecology, 2002,28 (11):2203-2219.
    150. Hanks L, Millar J, Paine T. Mating behavior of the Eucalyptus longhorned borer (Coleoptera: Cerambycidae) and the adaptive significance of long "horns" [J]. Journal of Insect Behavior,1996, 9 (3):383-393.
    151. Hanks L M. Influence of the larval host plant on reproductive strategies of cerambycid beetles [J]. Annual Review of Entomology,1999,44(1):483-505.
    152. Hansson B S. Olfaction in Lepidoptera [J]. Experientia,1995,51(11):1003-1027.
    153. Hansson B S, Pers J N V D, Lofqvist Ja N. Comparison of male and female olfactory cell response to pheromone compounds and plant volatiles in the turnip moth, Agrotis segetum [J]. Physiological Entomology,1989,14(2):147-155.
    154. Hao H, Sun J, Dai J. Dose-dependent behavioral response of the mosquito Aedes albopictus to floral odorous compounds [J]. Journal of Insect Science,2013, (13):127,
    155. Hardie J, Isaacs R, Pickett J, et al. Methyl salicylate and (-)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera:Aphididae) [J]. Journal of Chemical Ecology,1994,20 (11):2847-2855.
    156. Hildebrand J G. Olfactory control of behavior in moths:central processing of odor information and the functional significance of olfactory glomeruli [J]. Journal of Comparative Physiology A,1996, 178(1):5-19.
    157. Hilker M, Kobs C, Varama M, et al. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids [J]. Journal of Experimental Biology,2002,205 (4):455-461.
    158. Hilker M, Meiners T. Induction of plant responses to oviposition and feeding by herbivorous arthropods:a comparison [J]. Entomologia Experimentalis et Applicata,2002,104 (1):181-192.
    159. Hilker M, Meiners T. How do plants "notice" attack by herbivorous arthropods? [J]. Biological Reviews,2010,85 (2):267-280.
    160. Hill S R, Zaspel J, Weller S, et al. To be or not to be... a vampire:A matter of sensillum numbers in Calyptra thalictri? [J]. Arthropod Structure and Development,2010,39 (5):322-333.
    161. Honomichl K, Guse G W. Digitiform sensilla on the maxillar palp of Coleoptera [J]. Acta Zoologica, 1981,62(1):17-25.
    162. Hou Z Y, Chen X, Zhang Y, et al. EAG and orientation tests on the parasitoid Lysiphlebia japonica (Hym., Aphidiidae) to volatile chemicals extracted from host plants of cotton aphid Aphis gossypii (Horn., Aphidae) [J]. Journal of Applied Entomology,1997,121 (1-5):495-500.
    163. Hu F, Zhang G-N, Wang J-J. Scanning electron microscopy studies of antennal sensilla of bruchid beetles, Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.) (Coleoptera:Bruchidae) [J]. Micron,2009,40 (3):320-326.
    164. Hunger T, Steinbrecht R A, Functional morphology of a double-walled multiporous olfactory sensillum:the sensillum coeloconicum of Bombyx mori (Insecta, Lepidoptera) [J]. Tissue and Cell, 1998,30(1):14-29.
    165. Hutcheson J A. Arhopalus ferus (Coleoptera:Cerambycidae):structure and function of the female reproductive system [J]. New Zealand Journal of Zoology,1980,7 (3):417-424.
    166. Ibeas F, Diez J, Pajares J. Olfactory sex attraction and mating behaviour in the Pine Sawyer Monochamus galloprovincialis (Coleoptera:Cerambycidae) [J]. Journal of Insect Behavior,2008, 21 (3):101-110.
    167. Ibeas F, Gallego D, Diez J J, et al. An operative kairomonal lure for managing pine sawyer beetle Monochamus galloprovincialis (Coleoptera:Cerymbycidae) [J]. Journal of Applied Entomology, 2007,131(1):13-20.
    168. Ibeas F, Gemeno C, Diez J J, et al. Female recognition and sexual dimorphism of cuticular hydrocarbons in Monochamus galloprovincialis (Coleoptera:Cerambycidae) [J]. Annals of the Entomological Society of America,2009,102 (2):317-325.
    169. Ibrahim M A, Nissinen A, Holopainen J K. Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds [J]. Journal of Chemical Ecology,2005,31 (9):1969-1984.
    170. Ikeda T, Oda K, Yamane A, et al. Volatiles from pine logs as the attractant for the Japanese pine sawyer Monochamus alternatus Hope (Coleoptera:Cerambycidae) [J]. Journal of the Japanese Forestry Society,1980,62 (4):150-152.
    171. Inoue E. Studies on the natural enemy of Monochamus alternatus Hope, Dastarcus longulus Sharp (Coleoptera:Colydiidae) [J]. Bulletin of Okayama Prefectural Forest Experiment Station,1991, (1): 40-47.
    172. Isidoro N, Romani R, Bin F. Antennal multiporous sensilla:Their gustatory features for host recognition in female parasitic wasps (Insecta, Hymenoptera:Platygastroidea) [J]. Microscopy Research and Technique,2001,55 (5):350-358.
    173. Jactel H, Birgersson G, Andersson S, Schlyter F. Non-host volatiles mediate associational resistance to the pine processionary moth[J]. Oecologia,2011, (166):703-711.
    174. Jactel H, Brockerhoff E G. Tree diversity reduces herbivory by forest insects [J]. Ecology Letters, 2007, (10):835-848.
    175. James D, Grasswitz T. Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps [J]. BioControl,2005,50 (6):871-880.
    176. Japoshvili G, Noyes J S. The western palaearctic species of Psilophrys Mayr (Hymenoptera, Chalcidoidea:Encyrtidae), parasitoids of kermesids (Hemiptera, Coccoidea:Kermesidae) attacking oaks (Quercus spp.) [J]. Journal of Natural History,2006,40 (29-31):1793-1800.
    177. Jourdan H, Barbier R, Bernard J, et al. Antennal sensilla and sexual dimorphism of the adult ladybird beetle Semiadalia undecimnotata Schn.(Coleoptera:Coccinellidae) [J]. International Journal of Insect Morphology and Embryology,1995,24 (3):307-322.
    178. Kaissling K-E. Sensory transduction in insect olfactory receptors [M]. US:Springer,1974:128-415
    179. Kaissling K E. Chemo-electrical transduction in insect olfactory receptors [J]. Annual Review of Neuroscience,1986,(9):121-145.
    180. Keil T A. Functional morphology of insect mechanoreceptors [J]. Microscopy Research and Technique,1997,39 (6):506-531.
    181. Keil T A, Steinbrecht R A. Mechanosensitive and olfactory sensilla of insects [M]. US:Springer, 1984:477-516.
    182. Kennedy J S. Olfactory responses to distant plants and other odor sources-chemical control of insect behavior [M]. New York:Wiley-Interscience,1977:67-91.
    183. Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature [J]. Science,2001,291 (5511):2141-2144.
    184. Kim G-H, Takabayashi J, Takahashi S, et al. Function of pheromones in mating behavior of the Japanese pine sawyer beetle, Monochamus alternatus Hope [J]. Applied Entomology and Zoology, 1992, (27):489-489.
    185. Kim L, Teiji S. Sensilla on the external genitalia of the carabid beetle, Carabus (Ohomopterus) dehaanii dehaanii Chaudoir (Coleoptera, Carabidae) [J]. Entomological Research,2004,34 (3):151-155.
    186. Kobayashi F, Yamane A, Ikeda T. The Japanese pine sawyer beetle as the vector of pine wilt disease [J]. Annual Review of Entomology,1984,29 (1):115-135.
    187. Krishnan A, Prabhakar S, Sudarsan S, et al. The neural mechanisms of antennal positioning in flying moths [J]. The Journal of Experimental Biology,2012,215 (17):3096-3105.
    188. Langenheim J H. Plant resins:chemistry, evolution, ecology, and ethnobotany [M]. Portland:Timber Press,2003:46-98
    189. Leal W, Higuchi H, Mizutani N, et al. Multifunctional communication in Riptortus clavatus (Heteroptera:Alydidae):Conspecific nymphs and egg parasitoid Ooencyrtus nezarae use the same adult attractant pheromone as chemical cue [J]. Journal of Chemical Ecology,1995,21 (7):973-985.
    190. Lee J K, Selzer R, Altner H. Lamellated outer dendritic segments of a chemoreceptor within wall-pore sensilla in the labial palp-pit organ of the butterfly, Pieris rapae L.(Insecta, Lepidoptera) [J]. Cell and Tissue Research,1985,240 (2):333-342.
    191. Levins R. Toward an evolutionary theory of the niche [J]. Evolution and environment,1968, (2): 325-340.
    192. Li S-Q, Fang Y-L, Zhang Z-N. Effects of volatiles of non-host plants and other chemicals on oviposition of Monochamus alternatus (Coleoptera:Cerambycidae) [J]. Journal of Pest Science, 2007,80(2):119-123.
    193. Li Y, Dickens J, Steiner W M. Antennal olfactory responsiveness of Microplitis croceipes (Hymenoptera:Braconidae) to cotton plant volatiles [J]. Journal of Chemical Ecology,1992,18(10): 1761-1773.
    194. Light D M, Jang E B, Dickens J C. Electroantennogram responses of the Mediterranean fruit fly, Ceratitis capitata, to a spectrum of plant volatiles [J]. Journal of Chemical Ecology,1988,14 (1): 159-180.
    195. Lim J, Oh H, Park S, et al. First record of the family Bothrideridae (Coleoptera) in Korea represented by the wood-boring beetle ectoparasite, Dastarcus helophoroides [J]. Journal of Asia-Pacific Entomology,2012,15 (2):273-275.
    196. Linn C E, Dambroski H R, Feder J L, et al. Postzygotic isolating factor in sympatric speciation in Rhagoletis flies:reduced response of hybrids to parental host-fruit odors[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, (101):17753-17758.
    197. Liu X-H, Luo Y-Q, Cao C-J, et al. Scanning electron microscopy of antennal sensible of Anoplistes halodendri halodendri and Anoplistes halodendri ephippium (Coleoptera:Cerambycidae) [J]. Microscopy Research and Technique,2012,75 (3):367-373.
    198. Lopes O, Barata E N, Mustaparta H, et al. Fine structure of antennal sensilla basiconica and their detection of plant volatiles in the eucalyptus woodborer, Phoracantha semipunctata Fabricius (Coleoptera:Cerambycidae). [J]. Arthropod Structure and Development,2002,31 (1):1-13.
    199. Lopes O, Marques P, Araujo J. The Role of Antennae in Mate Recognition in Phoracantha semipunctata (Coleoptera:Cerambycidae) [J]. Journal of Insect Behavior,2005,18 (2):243-257.
    200. Lozano C, Gonzalez E, Pena A, et al. Response of parasitoids Dendrosoter protuberans and Cheiropachus quadrum to attractants of Phloeotribus scarabaeoides in an olfactometer [J]. Journal of Chemical Ecology,2000,26 (3):791-799.
    201. Maher N, Thiery D. Distribution of chemo- and mechanoreceptors on the tarsi and ovipositor of female European grapevine moth, Lobesia botrana [J]. Entomologia Experimentalis et Applicata, 2004,110 (2):135-143.
    202. Mamiya Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus [J]. Annual Review of Phytopathology,1983,21 (1):201-220.
    203. Martin D, Tholl D, Gershenzon J, et al. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems [J]. Plant Physiology,2002,129(3):1003-1018.
    204. Martin D M, Gershenzon J, Bohlmann J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce [J]. Plant Physiology,2003,132 (3): 1586-1599.
    205. Masante-Roca I, Anton S, Delbac L, et al. Attraction of the grapevine moth to host and non-host plant parts in the wind tunnel:effects of plant phenology, sex, and mating status [J]. Entomologia Experimentalis et Applicata,2007,122 (3):239-245.
    206. Mauchline A L, Osborne J L, Martin A P, Poppy G M, et al. The effects of non-host plant essential oil volatiles on the behaviour of the pollen beetle Meligethes aeneus[J]. Entomologia Experimentalis et Applicata,2005, (114):181-188.
    207. Mcindoo N E. An insect olfactometer [J]. Journal of Economic Entomology,1926,19 (3):545-571.
    208. Mciver S B. Fine structure of antennal sensilla coeloconica of culicine mosquitoes [J]. Tissue and Cell,1973,5(1):105-112.
    209. Mciver S B. Structure of cuticular mechanoreceptors of arthropods [J]. Annual Review of Entomology,1975,20 (1):381-397.
    210. Mcnair C, Gries G, Gries R. Cherry bark tortrix, Enarmonia formosana:Olfactory recognition of and behavioral deterrence by nonhost angio-and gymnosperm volatiles[J]. Journal of Chemical Ecology,2000, (26):809-821.
    211. Merivee E. Antenna] sensilla of the female and male elaterid beetle Agriotes obscurus L.(Coleoptera: Elateridae) [C]. Proceedings of the Proc Estonian Acad Sci Biol,1992.
    212. Merivee E, Must A, Luik A, et al. Electrophysiological identification of hygroreceptor neurons from the antennal dome-shaped sensilla in the ground beetle Pterostichus oblongopunctatus [J]. Journal of Insect Physiology,2010,56 (11):1671-1678.
    213. Merivee E, Ploomi A, Luik A, et al. Antennal sensilla of the ground beetle Platynus dorsalis (Pontoppidan,1763) (Coleoptera, Carabidae) [J]. Microscopy Research and Technique,2001,55 (5): 339-349.
    214. Merivee E, Ploomi A, Rahi M, et al. Antennal sensilla of the ground beetle Bembidion properans Steph. (Coleoptera, Carabidae) [J]. Micron,2002,33 (5):429-440.
    215. Merivee E, Ploomi A, Rahi M, et al. Antennal sensilla of the ground beetle Bembidion lampros Hbst (Coleoptera, Carabidae) [J]. Acta Zoologica,2000,81 (4):339-350.
    216. Merivee E, Rahi M, Bresciani J, et al. Antennal sensilla of the click beetle, Limonius aeruginosus (Olivier)(Coleoptera:Elateridae) [J]. International Journal of Insect Morphology and Embryology, 1998,27 (4):311-318.
    217. Merivee E, Rahi M, Luik A. Distribution of olfactory and some other antennal sensilla in the male click beetle Agriotes obscurus L.(Coleoptera:Elateridae) [J]. International Journal of Insect Morphology and Embryology,1997,26 (2):75-83.
    218. Merivee E, Rahi M, Luik A. Antennal sensilla of the click beetle, Melanotus villosus (Geoffroy) (Coleoptera:Elateridae) [J]. International Journal of Insect Morphology and Embryology,1999,28 (1):41-51.
    219. Michelsen A. On the evolution of tactile stimulatory actions in longhorned beetles (Cerambycidae, Coleoptera) [J]. Zeitschrift fur Tierpsychologie,1966,23 (3):257-266.
    220. Miller J R, Roelofs W L. Sustained-flight tunnel for measuring insect responses to wind-borne sex pheromones [J]. Journal of Chemical Ecology,1978,4 (2):187-198.
    221. Mitchell B K, Itagaki H, Rivet M-P. Peripheral and central structures involved in insect gustation [J]. Microscopy Research and Technique,1999,47 (6):401-415.
    222. Mithofer A, Bhagwat A A, Feger M, et al. Suppression of fungal β-glucan-induced plant defence in soybean (Glycine max L.) by cyclic 1,3-1,6-β-glucans from the symbiont Bradyrhizobium japonicum [J]. Planta,1996,199 (2):270-275.
    223. Monteforti G, Angeli S, Petacchi R, et al. Ultrastructural characterization of antennal sensilla and immunocytochemical localization of a chemosensory protein in Carausius morosus Brunner (Phasmida:Phasmatidae) [J]. Arthropod Structure and Development,2002,30 (3):195-205.
    224. Mumm R, Schrank K, Wegener R, et al. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition [J]. Journal of Chemical Ecology,2003,29 (5):1235-1252.
    225. Mustaparta H. Olfactory sensilla on the antennae of the pine weevil, Hylobius abietis [J]. Zeitschrift fur Zellforschung und mikroskopische Anatomie,1973,144 (4):559-571.
    226. Nakamura-Matori K. Vector-host tree relationships and the abiotic environment [J].2008,144-161.
    227. Naves P, Kenis M, Sousa E. Parasitoids associated with Monochamns galloprovincialis (Oliv.) (Coleoptera:Cerambycidae) within the pine wilt nematode-affected zone in Portugal [J]. Journal of Pest Science,2004,78 (2):57-62.
    228. Nottingham S F, Hardie J, Dawson G W, Hick A J, Pickett J A, Wadhams L J, Woodcock C M. Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles [J]. Journal of Chemical Ecology,1991, (17):1231-1242.
    229. Ochieng S A, Hallberg E, Hansson B S. Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera:Acrididae)[J]. Cell and Tissue Research,1998,291 (3):525-536.
    230. Ochieng S A, Park K-C, Zhu J W, et al. Functional morphology of antennal chemoreceptors of the parasitoid Microplitis croceipes (Hymenoptera:Braconidae)[J]. Arthropod Structure and Development,2000,29 (3):231-240.
    231. Ogura N, Tabata K, Wang W. Rearing of the colydiid beetle predator, Dastarcus helophoroides, on artificial diet [J]. BioControl,1999,44 (3):291-299.
    232. Omura H, Honda K, Hayashi N. Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers [J]. Journal of Chemical Ecology,1999,25 (8):1895-1906.
    233. Onagbola E O, Fadamiro H Y. Scanning electron microscopy studies of antennal sensilla of Pteromalus cerealellae (Hymenoptera:Pteromalidae) [J]. Micron,2008,39 (5):526-535.
    234. Paczkowski S, Paczkowska M, Dippel S, et al. Volatile Combustion Products of Wood Attract Acanthocnemus nigricans (Coleoptera:Acanthocnemidae) [J]. Journal of Insect Behavior,2013,1-11.
    235. Pare P W, Tumlinson J H. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants [J]. Plant Physiology,1997,114(4):1161-1167.
    236. Park K C, Hardie J. An improved aphid electroantennogram [J]. Journal of Insect Physiology,1998, 44 (10):919-928.
    237. Park K C, Ochieng S A, Zhu J, et al. Odor discrimination using insect electroantennogram responses from an insect antennal array [J]. Chemical Senses,2002,27 (4):343-352.
    238. Park K C, Zhu J, Harris J, et al. Electroantennogram responses of a parasitic wasp, Microplitis croceipes, to host-related volatile and anthropogenic compounds [J]. Physiological entomology, 2001,26(1):69-77.
    239. Payne T L. Bark beetle olfaction. III. Antennal olfactory responsiveness of Dendroctonus frontalis Zimmerman and D. brevicomis Le Conte (Coleoptera:Scolytidae) to aggregation pheromones and host tree terpene hydrocarbons [J]. Journal of Chemical Ecology,1975,1 (2):233-242.
    240. Peddle S, De Groot P, Smith S. Oviposition behaviour and response of Monochamus scutellatus (Coleoptera:Cerambycidae) to conspecific eggs and larvae [J]. Agricultural and Forest Entomology, 2002,4 (3):217-222.
    241. Phillips M A, Croteau R B. Resin-based defenses in conifers [J]. Trends in Plant Science,1999,4 (5):184-190.
    242. Ploomi A, Merivee E, Rahi M, et al. Antennal sensilla in ground beetles (Coleoptera, Carabidae) [J]. Agronomy Research,2003,1 (2):221-228.
    243. Prakash S, Mendki M J, Rao K M, et al. Sensilla on the maxillary and labial palps of the cockroach Supella longipalpa Fabricius (Dictyoptera:Blattellidae) [J]. International Journal of Insect Morphology and Embryology,1995,24 (1):13-34.
    244. Price P W, Bouton C E, Gross P, et al. Interactions among three trophic levels:influence of plants on interactions between insect herbivores and natural enemies [J]. Annual Review of Ecology and systematics,1980,11(1):41-65.
    245. Prokopy R J. Epideictic pheromones that influence spacing patterns of phytophagous insects-Semiochemicals:their role in pest control [M]. New York:Wiley,1981:181-213.
    246. Qiao H-L, Lu P-F, Chen J, et al. Antennal and behavioural responses of Heortia vitessoides females to host plant volatiles of Aquilaria sinensis [J]. Entomologia Experimentalis et Applicata,2012,143 (3):269-279.
    247. Rasmann S, Turlings T C J. Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies [J]. Ecology Letters,2007, 10 (10):926-936.
    248. Rebora M, Piersanti S, Dell'otto A, et al. The gustatory sensilla on the endophytic ovipositor of Odonata [J]. Arthropod Structure and Development,2013,42 (2):127-134.
    249. Ren L, Shi J, Zhang Y, et al. Antennal morphology and sensillar ultrastructure of Dastarcus helophoroides (Fairmaire) (Coleoptera:Bothrideridae) [J]. Micron,2012,43 (9):921-928.
    250. Rice M J. Contact Chemoreceptors on the Ovipositor of Lucilia Cuprina (Wied.), The Australian Sheep Blowfly [J]. Australian Journal of Zoology,1976,24 (3):353-360.
    251. Ritcey G M, Mciver S B. External morphology of antennal sensilla of four species of adult flea beetles (Coleoptera:Chrysomelidae:Alticinae) [J]. International Journal of Insect Morphology and Embryology,1990,19(2):141-153.
    252. Roelofs W L, Comeau A. Sex pheromone perception:Synergists and inhibitors for the red-banded leaf roller attractant [J]. Journal of Insect Physiology,1971,17 (3):435-448.
    253. Root R B. Organization of a plant-arthropod association in simple and diverse habitats:the fauna of collards (Brassica oleracea) [J]. Ecological monographs,1973, (43):95-124.
    254. Rose U S R, Manukian A, Heath R R, et al. Volatile semiochemicals released from undamaged cotton leaves (a systemic response of living plants to caterpillar damage) [J]. Plant Physiology,1996,111 (2):487-495.
    255. Ross K T A, Anderson M. Ultrastructure of the funicular sensilla of the cabbage root fly, Delia radicum L. (Diptera:Anthomyiidae) [J]. International Journal of Insect Morphology and Embryology,1991,20 (3):83-101.
    256. Ryan M F, Guerin P M. Behavioural responses of the carrot fly larva, Psila rosae, to carrot root volatiles [J]. Physiological Entomology,1982,7 (3):315-324.
    257. Said I, Tauban D, Renou M, et al. Structure and function of the antennal sensilla of the palm weevil Rhynchophorus palmarum (Coleoptera, Curculionidae) [J]. Journal of Insect Physiology,2003,49 (9):857-872.
    258. Sane S P, Dieudonne A, Willis M A, et al. Antennal mechanosensors mediate flight control in moths [J]. Science,2007,315 (5813):863-866.
    259. Schneider D. Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation [J]. Experientia,1957,13 (2):89-91.
    260. Schneider D. Insect antennae [J]. Annual Review of Entomology,1964,9(1):103-122.
    261. Schoonhoven L M. Chemosensory bases of host plant selection [J]. Annual Review of Entomology, 1968,13(1):115-136.
    262. Schoonhoven L M. The role of chemoreception in host plant finding and oviposition in phytophagous Diptera [J]. Fruit flies of economic importance Rotterdam, Balkema,1983,240-247.
    263. Sen A. Ultrastructure of the sensory complex on the maxillary and labial palpi of the colorado potato beetle, Leptinoarsa decemlineata [J]. Journal of Morphology,1988,195 (2):159-175.
    264. Seybold S J,Bohlmann J, Raffa K F. Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids:evolutionary perspective and synthesis [J]. The Canadian Entomologist,2000, 132(06):697-753.
    265. Shanbhag S R, Muller B, Steinbrecht R A. Atlas of olfactory organs of Drosophila melanogaster:1. Types, external organization, innervation and distribution of olfactory sensilla [J]. International Journal of Insect Morphology and Embryology,1999,28 (4):377-397.
    266. Shimazu M. Biological control of the Japanese pine sawyer beetle, Monochamus alternatus [J].2008, 351-370.
    267. Skilbeck C A, Anderson M. The ultrastructure, morphology and distribution of sensilla on the antennae of the adult parasitoids Aleochara bilineata Gyll and Aleochara bipustulata L.(Coleoptera: Staphylinidae) [J]. International Journal of Insect Morphology and Embryology,1996,25 (3):261-280.
    268. Snodgrass R E. The morphology of insect sense organs and the sensory nervous system [M]. Smithsonian institution,1926
    269. Spencer J L, Isard S A, Levine E. Free flight of western corn rootworm (Coleoptera:Chrysomelidae) to corn and soybean plants in a walk-in wind tunnel [J]. Journal of Economic Entomology,1999,92 (1):146-155.
    270. Srivastava S. Scanning electron microscopy of antennae of Coccinella septempunctata (Coccinellidae:Coleoptera) [J]. Insect Science,2003,10 (4):271-279.
    271. Stange G, Stowe S. Carbon-dioxide sensing structures in terrestrial arthropods [J]. Microscopy Research and Technique,1999,47 (6):416-427.
    272. Steidle J L M, Van Loon J J A. Dietary specialization and infochemical use in carnivorous arthropods: testing a concept [J]. Entomologia Experimental is et Applicata,2003,108 (3):133-148.
    273. Steinbrecht R. Chemo-, Hygro-, and Thermoreceptors [M]. Berlin Heidelberg:Springer.1984:523- 553.
    274. Steinbrecht R. The fine structure of thermo-/hygrosensitive sensilla in the silkmoth Bombyx mori: Receptor membrane substructure and sensory cell contacts [J]. Cell and Tissue Research,1989,255 (1):49-57.
    275. Steinbrecht R, Miiller B. The thermo-/hygrosensitive sensilla of the silkmoth, Bombyx mori: morphological changes after dry- and moist-adaptation [J]. Cell and Tissue Research,1991,266 (3): 441-456.
    276. Steinbrecht R A. Pore structures in insect olfactory sensilla:a review of data and concepts [J]. International Journal of Insect Morphology and Embryology,1997,26 (3):229-245.
    277. Steinbrecht R A, Lee J K, Altner H, et al. Volume and surface of receptor and auxiliary cells in hygro-/thermoreceptive sensilla of moths(Bombyx mori, Antheraea pernyi, and A. polyphemus) [J]. Cell and Tissue Research,1989,255 (1):59-67.
    278. Stoffolano J G, Yin L R. Structure and function of the ovipositor and associated sensilla of the apple maggot Rhagoletis pomonella (Walsh)(Diptera:Tephritidae) [J]. International Journal of Insect Morphology and Embryology,1987,16(1):41-69.
    279. Sukontason K, Methanitikorn R, Chaiwong T, et al. Sensilla of the antenna and palp of Hydrotaea chalcogaster (Diptera:Muscidae) [J]. Micron,2007,38 (3):218-223.
    280. Sutherland O R W. Olfactory responses of Costelytra zealandica (Coleoptera:Melolonthinae) larvae to grass root odours [J]. NZJ Sci,1972.
    281.Tadahisa U. Preliminary release experiments in laboratory and outdoor cages of Dastarcus helophoroides (Fairmaire)(Coleoptera:Bothrideridae) for biological control of Monochamus alternatus Hope (Coleoptera:Cerambycidae) [J]. 森林总合研究所研究报告,2003,2 (4):23-38.
    282. Takabayashi J, Dicke M. Plant-carnivore mutualism through herbivore-induced carnivore attractants [J]. Trends in Plant Science,1996,1 (4):109-113.
    283. Tarumingkeng R C, Coppel H C, Matsumura F. Morphology and ultrastructure of the antennal chemoreceptors and mechanoreceptors of worker Coptotermes formosanus Shiraki [J]. Cell and Tissue Research,1976,173(2):173-178.
    284. Trapp S, Croteau R. Defensive resin biosynthesis in conifers [J]. Annual review of plant biology, 2001,52(1):689-724.
    285. Tumlinson J H, Brennan M M, Doolittle R E, et al. Identification of a pheromone blend attractive to Manduca sexta (L.) males in a wind tunnel [J]. Archives of Insect Biochemistry and Physiology, 1989,10(4):255-271.
    286. Unsicker S B, Kunert G, Gershenzon J. Protective perfumes:the role of vegetative volatiles in plant defense against herbivores[J]. Current Opinion in Plant Biology,2009,(12):479-485.
    287. Van Der Pers J N C, Den Otter C J. Single cell responses from olfactory receptors of small ermine moths to sex-attractants [J]. Journal of Insect Physiology,1978,24 (4):337-343.
    288. Van Poecke R P, Posthumus M, Dicke M. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula:chemical, behavioral, and gene-expression analysis [J]. Journal of Chemical Ecology,2001,27 (10):1911-1928.
    289. Vet L E, Lenteren J C V, Heymans M, et al. An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects [J]. Physiological Entomology,1983, 8(1):97-106.
    290. Vet L E M, Dicke M. Ecology of infochemical use by natural enemies in a tritrophic context [J]. Annual Review of Entomology,1992,37(1):141-172.
    291. Vinson S B. How parasitoids locate their hosts:a case of insect espionage [J]. Insect Communication, 1984, (1):325-348.
    292. Visser J H. Electroantennogram responses of the colorado beetle, Leptinotarsa Decemlineata, to plant volatiles [J]. Entomologia Experimental et Applicata,1979,25 (1):86-97.
    293. Visser J H. Differential sensory perceptions of plant compounds by insects[C]. Proceedings of the plant resistance to insects ACS Symposium Series, F,1983.
    294. Visser J H. Host odor perception in phytophagous insects [J]. Annual Review of Entomology,1986, 31(1):121-144.
    295. Visser J H. Host-plant finding by insects:orientation, sensory input and search patterns [J]. Journal of Insect Physiology,1988,34 (3):259-268.
    296. Vosshall L B, Stocker R F. Molecular architecture of smell and taste in Drosophila [J]. Annual Review of Neuroscience,2007,30(1):505-533.
    297. Wajnberg E, Colazza S. Chemical ecology of insect parasitoids [M]. UK:Wiley,2013; 133-256.
    298. Wang Q-K, Zhang M, Li K, et al. Olfactory sensilla on antennae and maxillary palps of Fannia hirticeps (Stein,1892) (Diptera:Fanniidae) [J]. Microscopy Research and Technique,2012,75 (10): 1313-1320.
    299. Wei J-R. Progress on the research of Dastarcus helophoroides [J]. Forest Pest and Disease,2007, (3):01-07.
    300. Wei J-R, Yang Z-Q, Hao H-L, et al. (R)-(+)-limonene, kairomone for Dastarcus helophoroides, a natural enemy of longhorned beetles [J]. Agricultural and Forest Entomology,2008,10 (4):323-330.
    301. Wei J-R, Yang Z-Q, Poland T M, et al. Parasitism and olfactory responses of Dastarcus helophoroides (Coleoptera:Bothrideridae) to different Cerambycid hosts [J]. BioControl,2009,54 (6):733-742.
    302. Wei J N. Electrophysiological and behavioral responses of a parasitic wasp to plant volatiles induced by two leaf miner species [J]. Chemical Senses,2006,31(5):467-477.
    303. Weissbecker B, Holighaus G, Schutz S. Gas chromatography with mass spectrometric and electroantennographic detection:analysis of wood odorants by direct coupling of insect olfaction and mass spectrometry [J]. Journal of Chromatography A,2004,1056 (1):209-216.
    304. Weseloh R M. Relationship between colored sticky panel catches and reproductive behavior of forest tachinid parasitoids [J]. Environmental Entomology,1981,10(1):131-135.
    305. Whitehead A T. Ultrastructure of sensilla of the female mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera:Scolytidae) [J]. International Journal of Insect Morphology and Embryology,1981,10(1):19-28.
    306. Williams I, Livy, Rodriguez-Saona C, Castle S C, et al. EAG-Active herbivore-induced plant volatiles modify behavioral responses and host attack by an egg parasitoid [J]. Journal of Chemical Ecology,2008,34 (9):1190-1201.
    307. Williams L, Rodriguez-Saona C, Par P W, et al. The piercing-sucking herbivores Lygus hesperus and Nezara viridula induce volatile emissions in plants [J]. Archives of Insect Biochemistry and Physiology,2005,58 (2):84-96.
    308. Wilson I M, Borden J H, Gries R, et al. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera:Scolytidae) [J]. Journal of Chemical Ecology,1996,22(10):1861-1875.
    309. Yan S C, Meng Z J, Peng L, et al. Antennal sensilla of the pine weevil Pissodes nitidus Roel.(Coleoptera:Curculionidae) [J]. Microscopy Research and Technique,2011,74 (5):389-396.
    310. Yang L-J, Li X. Scanning electron microscopy observation on antennal sensilla of Dioryctriapryeri Ragonot [J]. Journal-northwest Forestry University,2007,22 (3):127.
    311. Yokohari F. The coelocapitular sensillum, an antennal hygro-and thermoreceptive sensillum of the honey bee, Apis mellifera L. [J]. Cell and Tissue Research,1983,233 (2):355-365.
    312. Yoshida K, Hirotsu T, Tagawa T, et al. Odour concentration-dependent olfactory preference change in C. elegans [J]. Nature Communications,2012, (3):739-742.
    313. Zacharuk R Y. Ultrastructure and function of insect chemosensilla [J]. Annual Review of Entomology,1980,25 (1):27-47.
    314. Zacharuk R Y. Comprehensive insect physiology, biochemistry and pharmacology:Nervous system: sensory. Vol.6 [M]. Oxford:Pergamon Press,1985
    315. Zhang J, Guan L, Ren B. Fine structure and distribution of antennal sensilla of longicorn beetles Leptura arcuata and Leptura aethiops (Coleoptera:Cerambycidae) [J]. Annals of the Entomological Society of America,2011,104 (4):778-787.
    316. Zhang L, Chen H, Ma C, et al. Electrophysiological responses of Dendroctonus armandi (Coleoptera: Curculionidae:Scolytinae) to volatiles of Chinese white pine as well as to pure enantiomers and racemates of some monoterpenes [J]. Chemoecology,2010,20 (4):265-275.
    317. Zhang L, Ren L-L, Luo Y-Q, et al. Scanning electron microscopy analysis of the cephalic sensilla of Chrysolina aeruginosa Fald.(Coleoptera, Chrysomelidae) [J]. Microscopy Research and Technique, 2013,76 (4):423-431.
    318. Zhang Q H, Schlyter F. Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus[J]. Oikos,2003, (101):299-310.
    319. Zhang Q H, Schlyter F. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles[J]. Agricultural and Forest Entomology,2004, (6):1-20.
    320. Zhang Y-H, Hao De-Jun, Wang Yan, Dai Hua-Guo.The mating and ovipositing behavior of Monochamus alternatus [J]. Chinese Bulletin of Entomology,2006,(1):24-28.
    321. Zhao B G, Futai K, Sutherland J, et al. Pine wilt disease [M]. US:Springer,2008:54-69.
    322. Zhao Y X, Kang L. Olfactory responses of the leafminer Liriomyza sativae (Dipt., Agromyzidae) to the odours of host and non-host plants [J]. Journal of Applied Entomology,2003,127 (2):80-84.
    323. Zimmermann B. Differentiation of the thermo-/hygrosensitive (no-pore) sensilla on the antenna of Antheraea pernyi (Lepidoptera, Saturniidae):a study of cryofixed material [J]. Cell and Tissue Research,1991,266(3):427-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700