用户名: 密码: 验证码:
基于常见荧光染料的小分子荧光探针的设计、合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光探针是一种能够将分子间的作用关系转化成了荧光信号的工具,已经成为现代科学和医学领域,如:临床诊断,生物技术,分子生物学,生物化学,材料科学,分析和环境化学等,不可或缺的工具。香豆素,氟硼荧,罗丹明,花菁素等常见荧光染料由于优良的光学和生物性能,如:荧光量子产率高,光稳定性好,生物兼容性好等,已被广泛用作信号团荧光用于各种荧光探针的设计和合成中。随着荧光仪器和荧光成像技术的发展,荧光探针对目标物的实时在线以及空间分辨的检测功能使得荧光探针的优点更加突出,成为科学研究中的理想工具。利用常见荧光染料构建更多种类的荧光探针具有重要的意义。本论文以香豆素,罗丹明,氟硼荧,花菁素为荧光信号团,分别构建了以硫脲类物质,汞离子,氟离子,硫阴离子为目标物的荧光探针。具体内容如下:
     针对单官能团转移策略设计的荧光探针选择性差的问题,找到了利用双官能团转移策略设计高选择性荧光探针的方法。基于此策略,在香豆素染料上同时引入羰基和溴原子两个淬灭基团设计合成了第一个荧光增强的硫脲类探针。该探针对硫脲的检测具有很高的灵敏性和选择性,检测下限达到2.8×10-7M,而且能够检测实际环境水样与土样中的硫脲。机理研究表明,该探针与硫脲类物质作用,是通过Hantzsch’s反应生成噻唑类物质,同时移去了羰基和溴原子淬灭基团,实现了双官能团转移的目的,从而使得探针荧光增强。以上例子说明,双官能团转移策略能够用来构建更多的高选择性的荧光探针。
     基于汞离子的嗜硫性和亲炔性,将硫原子和炔基组成新的汞离子受体,以罗丹明染料为荧光团,设计和发展了一个新的不可逆汞离子荧光增强探针。该探针对汞离子的响应表现出荧光增强倍数大(140倍),选择性高,检测下限低,响应时间短等优点。对汞离子响应机理的初步研究表明,探针对汞离子的响应既有配位作用又有媒介催化作用。探针能够检测细胞内的汞离子说明该探针具有广泛的应用潜质。
     基于汞离子的嗜硫性和亲烯性,将硫原子和烯基组成新的汞离子受体,以罗丹明染料为荧光团,设计和发展了一个新的可逆汞离子荧光增强探针。该探针能在中性的几乎100%水环境中对汞离子进行可逆检测,并且具有高选择性和灵敏性,检测下限达到了27.5nM。同样的,该探针也能够能够对活细胞中的汞离子进行可逆检测。所以,该探针将具有更多的生物应用,硫原子和烯基官能构成的汞离子新配体也将用来发展更多的可逆汞离子荧光传感器。
     针对近红外荧光染料花菁素的荧光信号难以调节的问题,找出了利用替代置换机理调节其荧光信号的方法。花青素染料和铜离子配体8-氨基喹啉通过哌嗪连接,构建了第一个近红外荧光增强的硫离子荧光探针。该探针在水溶液环境中对硫离子选择性高,响应灵敏度高,以及适用于较广的pH值范围。这种基于过渡金属离子或者重金属离子淬灭近红外荧光的置换取代策略,将能够用于其它阴离子近红外荧光增强探针的设计。
     基于香豆素染料和氟硼荧染料分子内电荷转移趋势的特点,设计合成了香豆素氟硼荧新的杂化染料平台。以该新染料为荧光团进一步设计合成了氟离子比值荧光探针。该探针对氟离子响应具有紫外吸收光谱移动大(88nm),荧光比值信号增强倍数大(I472/I606=17.4),选择性好等特点。密度泛函理论计算合理的解释了探针对氟离子响应的光谱行为。这具有分子内电荷转移信号调节机制的香豆素硼荧平台将能够用来开发更多的比值荧光探针。
Fluorescent probes which can transfer the molecular recognition events into thefluorescent signal are indispensable tools in various fields of modern science andmedicine, such as clinical diagnostics, biotechnology, molecular biology,biochemistry, materials science, analytical and environmental chemistry. Thecommon dyes like coumarin, rhodamine, BODIPY and cyanine due to their goodphotophysical properties and biological activation including high fluorescentquantum yields, good light stability and biocompatible, have been widely used asfluorophores in fluorescent probes construction. With the development offluorescence spectroscopy and fluorescence imaging technology, the merits offluorescent probes in the analytical fields like real-time and spatial discriminationdetection made fluorescent probes become ideal tools for science research. So, It isof great significance to construct much more kinds of fluorescent probes using thesecommon dyes. In this paper, fluorescent probes for thioureas, mercury ions, sulfuranions and fluoride anions have been constructed using coumarin, rhodamine,BODIPY and cyanine as fluorophores respectively. The concrete contents are asfollows:
     A method to design fluorescent probes with high selectivity based on the doublefunctional group transformation strategy were found in order to deal with problem oflow selective probes constructed by the single functional group transformationstrategy. Based on that strategy, the first fluorescence turn-on probe for thioureashad been developed by introduced both carbonyl group and bromide atom intocoumarin dye. The probe exhibited high sensitivity and selectivity toward thioureaswith a detection limit of2.8×10-7M. Moreover, the probe could be employed tomonitor thiourea in both water and soil samples. The mechanism study shown thatthe probe taken Hantzsch reaction with thioureas to form thiazole compounds viadouble functional group transformations made fluorescence enhance. From above,the strategy should be much more useful to construct other more fluorescence probeswith high selectivity.
     Based on the thiophilic and π-philic properties of Hg2+, A new irreversiblefluorescence turn-on Hg2+probe have been designed and easily synthesized byintroduced new receptor of Hg2+into rhodamine dye, which was composed of thiolatom and alkyne. The probe elicited a large fluorescence enhancement (140fold) and exhibited high selectivity, low detection limit, and fast response to Hg2+. In addition,the mechanism study shown that the interaction between probe with Hg2+involved inboth coordinated and mercury-mediated catalyzed processes. The successful Hg2+imaging in living cells indicated that the probe has a great potential application.
     Based on the thiophilic and π-philic properties of Hg2+, A new reversiblefluorescence turn-on Hg2+probe have been designed and easily synthesized byintroduced novel receptor of Hg2+into rhodamine dye, which was composed of thiolatom and alkene. The reversible probe can detect Hg2+in the near pure aqueousmedium at neutral conditions, and exhibited high selective and sensitive to Hg2+witha detection limit of27.5nM. In addition, the probe also can detect Hg2+in livingcells in a reversible way. The reversible nature of the probe will find interestingbiological applications and the novel Hg2+receptor presented herein will be usefulfor construction of other types of reversible fluorescent Hg2+probes.
     In order to solve the problem of hard regulated fluorescent signal of cyaninedye, the displacement approach was proposed to regulate the fluorescent signal ofcyanine dye. The first NIR fluorescent probe for sulfide anions has been constructedby linked cyanine dye and copper ligand8-aminoquinoline with a piperazine linker.The probe in aqueous media showed high sensitivity and high selectivity towardsulfide anions, and work well in a wide pH range. Given the fact that it is relativelychallenging to switch off the fluorescence of NIR dyes, a transition-metal-baseddisplacement strategy may open an avenue for the development of NIR fluorescentsensors for a wide variety of anion targets with a significant NIR fluorescenceturn-on response.
     Based on the ICT character of the coumarin and BODIPY dyes, a new hybriddye, coumarin-BODIPY, was designed and synthesized. Furthermore, a novelratiometric fluorescent sensor for fluoride anions based on the newcoumarin-BODIPY platform was developed. The probe exhibited a large red shift(88nm) in absorption, a drastic ratiometric fluorescent response (I472/I606=17.4)and highly selective to fluoride anions. Density function theory and time-dependentdensity function theory calculations were conducted to rationalize the opticalresponse of the probe. The unique ICT character of the coumarin-BODIPY platformwill be widely employed to construct a wide variety of ratiometric fluorescentsensors based on the ICT signaling mechanism.
引文
[1]吴世康.超分子光化学导论:基础与应用[M].北京:科学出版社,2005:185-234
    [2]刘育,尤长城,张衡益.超分子化学—合成受体的分子识别和组装[M].天津:南开大学出版社,2001:191-239
    [3]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006:4-5
    [4] Wu J S, Liu W Min, Zhuang X Q, et al. Fluorescence Turn On of CoumarinDerivatives by Metal Cations: A New Signaling Mechanism Based on C=NIsomerization. Organic Letters,2007,9(1):33-36
    [5] Wang W, Lin T, Wang Min, et al. Aggregation Emission Properties ofOligomers Based on Tetraphenylethylene. Journal of Physical Chemistry B,2010,114(18):5983-5988
    [6] Gagey N, Emond M, Neveu P, et al. Alcohol Uncaging with FluorescenceReporting: Evaluation of o-Acetoxyphenyl Methyloxazolone Precursors.Organic Letters,2008,10(12):2341-2344
    [7] Choi M G, Kim Y H, Namgoong J E, et al. Hg2+-selective chromogenic andfluorogenic chemodosimeter based on thiocoumarins. ChemicalCommunications,2009,(24):3560-3562
    [8] Schulman S G. Molecular Luminescence Spectroscopy: Methods andApplications. Part1. New York: John Wiley&Sons,1985:10-11
    [9]吴世康,荧光化学产感器研究中的光化学与光物理问题[J].化学进展,2004,16(2):174-183
    [10] Martínez-Máňez R, Sancenón F. Fluorogenic and chromogenic chemoscnsorsand reagents for anions. Chemical Reviews,2003,103(11):4419-4476
    [11]张宇辉,董赫,童爱军.发光性受体的分子设计与分子识别[J].分析实验室,2002,21(5):93-99
    [12] Lakowicz J R. Principles of fluorescence spectroscopy. New York: Springer,2006:443-472
    [13]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001:151-330
    [14] II'ichev Y V, Kuhnle W, Zachariasse K A, et al. Intramolecular chargetransferin dual fluorescent4-(dialkylamino)benzonitriles.Reaction efficiencyEnhancement by increasing the size of the amino and benzonitrile subunits byalkyl Substituents. The Journal of Physical Chemistry A,1998,102(28):5670-5680
    [15]徐任生.天然产物[M].第二版.北京:科学出版社,2004:590-595
    [16]包文艳,欧阳贵平,陈广明,等.香豆素及其衍生物的合成与生物活性研究进展[J].精细化工中间体,2011,41(1):1-7
    [17]刘志昌,刘晓霞,王应红,等. N-(香豆素-3-甲酰基)-N’-取代硫脲衍生物的合成及生物活性[J].有机化学,2011,31(1):136-140
    [18]淑永,曾和平,魏传晚,等.生物活性香豆寨的研究进展[J].合成化学,2004,12(4):340-346
    [19]韩莹,屠树滋,周卫芬,等.香豆素磺酰脲类化合物的合成及其降血糖活性研究[J].中国药科大学学报,2002,33(2):93-97
    [20]张方贺,魏艳,王栋,等.8种甲基香豆素衍生物的抑菌及除草活性[J].农药,2011,50(6):455-457
    [21]樊美公.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001:32l-330
    [22]杨薇,杨新玮.国内外荧光增白剂的进展[J].2003,31(6):7-13
    [23] Beatty K E, Tirrell D A. Two-color labeling of temporally defined proteinpopulations in mammalian cells.2008,18(22):5995-5999
    [24] Zahradnik M. The production and application of fluorescent brighteningAgents. New York: A wiley-interscince publiction,1982.
    [25]陈悦,李晓天,古丽米娜,等.负载激光染料香豆素151的粉体及MCM-41其纤维的光学性质研究[J].2006,27(3):397-400
    [26] Richard J A, Massonneau M, Renard P Y, et a1.7-Hydroxycoumarin-Hemicyanine Hybrids: A New Class of Far-Red Emitting Fluorogenic Dyes.Organic Letters,2008,10(19):4175-4178
    [27] Griffiths J, Miltar V, Bahra G S. The influence of chain length and electronacceptor residues in3-substituted7-N,N-diethylaminocoumarin dyes. Dyesand Pigments,1995,28(4):327-329
    [28] Pulla R P, Srimannarayana G. A novel and convenient synthesis of3-phenylcoumarins. Synthesis,1981,1981(11):887-888
    [29] Jones G. Organic Reactions. NewYork: John Wiley&Sons,Inc.,1967, Vol.15:204-204
    [30] Perrella F W, Chen S F, Behrens D L, et a1. Phospholipase C Inhibitors: ANew Class of Agents. Journal of Medicinal Chemistry,1994,37(14):2232-2237
    [31] Sethna S M. Organic Reactions. New York: John Wiley&Sons, Inc.,1953, Vol.7:1-58
    [32]曹丽薇,贝浼智,华林根.钯配合物催化邻-溴苯基丙烯酸酯分子内烯基化反应的研究-香豆素的新法合成[J].分子催化,1991,5(4):296-300
    [33] Blackburn C, Bai M Q, Lecompte K A, et a1. Lithium responsive fluorophoresderived from Monoaza-12-crown-4and coumarin.The influence of a methoxyside-arm on photophysical properties. Tetrahedron Letters,1994,35(43):7915-7918
    [34] Crossley R, Goolamali Z, Gosper J J, et a1. Synthesis and spectral propertiesof new fluorescent probes for potassium. Journal of the Chemical Society,Perkin Transactions2, l994,(3):513-520
    [35] Ray D, Bharadwaj P K.A Coumarin-Derived Fluorescence Probe Selective forMagnesium. Inorganic Chemistry,2008,47(7):2252-2254
    [36] Lim N C, Yao L, Freake H C, et al. Synthesis of a Fluorescent ChemosensorSuitable for the Imaging of Zinc(II) in Live Cells. Bioorganic&MedicinalChemistry Letters,2003,13(14):2251–2254
    [37] Lim N C, Brückner C. DPA-substituted coumarins as chemosensors forZinc(II): modulation of the chemosensory characteristics by variation of theposition of the chelate on the coumarin. Chemical Communications,2004,(9):1094–1095
    [38] Chattopadhyay N, Mallick A, Sengupta S. Photophysical studies of7-hydroxy-4-methyl-8-(4-methylpiperazin-1-yl)methylcoumarin: A newfluorescent chemosensor for zinc and nickel ions in water. Journal ofPhotochemistry and Photobiology A: Chemistry,2006,(177):55–60
    [39] Dakanali M, Roussakis E, Kay A R, et al. Synthesis and photophysicalproperties of a fluorescent TREN-type ligand incorporating the coumarinchromophore and its zinc complex. Tetrahedron Letters,2005,46(24):4193–4196
    [40] Wang J, Qian X, Cui J. Detecting Hg2+Ions with an ICT Fluorescent SensorMolecule: Remarkable Emission Spectra Shift and Unique Selectivity.Journal of Organic Chemistry,2006,71(11):4308-4311
    [41] Sheng R, Wang P, Liu W, et al. A new colorimetric chemosensor for Hg2+based on coumarin azine derivative. Sensors and Actuators B,2007,128(2):507-511
    [42] Lee D N, Kim G J, Kim H J. A Fluorescent coumarinylalkyne probe for theselective detection of mercury(II) ion in water. Tetrahedron Letters,2009,50(33):4766-4768
    [43] Valeur B, Pouget J, Bouson J, et al. Tuning of photoinduced energy transfer ina bichromo-phoric coumarin supermolecule by cation binding. The Journal ofPhysical Chemistry,1992,96(16):6545–6549
    [44] Chen C T, Huang W P. A Highly Selective Fluorescent Chemosensor for LeadIons. Journal of the American Chemical Society,2002,124(22):6246–6247
    [45] Taki M, Desaki M, Ojida A, et al. Fluorescence Imaging of IntracellularCadmium Using a Dual-Excitation Ratiometric Chemosensor. Journal of theAmerican Chemical Society,2008,130(38):12564-12565
    [46] Lin W, Yuan L, Cao Z, et al. Fluorescence enhancement ofcoumarin–quinoline by transition metal ions:Detection of paramagnetic Ni2+and Co2+. Dyes and Pigments,2009,83(1):14–20
    [47] Lin W, Yuan L, Cao X. A rational approach to emission ratio enhancement ofchemodosimeters via regulation of intramolecular charge transfer. TetrahedronLetters,2008,49(46):6585–6588
    [48] Sheng R, Wang P, Gao Y, et al. Colorimetric test kit for Cu2+detection.Organic Letters,2008,10(21):5015-5018
    [49] Lin W, Yuan Lin, Cao Z, et al. A Sensitive and Selective Fluorescent ThiolProbe in Water Based on the Conjugate1,4-Addition of Thiols to α,β-Unsaturated Ketones. Chemistry-A European Journal,2009,15(20):5096-5103
    [50] Yuan Lin, Lin W, Yang Y. A ratiometric fluorescent probe for specificdetection of cysteine over homocysteine and glutathione based on the drasticdistinction in the kinetic profiles. Chemical Communications,2011,47(22):6275-6277
    [51] Sun Y Q, Chen M, Liu J, et al. Nitroolefin-based coumarin as a colorimetricand fluorescent dual probe for biothiols. Chemical Communications,2011,47(39):11029-11031
    [52] Lee K S, Kim H J, Kim G K, et al. Fluorescent Chemodosimeter for SelectiveDetection of Cyanide in Water. Organic Letters,2008,10(1):49-51
    [53] Yuan L, Lin W, Yang Y, et al. Rational Design of a Highly ReactiveRatiometric Fluorescent Probe for Cyanide. Organic Letters,2011,13(14):3730-3733
    [54] Lin W, Long L, Tan W. A highly sensitive fluorescent probe for detection ofbenzenethiols in environmental samples and living cells. ChemicalCommunications,2010,46(9):1503-1505
    [55] Du L, Li M, Zheng S, et al. Rational design of a fluorescent hydrogenperoxide probe based on the umbelliferone fluorophore.Tetrahedron Letters,2008,49(19):3045-3048
    [56]颜范勇,陈立功,闫喜龙,等.罗丹明类荧光染料的合成及应用[J].化学进展,2006,18(2):252-60
    [57]黄婷,欧阳翰,史真,等.基于off-on机理的罗丹明基金属离子荧光探针研究进展[J].厦门大学学报,2011,50:137-140
    [58] Haugland R P. Handbook of Fluorescent Probes and Research Chemicals.9thed. Eugene OR: Molecular Probes,2002:6-18
    [59]吴世康.具有荧光发射能力有机化合物的光物理和光化学问题研究[J].化学进展,2005,17(1):15-39
    [60] Chen X, Pradhan T, Wang F, et al. Fluorescent Chemosensors Based onSpiroring-Opening of Xanthenes and Related Derivatives. Chemical Reviews,2012,112(3):1910-1956
    [61]王彦广,刘洋.化学标记与探针技术在分子生物学中的应用[M].北京:化学工业出版社,2007:2-5
    [62]王海君,朱广山,张可勇,等.金属有机骨架复合材料RhB/MOF-5的制备及其发光性质[J].高等学校化学学报,2009,30(1):11-13
    [63] Rigler R, Widengren J, Mets U. Fluorescence Spectroscopy. Berlin: Springer,1992:13-15
    [64] Berman E M, Showalter H D H. Trimethylsilyl polyphosphate forintramolecular Friedel-Crafts cyclizations. Journal of Organic Chemistry,1989,54(23):5642-5644
    [65] Wu L, Burgess K. Synthesis and Spectroscopic Properties of Rosamines withCyclic Amine Substituents. Journal of Organic Chemistry,2008,73(22):8711-8718
    [66] Grimm J B, Lavis L D. Synthesis of Rhodamines from Fluoresceins UsingPd-Catalyzed C-N Cross-Coupling. Organic Letters,2011,13(24):6354-6357
    [67] Dujols V, Ford F, Czarnik A W. A Long-Wavelength FluorescentChemodosimeter Selective for Cu(II) Ion in Water. Journal of the AmericanChemical Society,1997,119(31):7386-7387
    [68] Xiang Y, Tong A, Jin P, et al. New fluorescent rhodamine hydrazonechemosensor for Cu(II) with high selectivity and sensitivity. Organic Letters,2006,8(13):2863-2866
    [69] Zhang X, Shiraishi Y, Hirai T. Cu(II)-Selective Green Fluorescence of aRhodamine-Diacetic Acid Conjugate. Organic Letters,2007,9(24):5039-5042
    [70] HuangW, Wu D Y, Duan C Y. Conformation-switched chemosensor forselective detection of Hg2+in aqueous media. Inorganic ChemistryCommunications,2010,13,294-297
    [71] Shi W, Ma H. Rhodamine B thiolactone: a simple chemosensor for Hg2+inaqueous media. Chemical Communications,2008,(16):1856-1858
    [72] Zhan X Q, Qian Z H, Zheng H, et al. Rhodamine thiospirolactone. Highlyselective and sensitive reversible sensing of Hg(II). ChemicalCommunications,2008,(16):1859-1861
    [73] Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetricchemodosimeter for the rapid detection of Hg2+ions in aqueous media. Journalof the American Chemical Society,2005,127(48):16760-16761
    [74] Han Z X, Zhang X B, Li Z, et al. Efficient fluorescence resonance energytransfer-based ratiometric fluorescent cellular imaging probe for zinc using arhodamine spirolactam as a trigger. Analytical Chemistry,2010,82(8):3108-3113
    [75] Xiang Y, Tong A. A new rhodamine-based chemosensor exhibiting selectiveFeIII-amplified fluorescence. Organic Letters,2006,8(8):1549-1552
    [76] Kwon J Y, Jang Y J, Lee Y J, et al. A Highly Selective FluorescentChemosensor for Pb2+. Journal of the American Chemical Society,2005,127(28):10107-10111
    [77] Mao J, Wang L, Dou W, et al. Tuning the Selectivity of Two Chemosensors toFe(III) and Cr(III). Organic Letters,2007,9(22):4567-4570
    [78] Chatterjee A, Santra M, Won N, et al. Selective Fluorogenic and ChromogenicProbe for Detection of Silver Ions and Silver Nanoparticles in Aqueous Media.Journal of the American Chemical Society,2009,131(6):2040-2041
    [79] Jou M J, Chen X, Swamy, K M K, et al. Chemical Communications,2009,(46):7218-7220
    [80] Li H, Fan J, Du J, et al. A fluorescent and colorimetric probe specific forpalladium detection. Chemical Communications,2010,46(7):1079-1081
    [81] Kim H, Lee S, Lee J, et al. Rhodamine Triazole-Based Fluorescent Probe forthe Detection of Pt2+. Organic Letters,2010,12(22):5342-5345
    [82] Lou X, Qiang L, Qin J, et al. A new rhodamine-based colorimetric cyanidechemosensor: convenient detecting procedure and high sensitivity andselectivity. ACS Applied Materials&Interfaces,2009,1(11),2529-2535
    [83] Li H, Fan J, Wang J, et al. A fluorescent chemodosimeter specific for cysteine:effective discrimination of cysteine from homocysteine. ChemicalCommunications,2009,(39):5904-5906
    [84] Chen X, Lee K A, Ha E M, et al. A specific and sensitive method for detectionof hypochlorous acid for the imaging of microbe-induced HOCl production.Chemical Communications,2011,47(15):4373-4375
    [85] Zheng H, Shang G Q, Yang S Y, et al. Fluorogenic and ChromogenicRhodamine Spirolactam Based Probe for Nitric Oxide by Spiro Ring OpeningReaction. Organic Letters,2008,10(12):2357-2360
    [86] Treibs A, Kreuzer F H. Difluorboryl-Komplexe von Di-undTripyrrylmethenen Justus Liebigs Annalen der Chemie,1968,718(1):208-223
    [87]龚维. BODIPY类荧光探针在离子检测中的应用[J].化学分析计量,2010,19(5):90-92
    [88] Arbeloa T L, Arbeloa F L, Arbeloa I L,et al. Correlations betweenphotophysics and lasing properties of dipyrromethene–BF2dyes in solution.Chemical Physics Letters,1999,299(3):315-321
    [89] Yee M C, Fas S C, Stohlmeyer M M, et al. A Cell-permeable, Activity-basedProbe for Protein and Lipid Kinases. The Journal of Biological Chemistry,2005,280(32):29053-29059
    [90] Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY.Chemical Society Reviews,2012,41,1130–1172
    [91] Boyer J H, Haag A M, Sathyamoorthi G, et al. Pyrromethene–BF2complexesas laser dyes:2. Heteroatom Chemistry,1993,4(1):39-49.
    [92] Shah M, Thangaraj K, Soong M L, et al. Pyrromethene–BF2complexes aslaser dyes:1. Heteroatom Chemistry,1990,1(5):389-399
    [93] Wagner R W, Lindsey J S. Boron-dipyrromethene dyes for incorporation insynthetic multi-pigment light-harvesting arrays. Pure and Applied Chemistry,1996,68(7):1373-1380
    [94] Nicolaou K C, Claremon D A, Papahatjis D P. A mild method for the synthesisof2-ketopyrroles from carboxylic acids. Tetrahedron Letters,1981,22(46):4647-4650
    [95] Coskun A, Akkaya E U. Difluorobora-s-diazaindacene dyes as highly selectivedosimetric reagents for fluoride anions. Tetrahedron Letters,2004,45(25):4947-4949
    [96] Wu W, Guo H, Wu W, et al. Organic Triplet Sensitizer Library Derived from aSingle Chromophore (BODIPY) with Long-Lived Triplet Excited State forTriplet-Triplet Annihilation Based Upconversion. Journal of OrganicChemistry,2011,76(17):7056-7064
    [97] Kamiya Mako, Johnsson Kai. Localizable and Highly Sensitive CalciumIndicator Based on a BODIPY Fluorophore. Analytical Chemistry,2010,82(15):6472-6479
    [98] Goze C, Ulrich G, Mallon L J, et al. Synthesis and photophysical properties ofborondipyrromethene dyes bearing aryl substituents at the boron center.Journal of the American Chemical Society,2006,128(31):10231-10239
    [99] Kollmannsberger M, Gareis T, Heinl S, et al. ElectrogeneratedChemiluminescence and Proton-Dependent Switching of Fluorescence:Functionalized Difluoroboradiaza-s-indacenes. Angewandte ChemieInternational Edition,1997,36(12):1333–1335
    [100] Malval J P, Leary I, Valeur B. A highly selective fluorescent molecular sensorfor potassium based on a calix[4]bisazacrown bearing boron-dipyrromethenefluorophores. New Journal of Chemistry,2005,29(8):1089–1094
    [101] Basari N, Baruah M, Qin W, et al. Synthesis and spectroscopiccharacterisation of BODIPY based fluorescent off-on indicators with lowaffinity for calcium. Organic Biomolecular Chemistry,2005,3(15):2755-2761
    [102] Dodani S C, He Q, Chang C J. A Turn-On Fluorescent Sensor for DetectingNickel in Living Cells. Journal of the American Chemical Society,2009,131(50):18020–18021
    [103] Coskun A, Akkaya E U. Ion Sensing Coupled to Resonance Energy Transfer: AHighly Selective and Sensitive Ratiometric Fluorescent Chemosensor for Ag(I)by a Modular Approach. Journal of the American Chemical Society,2005,127,10464–10465
    [104] Zeng L, Miller E W, Pralle A, et al. A Selective Turn-On Fluorescent Sensorfor Imaging Copper in Living Cells. Journal of the American Chemical Society,2006,128(1):10–11
    [105] Qi X, Jun E J, Xu L, et al. New BODIPY Derivatives as OFF-ON FluorescentChemosensor and Fluorescent Chemodosimeter for Cu2+: CooperativeSelectivity Enhancement toward Cu2+. The Journal of Organic Chemistry,2006,71(7):2881–2884
    [106] Cheng T, Xu Y, Zhang S, et al. A Highly Sensitive and Selective OFF-ONFluorescent Sensor for Cadmium in Aqueous Solution and Living Cell. Journalof the American Chemical Society,2008,130(48):16160–16161
    [107] Atilgan S, Ozdemir T, Akkaya E U. A Sensitive and Selective RatiometricNear IR Fluorescent Probe for Zinc Ions Based on the Distyryl-BodipyFluorophore. Organic Letters,2008,10(18):4065–4067
    [108] Coskun A, Akkaya E U. Signal Ratio Amplification via Modulation ofResonance Energy Transfer: Proof of Principle in an Emission RatiometricHg(II) Sensor. Journal of the American Chemical Society,2006,128(45):14474–14475
    [109] Ekmekci Z, Yilmaz M D, Akkaya E U. Monostyryl-boradiazaindacene(BODIPY) Derivative as Colorimetric and Fluorescent Probe for Cyanide Ions.Organic Letters,2008,10(3):461–464
    [110] Bozdemir O A, Sozmen F, Buyukcakir O, et al. Reaction-Based Sensing ofFluoride Ions Using Built-In Triggers for Intramolecular Charge Transfer andPhotoinduced Electron Transfer. Organic Letters,2010,12(7):1400–1403
    [111] Li X, Qian S, He Q, et al. Design and synthesis of a highly selectivefluorescent turn-on probe for thiol bioimaging in living cells. OrganicBiomolecular Chemistry,2010,8(16):3627–3620
    [112] Sun Z N, Liu F Q, Chen Y, et al. A Highly Specific BODIPY-BasedFluorescent Probe for the Detection of Hypochlorous Acid. Organic Letters,2008,10(11):2171–2174
    [113] Sun Z N, Wang H L, Liu F Q, et al. BODIPY-Based Fluorescent Probe forPeroxynitrite Detection and Imaging in Living Cells. Organic Letters,2009,11(9):1887–18890
    [114] Gabe Y, Urano Y, Kikuchi K, et al. Highly Sensitive Fluorescence Probes forNitric Oxide Based on Boron Dipyrromethene Chromophore-Rational Designof Potentially Useful Bioimaging Fluorescence Probe. Journal of the AmericanChemical Society,2004,126(10):3357–3357
    [115]郑庆东,姚祖光.多烯和花菁染料分子设计及其非线性光学性质研究进展[J].化学研究,2000,1:55-61
    [116]李斌,唐黎明,董汉鹏,等.红外激光增感引发体系的合成及光聚合[J].应用化学,1999,2:113-114
    [117] Simonsen K B, Geisler T, Petersen J. Bis(1,3-dithiole) polymethine dyes forthird-order nonlinear optics. Synthesis, electronic structure, nonlinear opticalproperties, and structure-property relations. European Journal of OrganicChemistry,1998,(12):2747-2757
    [118] Klohs J, Wunder A, Licha K. Near-infrared fluorescent probes for imagingvascular pathophysiology. Basic Research in Cardiology,2008,103(2):144-151
    [119] Wang, H. Li, W.-R. Guo, X.-F. Zhang, H.-S. Spectrophotometricdetermination of total protein in serum using a novel near-infrared cyaninedye,5,5’-dicarboxy-1,1’-disulfobutyl-3,3,3’,3’-tetramethylindotricarbocyanine.Analytical and Bioanalytical Chemistry,2007,387(8):2857-2862
    [120] Lipowska M, Patterson S E, Patonay G, et al. A Highly Selective Hydrogen-Deuterium Exchange in Indolium Heptamethine Cyanines. Journal ofHeterocyclic Chemistry,1993,30(5):1177-1180
    [121] Peng X, Song F, Lu E, et al. Heptamethine cyanine dyes with a large Stokesshift and strong fluorescence: A paradigm for excited-state intramolecularcharge transfer. Journal of the American Chemical Society,2005,127(12):4170-4171
    [122] Lipowska M, Patonay G, Strekowski L. New Near-Infrared Cyanine Dyes forLabelling of Proteins. Synthetic Communications,1993,23(21):3087-3094
    [123] Narayanan N, Patonay G. A New Method for the Synthesis of HeptamethineCyanine Dyes: Synthesis of New Near-Infrared Fluorescent Labels. Journal ofOrganic Chemistry,1995,60(8):2391-2395
    [124] Mojzych M, Raszkiewicz A, Strekowski L. Facile synthesis of dimericheptamethine cyanine dyes containing a linker at the meso positions.Heterocyclic Communications,2009,15(2):123-126
    [125] Oushiki D, Kojima H, Terai T. Development and Application of aNear-Infrared Fluorescence Probe for Oxidative Stress Based on DifferentialReactivity of Linked Cyanine Dyes. Journal of the American ChemicalSociety,2010,132(8):2795-2801
    [126] Kiyose K, Aizawa S, Sasaki E, et al. Molecular Design Strategies forNear-Infrared Ratiometric Fluorescent Probes Based on the Unique SpectralProperties of Aminocyanines. Chemistry-A European Journal,2009,15(36):9191-9200
    [127] Kiyose K, Kojima H, Urano Y, et al. Development of a RatiometricFluorescent Zinc Ion Probe in Near-Infrared Region, Based onTricarbocyanine Chromophore. Jouranl of the American Chemical Society,2006,128(20):6548-6549
    [128] Tang B, Liu X, Xu K, et al. A dual near-infrared pH fluorescent probe and itsapplication in imaging of HepG2cells. Chemical Communications,2007,(36):3726–3728
    [129] Tang B, Yu F, Li P, et al. A Near-Infrared Neutral pH Fluorescent Probe forMonitoring Minor pH Changes: Imaging in Living HepG2and HL-7702Cells.Jouranl of the American Chemical Society,2009,131(8):3016–3023
    [130] Myochin T, Kiyose K, Hanaoka K, et al. Rational Design of RatiometricNear-Infrared Fluorescent pH Probes with Various pKa Values, Based onAminocyanine. Journal of the American Chemical Society,2011,133(10):3401-3409
    [131] Zhu M, Yuan M, Liu X, et al. Visible Near-Infrared Chemosensor for MercuryIon. Organic Letters,2008,10(7):1481-1484
    [132] Guo Z, Zhu W, Zhu M, et al. Near-Infrared Cell-Permeable Hg2+-SelectiveRatiometric Fluorescent Chemodosimeters and Fast Indicator Paper forMeHg+Based on Tricarbocyanines. Chemistry-A European Journal,2010,16(48):14424-14432
    [133] Li P, Duan X, Chen Z, et al. A near-infrared fluorescent probe for detectingcopper(II) with high selectivity and sensitivity and its biological imagingapplications. Chemical Communications,2011,47(27):7755-7757
    [134] Yang Y, Cheng T, Zhu W, et al. Highly Selective and Sensitive Near-InfraredFluorescent Sensors for Cadmium in Aqueous Solution. Organic Letters,2011,13(2):264-267
    [135] Hirayama T, Van de Bittner G C, Gray L W, et al. Near-infrared fluorescentsensor for in vivo copper imaging in a murine Wilson disease model.Proceedings of the National Academy of Sciences of the United States ofAmerica,2012,109(7):2228-2233
    [136] Sasaki E, Kojima H, Nishimatsu H, et al. Highly Sensitive Near-InfraredFluorescent Probes for Nitric Oxide and Their Application to Isolated Organs.Journal of the American Chemical Society,2005,127(11):3684-3685
    [137] Li P, Tang B, Xing Y, et al. A near-infrared fluorescent probe for lipidhydroperoxides in living cells. Analyst,2008,133(10):1409–1415
    [138] Yu F, Li P, Li G, et al. A Near-IR Reversible Fluorescent Probe Modulated bySelenium for Monitoring Peroxynitrite and Imaging in Living Cells. Journal ofthe American Chemical Society,2011,133(29):11030–11033
    [139] Yu F, Li P, Song P, et al. An ICT-based strategy to a colorimetric andratiometric fluorescence probe for hydrogen sulfide in living cells. ChemicalCommunications,2012,48(23):2852-2854
    [140] Smyth M R, Osteryoung J G. Determination of some thiourea-containingpesticides by pulse voltammetric methods of analysis. Analytical Chemistry,1977,49(14):2310-2314
    [141] Heuper W C, Conway W D. Chemical Carcinogenesis and Cancer(Ed.: C. CThomas). Illinois: Springer,1964:37-38
    [142] Smith P B, Crespi C. Thiourea toxicity in mouse C3H/10T1/2cells expressinghuman flavin-dependent monooxygenase3. Biochemical Pharmacology,2002,63(11):1941-1948
    [143] Combs A B, Giri S N, Peoples S A. New method for analysis of phenylthioureain biological fluid. Analytical Biochemistry,1971,44(2):570-575
    [144] Kanerva L, Estlander T, Jolanki R. Occupational allergic contact dermatitiscaused by thiourea compounds. Contact dermatitis,1994,31(4):242-248
    [145] Richter C P. The development and use of alpha-naphthyl thiourea (ANTU) as arat poison. Journal of the American Medical Association,1945,129:927-931
    [146] Richter C P. Physiology and endocrinology of the toxic thioureas. Recentprogress in hormone research,1948,2:255-276
    [147] Wheatcroft P E J, Thornburn C C. Toxicity of the taste testing compoundphenylthiocarbamide. Nature: New biology,1972,235(55):93–94
    [148] Mitsumori K, Onodera H, Takahashi M, et al. Promoting effect of largeamounts of vitamin A on cell proliferation of thyroid proliferative lesionsinduced by simultaneous treatment with thiourea. Cancer Letters,1996,103(1):19-31
    [149] Shimo T, Mitsumori K, Onodera H, et al. Synergistic effects of phenobarbitaland thiourea on proliferative lesions in the rat liver. Cancer Letters,1994,81(1):45–52
    [150] Fitzhugh O G, Nelson A A. Liver Tumors in Rats Fed Thiourea orThioacetamide. Science,1948,108(2814):626-628
    [151] Goswami S, Mukherjee R, Ray J. Design and synthesis of a neutral fluorescentmacrocyclic receptor for the recognition of urea in chloroform. OrganicLetters,2005,7(7):1283-1285
    [152] Lee K S, Kim T K, Lee J H, et al. Fluorescence turn-on probe forhomocysteine and cysteine in water. Chemical Communications,2008,(46):6173–6175
    [153] Rusin O, Luce N N, Agbaria R A, et al. Visual detection of cysteine andhomocysteine. Journal of the American Chemical Society,2004,126(2):438-439
    [154] Kwon S K, Kou S, Kim H N, et al. Sensing cyanide ion via fluorescent changeand its application to the microfluidic system.Tetrahedron Letters,2008,49(26):4102-4105
    [155] Jo J, Lee D.Turn-On Fluorescence Detection of Cyanide in Water: Activationof Latent Fluorophores Through Remote Hydrogen Bonds that Mimic Peptideβ-Turn Motif. Journal of the American Chemical Society,2009,131(44):16283-16291
    [156] El-Sayed M A. Triplet state. Its radiative and nonradiative properties.Accounts of Chemical Research,1968,1(1):8-16
    [157] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling recognitionevents with fluorescent sensors and switches. Chemical Reviews,1997,97(5):1515-1566
    [158] Hantzsch A. Thiazoles from thiamides. Justus Liebigs Annalen derChemie,1889,250:257-273
    [159] Schwarz G.2,4-Dimethylthiazole. Organic Syntheses,1945,25:35-37
    [160] Bailey N, Dean A W, Judd D B, et al. A convenient procedure for the solutionphase preparation of2-aminothiazole combinatorial libraries. Bioorganic&Medicinal Chemistry Letters,1996,6(12):1409-1414
    [161] Zhao X Q, Zhang Z Q. Microwave-assisted on-line derivatization for sensitiveflow injection fluorometric determination of formaldehyde in some foods.Talanta,2009,80(1):242-245
    [162] Saitoh T, Suzuki S, Hiraid M. Polymer-mediated extraction of the fluorescentcompounds derived by Hantzsch reaction with dimedone for the sensitivedetermination of aliphatic aldehydes in air. Journal of Chromatography A,2006,1134(1-2):38-44
    [163] Peng Q, He J, Jiang C. A new spectrofluorimetric method for determination oftrace amounts histamine in human urine and serum. Luminescence,2009,24(3):135–139
    [164] Wang N X, Zhao J. A Novel NADH Model: Design, Synthesis, and its ChiralReduction and Fluorescent Emission. Advanced Synthesis&Catalysis,2009,351(18):3045–3050
    [165] Parker C A, Rees W T. Correction of fluorescence spectra and measurement offluorescence quantum efficiency. Analyst,1960,85:587-600
    [166] Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky tomeasure? a demonstration using familiar stationery products. Journal ofChemical Education,1999,76(9):1260-1264
    [167] Berlman I B. Handbook of Fluorescence Spectra of Aromatic Molecules. NewYork: Academic press,1965:2-16
    [168] Ajayaghosh A, Carol P, Sreejith S. A Ratiometric Fluorescence Probe forSelective Visual Sensing of Zn2+. Journal of the American Chemical Society,2005,127(43):14962-14963
    [169] Lin W, Long L, Yuan L, et al. A Ratiometric Fluorescent Probe for Cysteineand Homocysteine Displaying a Large Emission Shift. Organic Letters,2008,10(24):5577–5580
    [170] Crosby G A, Demas J N. Measurement of photoluminescence quantum yields.Review. Journal of Physical Chemistry,1971,75(8):991–1024
    [171] Dale T J, Rebek Jr J. Fluorescent Sensors for Organophosphorus Nerve AgentMimics.Journal of the American Chemical Society,2006,128(14):4500–4501
    [172] Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuricion. Chemical reviews,2008,108(9):3443-3480
    [173] Huang J, Xu Y, Qian X. A rhodamine-based Hg2+sensor with high selectivityand sensitivity in aqueous solution: An NS2-containing receptor. Journal ofOrganic Chemistry,2009,74(5):2167-2170
    [174] Huang W, Song C, He C, et al. Recognition Preference of Rhodamine-Thiospirolactams for Mercury(II) in Aqueous Solution. Inorganic Chemistry,2009,48(12):5061-5072
    [175] Suresh M, Mishra S, Mishra S K, et al. Resonance Energy Transfer Approachand a New Ratiometric Probe for Hg2+in Aqueous Media and Living Organism.Organic Letters,2009,13(13):2740-2743
    [176] Fan J, Guo K, Peng X, et al. A Hg2+fluorescent chemosensor withoutinterference from anions and Hg2+-imaging in living cells. Sensors andActuators B,2009,142(1):191-196
    [177] Tian M, Ihmels H. Selective ratiometric detection of mercury(II) ions in waterwith an acridizinium-based fluorescent probe. Chemical Communications,2009,(22):3175-3177
    [178] Lee M H, Lee S W, Kim H, et al. Nanomolar Hg(II) Detection Using Nile BlueChemodosimeter in Biological Media. Organic Letters,2009,11(10):2101-2104
    [179] Jiang W, Wang W. A selective and sensitive "turn-on" fluorescentchemodosimeter for Hg2+in aqueous media via Hg2+promoted faciledesulfurization-lactonization reaction. Chemical Communications,2009,(26):3913-3915
    [180] Tang B, Ding B, Xu K, et al. Use of selenium to detect mercury in water andcells: an enhancement of the sensitivity and specificity of a seleno fluorescentprobe. Chemistry-A European Journal,2009,15(13):3147-3151
    [181] Santra M, Ryu D, Chatterjee A, et al. Chemodosimeter approach tofluorescent sensing and imaging of inorganic and methylmercury species.Chemical Communications,2009,(16):2115-2117
    [182] Li H W, Li Y, Dang Y Q, et al. An easily prepared hypersensitivewater-soluble fluorescent probe for mercury (II) ions. ChemicalCommunications,2009,(29):4453-4455
    [183] Li C Y, Zhang X B, Qiao L, et al. Naphthalimide-Porphyrin Hybrid BasedRatiometric Bioimaging Probe for Hg2+: Well-Resolved Emission Spectra andUnique Specificity. Analytical Chemistry,2009,81(24):9993-10001
    [184] Zheng H, Qian Z H, Xu L, et al. Switching the Recognition Preference ofRhodamine B Spirolactam by Replacing One Atom: Design of Rhodamine BThiohydrazide for Recognition of Hg(II) in Aqueous Solution. Organic Letters,2006,8(5):859-861
    [185] Nolan E M, Lippard S J. A "Turn-On" Fluorescent Sensor for the SelectiveDetection of Mercuric Ion in Aqueous Media. Journal of the AmericanChemical Society,2003,125(47):14270-14271
    [186] Yoon S, Albers A E, Wong A P, et al. Screening Mercury Levels in Fish with aSelective Fluorescent Chemosensor. Journal of the American ChemicalSociety,2005,127(46):16030-16031
    [187] Yuan M, Li Y, Li J, et al. A Colorimetric and Fluorometric Dual-Model Assayfor Mercury Ion by a Molecule. Organic Letters,2007,9(12):2313-2316
    [188] Nolan E M, Lippard S J. Turn-On and Ratiometric Mercury Sensing in Waterwith a Red-Emitting Probe. Journal of the American Chemical Society,2007,129(18):5910-5918
    [189] Shi W, Ma H. Rhodamine B thiolactone: a simple chemosensor for Hg2+inaqueous media. Chemical Communications,2008,(16):1856-1858
    [190] Chen X, Nam S W, Jou M J, et al. Hg2+Selective Fluorescent and ColorimetricSensor: Its Crystal Structure and Application to Bioimaging. Organic Letters,2008,10(22):5235-5238
    [191] Song K C, Kim J S, Park S M, et al. Fluorogenic Hg2+-SelectiveChemodosimeter Derived from8-Hydroxyquinoline. Organic Letters,2006,8(16):3413-3416
    [192] Wu J S, Hwang I C, Kim K S, et al. Rhodamine-Based Hg2+-SelectiveChemodosimeter in Aqueous Solution: Fluorescent OFF-ON. Organic Letters,2007,9(5):907-910
    [193] Yang Y K, Ko S K, Shin I, et al. Synthesis of a highly metal-selectiverhodamine-based probe and its use for the in vivo monitoring of mercury.Nature Protocols,2007,2(7):1740-1745
    [194] Ko S K, Yang Y K, Tae J, et al. In Vivo Monitoring of Mercury Ions Using aRhodamine-Based Molecular Probe. Journal of the American ChemicalSociety,2006,128(43):14150-14155
    [195] Zhang X, Xiao Y, Qian X. A ratiometric fluorescent probe based on FRETfor imaging Hg2+ions in living cells. Angewandte Chemie, InternationalEdition,2008,47(42):8025-8029
    [196] Kim K N, Choi M G, Noh J H, et al. Rhodamine B hydrazide revisited:chemodosimetric Hg2+-selective signaling behavior in aqueous environments.Bulletin of the Korean Chemical Society,2008,29(3):571-574
    [197] Song F, Watanabe S, Floreancig P, et al. Oxidation-Resistant FluorogenicProbe for Mercury Based on Alkyne Oxymercuration. Journal of the AmericanChemical Society,2008,130(49):16460-16461
    [198] Choi M G, Ryu D H, Jeon H L, et al. Chemodosimetric Hg2+-SelectiveSignaling by Mercuration of Dichlorofluorescein Derivatives. Organic Letters,2008,10(17):3717-3120
    [199] Kim H N, Lee M H, Kim H J, et al. A new trend in rhodamine-basedchemosensors: application of spirolactam ring-opening to sensing ions.Chemical Society Reviews,2008,37(8):1465-1472
    [200] Beija M, Afonso C A M, Martinho J M G. Synthesis and applications ofRhodamine derivatives as fluorescent probes. Chemical Society Reviews,2009,38(8):2410-2433
    [201] Batey R A, Powell D A. A General Synthetic Method for the Formation ofSubstituted5-Aminotetrazoles from Thioureas: A Strategy for DiversityAmplification. Organic Letters,2000,2(20):3237-3240
    [202] Ellison R A, Woessner W D, Williams C C. Hydrolysis and alcoholysis oforthothioesters. Journal of Organic Chemistry,1974,39(10):1430-1431
    [203] Levallet C, Lerpiniere J, Ko S Y. The HgCl2-promoted guanylation reaction:the scope and limitations. Tetrahedron,1997,53(14):5291-5304
    [204] Kemp D S, Buckler D R, Galakatos N G, et al. Templates for intramolecularO,N-acyl transfer via cyclic intermediates derived from mercury derivatives ofL-cysteine: progress toward a mercury-based thiol capture strategy. Journalof Organic Chemistry,1989,54(16):3853-3858
    [205] Bassetti M, Floris B, Spadafora G. Metalation of alkynes.1. Effect of alkynestructure on the rate of acetoxymercuration. Journal of Organic Chemistry,1986,51(22):4140-4143
    [206] Larock R C, Burns L D, Varaprath S, et al. Mercury in organic chemistry.34.Synthesis of vinylmercurials via mercuration of propargylic amines.Organometallics,1987,6(8):1780-1789
    [207] Nishizawa M, Imagawa H, Yamamoto H. A new catalyst for organic synthesis:mercuric triflate. Organic&Biomolecular Chemistry,2010,8(3):511-521
    [208] Coronado E, Galán-Mascarós J R, Marí-Gastaldo C, et al. ReversibleColorimetric Probes for Mercury Sensing. Journal of the American ChemicalSociety,2005,127(35):12351-12356
    [209] Egorova O A, Seo H, Chatterjee A, et al. Reaction-Based Fluorescent Sensingof Au(I)/Au(III) Species: Mechanistic Implications on VinylgoldIntermediates. Organic Letters,2010,12(3):401-403
    [210] Ma Q J, Zhang X B, Zhao X H et al. A highly selective fluorescent probe forHg2+based on a rhodamine-coumarin conjugate. Analytica Chimica Acta,2010,663(1):85-90
    [211] Song C, Zhang X, Jia C et al. Highly sensitive and selective fluorescencesensor based on functional SBA-15for detection of Hg2+in Aqueous Media.Talanta,2010,81(1-2):643-649
    [212] Jana A, Kim J S, Jung H S et al. A cryptand based chemodosimetric probe fornaked-eye detection of mercury(II) ion in aqueous medium and its applicationin live cell imaging. Chemical Communications,2009,(29):4417-4429
    [213] Suresh M, Shrivastav A, Mishra S, et al. A Rhodamine-Based Chemosensorthat Works in the Biological System. Organic Letters,2008,10(14):3013-3016
    [214] Yang H, Zhou Z, Huang K, et al. Multisignaling Optical-ElectrochemicalSensor for Hg2+Based on a Rhodamine Derivative with a Ferrocene Unit.Organic Letters,2007,9(23):4729-4732
    [215] Soh J H, Swamy K M K, Kim S K, et al. Rhodamine urea derivatives asfluorescent chemosensors for Hg2+. Tetrahedron Letters,2007,48(34):5966-5969
    [216] Shiraishi Y, Sumiya S, Kohno Y et al. A Rhodamine-Cyclen Conjugate as aHighly Sensitive and Selective Fluorescent Chemosensor for Hg(II). Journalof Organic Chemistry,2008,73(21):8571-8574
    [217] Lee M H, Wu J S. Lee J W, et al. Highly Sensitive and Selective Chemosensorfor Hg2+Based on the Rhodamine Fluorophore. Organic Letters,2007,9(13):2501-2504
    [218] Wu D, Huang W, Duan C, et al. Highly Sensitive Fluorescent Probe forSelective Detection of Hg2+in DMF Aqueous Media. Inorganic Chemistry,2007,46(5):1538-1540
    [219] Müller T E, Hultzsch K C, Yus M, et al. Hydroamination: Direct Addition ofAmines to Alkenes and Alkynes. Chemical Reviews,2008,108(9):3795-3892
    [220] Traylor T G, Baker A W. The oxymercuration of olefins. I. A general methodfor determination of the stereochemistry of oxymercuration. Journal of theAmerican Chemical Society,1963,85(18):2746-2752
    [221] Einhorn J, Einhorn C, Luche J L. Ultrasound in organic synthesis.18.Selective oxymercuration via sonochemically in situ generated mercury salts.Journal of Organic Chemistry,1989,54(19):4479-4481
    [222] Brown H C, Geoghegajn P J. Solvomercuration-demercuration. I.Oxymercuration-demercuration of representative olefins in an aqueoussystem. Mild procedure for the Markovnikov hydration of the carbon-carbondouble bond. Journal of Organic Chemistry,1970,35(6):1844-1850
    [223] Shortreed M. Kopelman R, Kuhn M,et al. Fluorescent Fiber-Optic CalciumSensor for Physiological Measurements. Analytical Chemistry,1996,68(8):1414-1418
    [224] Caballero A, Mart nez R, Lloveras V, et al. Highly Selective Chromogenic andRedox or Fluorescent Sensors of Hg2+in Aqueous Environment Based on1,4-Disubstituted Azines. Journal of the American Chemical Society,2005,127(45):15666-15667
    [225] Rosenthal J, Lippard S J. Direct Detection of Nitroxyl in Aqueous SolutionUsing a Tripodal Copper(II) BODIPY Complex. Journal of the AmericanChemical Society,2010,132(16):5536-5537
    [226] Mizukami S, Okada S, Kimura S, et al. Design and Synthesis ofCoumarin-Based Zn2+Probes for Ratiometric Fluorescence Imaging.Inorganic Chemistry,2009,48(16):7630-7638
    [227] Xu Z, Baek K H, Kim H N, et al. Zn2+-Triggered Amide TautomerizationProduces a Highly Zn2+-Selective, Cell-Permeable, and RatiometricFluorescent Sensor. Journal of the American Chemical Society,2010,132(2):601-610
    [228] Ho I T, Lee G H, Chung W S. Synthesis of Upper-Rim Allyl-andp-Methoxyphenylazocalix [4]arenes and Their Efficiencies in ChromogenicSensing of Hg2+Ion. Journal of Organic Chemistry,2007,72(7):2434-2442
    [229] Hydrogen Sulfide; Geneva, World Health Organization,1981(EnvironmentalHealth Criteria, No.19
    [230] Clinical Toxicology of Commercial Products,5th ed.; Williams and Wilkins:Baltimore, MD,1984; ppIII198-III202
    [231] Patwardhan S A, Abhyankar S M. Toxic and Hazardous Gases. IV. Colourage,1988,35(12):15–18
    [232] Balasubramanian S, Pugalenthi V. A comparative study of the determination ofsulphide in tannery waste water by ion selective electrode (ISE) and iodimetry.Water Research,2000,34(17):4201-4206
    [233] Bings N H, Bogaerts A, Broekaert J A C. Atomic Spectroscopy. AnalyticalChemistry,2008,80(12):4317-4347
    [234] Colon M, Todolí J L, Hidalgo M, et al. Development of novel and sensitivemethods for the determination of sulfide in aqueous samples by hydrogensulfide generation-inductively coupled plasma-atomic emission spectroscopy.Analytica Chimica Acta,2008,609(2):160-168
    [235] Jin Y, Wu H, Tian Y, et al. Indirect Determination of Sulfide at UltratraceLevels in Natural Waters by Flow Injection On-Line Sorption in a KnottedReactor Coupled with Hydride Generation Atomic Fluorescence Spectrometry.Analytical Chemistry,2007,79(18):7176-7181
    [236] Vallejo B, Richter P, Toral I, et al. Determination of sulfide in liquid and solidsamples by integrated pervaporation-potentiometric detection. AnalyticaChimica Acta,2001,436(2):301-307
    [237] Giuriati C, Cavalli S, Gorni A, et al. Ion chromatographic determination ofsulfide and cyanide in real matrices by using pulsed amperometric detectionon a silver electrode. Journal of Chromatography A,2004,1023(1):105-112
    [238] Ferrer L, de Armas G, MiróM, et al. A multisyringe flow injection method forthe automated determination of sulfide in waters using a miniaturized opticalfiber spectrophotometer. Talanta,2004,64(5):1119-1126
    [239] Jiménez D, Martínez-Máňez R, Sancenón F, et al. A New Chromo-chemodosimeter Selective for Sulfide Anion. Journal of the AmericanChemical Society,2003,125(30):9000-9001
    [240] Axelrod H D, Cary J H, Bonelli J E, et al. Fluorescence determination ofsub-parts-per-billion hydrogen sulfide in the atmosphere. AnalyticalChemistry,1969,41(13):1856-1858
    [241] Choi M F, Hawkins P. Development of sulfide-selective optode membranesbased on fluorescence quenching. Analytica Chimica Acta,1997,344(1-2):105-110
    [242] Spaziani M A, Davis J L, Tinani M, et al. Online determination of sulfide bythe 'Methylene Blue Method' with diode-laser-based fluorescence detection.Analyst,1997,122(12):1555-1557
    [243] Rodríguez-Fernández J, Costa J M, Pereiro R, et al. Simple detector for oralmalodor based on spectrofluorimetric measurements of hydrogen sulfide inmouth air. Analytica Chimica Acta,1999,398(1):23-31
    [244] Maya F, Estela J M, Cerdá V. Improving the chemiluminescence-baseddetermination of sulphide in complex environmental samples by using a new,automated multi-syringe flow injection analysis system coupled to a gasdiffusion unit. Analytica Chimica Acta,2007,601(1):87-94
    [245] Huang R, Zheng X, Qu Y. Highly selective electrogeneratedchemiluminescence (ECL) for sulfide ion determination at multi-wall carbonnanotubes-modified graphite electrode. Analytica Chimica Acta,2007,582(2):267-274
    [246] Gale P A, Caltagirone, C.Anion sensors. Chemosensors,2011,395-427
    [247] O’Neil E J, Smith B D. Anion recognition using dimetallic coordinationcomplexes. Coordination Chemistry Reviews,2006,250(23+24):3068–3080
    [248] Ruan Y B, Li A F, Zhao J S, et al. Specific Hg2+-mediated perylene bisimideaggregation for highly sensitive detection of cysteine. ChemicalCommunications,2010,46(27):4938-4940
    [249] Siering C, Kerschbaumer H, Nieger M, et al. A Supramolecular FluorescenceProbe for Caffeine. Organic Letters,2006,8(7):1471-1474
    [250] Royzen M, Dai Z, Canary J W. Ratiometric Displacement Approach to Cu(II)Sensing by Fluorescence. Journal of the American Chemical Society,2005,127(6):1612-1613
    [251] Choi M G, Cha S, Lee H, et al. Sulfide-selective chemosignaling by a Cu2+complex of dipicolylamine appended fluorescein. Chemical Communications,2009,(47):7390-7392
    [252] Yang X F, Wang L, Xu H, et al. A fluorescein-based fluorogenic andchromogenic chemodosimeter for the sensitive detection of sulfide anion inaqueous solution. Analytica Chimica Acta,2009,631(1):91-95
    [253] Zhang L, Lou X, Yu Y, et al. A New Disubstituted Polyacetylene BearingPyridine Moieties: Convenient Synthesis and Sensitive Chemosensor towardSulfide Anion with High Selectivity.Macromolecules,2011,44(13):5186-5193
    [254] Rehm D, Weller A. Kinetics of fluorescence quenching by electron andhydrogen-atom transfer. Israel Journal of Chemistry,1970,8(2):259-271
    [255] Encinas C, Miltsov S, Otazo E, et al. Synthesis and spectroscopiccharacterization of heptamethine cyanine NIR dyes for their use inoptochemical sensors. Dyes and Pigments,2006,71(1):28-36
    [256] Zhang Y, Guo X, Si W, et al. Ratiometric and Water-Soluble Fluorescent ZincSensor of Carboxamidoquinoline with an Alkoxyethylamino Chain asReceptor. Organic Letters,2008,10(3):473-476
    [257] Zhu Y F, Fan D H, Shen W Z. A General Chemical Conversion Route ToSynthesize Various ZnO-Based Core/Shell Structures. Journal of PhysicalChemistry C,2008,112(28):10402-10406
    [258] Crutchley R J, Hynes R, Gabe E J. Five-and four-coordinate copper(II)complexes of2,2'-bipyridine and phenylcyanamide anion ligands: crystalstructures, cyclic voltammetry, and electronic absorption spectroscopy.Inorganic Chemistry,1990,29(24):4921-4928
    [259] Patel K C, Goldberg D E. N-Aralkylpolyamine complexes. II. Five-andsix-coordinate complexes of copper(II) with N,N'-dibenzylethylenediamine.Inorganic Chemistry,1972,11(4):759-764
    [260] Coltrain B K, Jackels S C. Coordination chemistry of a copper(II) tetraiminemacrocycle: four-, five-, and six-coordinate derivatives and reductiontransmetalation to the zinc(II) complex.Inorganic Chemistry,1981,20(7):2032-2039
    [261] Kodama M, Kimura E. Equilibriums and kinetics of copper(II) complexformation of a linear and of13-15-membered macrocyclic dioxotetraamines.Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry,1979,(2):325-329
    [262] Fabbrizzi L, Foti F, Patroni S, et al. A sleeping host awoken by its guest:recognition and sensing of imidazole-containing molecules based on doubleCu2+translocation inside a polyaza macrocycle. Angew. Chem., Int. Ed. Engl.2004,43(38):5073–5077
    [263] Xu Z, Qian X, Cui J. Colorimetric and Ratiometric Fluorescent Chemosensorwith a Large Red-Shift in Emission: Cu(II)-Only Sensing by Deprotonation ofSecondary Amines as Receptor Conjugated to Naphthalimide Fluorophore.Organic Letters,2005,7(14):3029-3032
    [264] Schmidtchen F P, Berger M. Artificial Organic Host Molecules for Anions.Chemical Reviews,1997,97(5):1609-1646
    [265] Li A F, Wang J H, Wang F, et al. Anion complexation and sensing usingmodified urea and thiourea-based receptors. Chemical Society Reviews,2010,39(10):3729-3745
    [266] Kirk K L. Biochemistry of the Halogens and Inorganic Halides. New York:Plenum Press,1991:58-59
    [267] Kleerekoper M. The role of fluoride in the prevention of osteoporosis.Endocrinology and Metabolism Clinics of North America,1998,27(2):441-452
    [268] Dreisbuch R H, Robertson W O. Handbook of Poisoning: prevention,diagnosis&treatment. Los Altos, CA: Appleton&Lange,1987:216-218
    [269] Wade C R, Broomsgrove A E J, Aldridge S, et al Fluoride Ion Complexationand Sensing Using Organoboron Compounds. Chemical Reviews,2010,110(7):3958-3984
    [270] Cametti M, Rissanen K. Recognition and sensing of fluoride anion. ChemicalCommunications,2009,(20):2809-2829
    [271] Kumar S, Luxami V, Kumar A. Chromofluorescent probes for selectivedetection of fluoride and acetate ions. Organic Letters,2008,10(24):5549-5552
    [272] Qu Y, Hua J, Tian H. Colorimetric and Ratiometric Red FluorescentChemosensor for Fluoride Ion Based on Diketopyrrolopyrrole. Organic Letters,2010,12(15):3320-3323
    [273] Lu Q S, Dong L, Zhang J, et al. Imidazolium-functionalized BINOL as amultifunctional receptor for chromogenic and chiral anion recognition.Organic Letters,2009,11(3):669-672
    [274] Bhalla V, Singh H, Kumar M. Facile Cyclization of Terphenyl to Triphenylene:A New Chemodosimeter for Fluoride Ions. Organic Letters,2010,12(3):628-631
    [275] Peng X, Wu Y, Fan J, et al. Colorimetric and Ratiometric FluorescenceSensing of Fluoride: Tuning Selectivity in Proton Transfer. Journal of OrganicChemistry,2005,70(25):10524-10531
    [276] Lin Y C, Chen C T. Acridinium salt-based fluoride and acetatechromofluorescent probes: Molecular insights into anion selectivity switching.Organic Letters,2009,11(21):4858-4861
    [277] Sokkalingam P, Lee C H. Highly Sensitive Fluorescence "Turn-On" Indicatorfor Fluoride Anion with Remarkable Selectivity in Organic and AqueousMedia. Journal of Organic Chemistry,2011,76(10):3820-3828
    [278] Kim S Y, Hong J I. Chromogenic and Fluorescent Chemodosimeter forDetection of Fluoride in Aqueous Solution. Organic Letters,2007,9(16):3109-3122
    [279] Hu R, Feng J, Hu D, et al. A Rapid Aqueous Fluoride Ion Sensor with DualOutput Modes. Angewandte Chemie International Edition,2010,49(29):4915-4918
    [280] Zhang J F, Lim C S, Bhuniya S, et al. A Highly Selective Colorimetric andRatiometric Two-Photon Fluorescent Probe for Fluoride Ion Detection.Organic Letters,2011,13(5):1190-1193
    [281] Xu Z, Kim S K, Han S J, et al. Ratiometric Fluorescence Sensing of FluorideIons by an Asymmetric Bidentate Receptor Containing a Boronic Acid andImidazolium Group.European Journal of Organic Chemistry,2009,(18):3058-3065
    [282] Tsien R Y, Harootunian A T. Practical design criteria for a dynamic ratioimaging system.Cell calcium,1990,11(2-3):93–109
    [283] Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses andspectroscopic properties. Chemical Reviews,2007,107(11):4891-4932
    [284] Jiao L, Yu C, Li J, et al. β-Formyl-BODIPYs from the Vilsmeier-HaackReaction. Journal of Organic Chemistry,2009,74(19):7525-7528
    [285] Haugland R P. The Handbook-A Guide to Fluorescent Probes and LabelingTechnologies,10th ed.; Carlsbad, CA: Invitrogen Corporation,2005
    [286] Ojida A, Sakamoto T, Inoue M, et al. Fluorescent BODIPY-Based Zn(II)Complex as a Molecular Probe for Selective Detection of NeurofibrillaryTangles in the Brains of Alzheimer's Disease Patients. Journal of the AmericanChemical Society,2009,131(18):6543-6548
    [287] Matsumoto T, Urano Y, Shoda T, et al. A thiol-reactive fluorescence probebased on donor-excited photoinduced electron transfer: key role of orthosubstitution. Organic letters,2007,9(17):3375-3377
    [288] Kennedy D P, Kormos C M, Burdette S C. FerriBRIGHT: A RationallyDesigned Fluorescent Probe for Redox Active Metals. Journal of theAmerican Chemical Society,2009,131(24):8578-8586
    [289] Ziessel R, Harriman A. Artificial light-harvesting antennae: electronic energytransfer by way of molecular funnels. Chemical Communications,2011,47(2):611–631
    [290] Zhang X, Xiao Y, Qian X. Highly Efficient Energy Transfer in the LightHarvesting System Composed of Three Kinds of Boron-DipyrrometheneDerivatives.Organic Letters,2008,10(1):29-32
    [291] Atilgan S, Ekmekci Z, Dogan A L, et al. Water solubledistyryl-boradiazaindacenes as efficient photosensitizers for photodynamictherapy. Chemical Communications,2006,(42):4398-4400
    [292] Signore G, Nifosì R, Albertazzi L, et al. Polarity-sensitive coumarins tailoredto live cell imaging. Journal of the American Chemical Society,2010,132(4):1276-1288
    [293] Deniz E, Isbasar G C, Bozdemir A, et al. Bidirectional switching of near IRemitting boradiazaindacene fluorophores. Organic Letters,2008,10(16):3401-3403
    [294] Peng X, Du J, Fan J, et al. A Selective Fluorescent Sensor for Imaging Cd2+inLiving Cells. Journal of the American Chemical Society,2007,129(6):1500–1501
    [295] Lakowicz J R. Principles of Fluorescence Spectroscope. New York: Springer,2006:219-221
    [296] Greene T W, Wuts P G M, Eds.; Protective Groups in Organic Synthesis,3rded.; Wiley: New York,1999; pp113-148
    [297] Zhu B, Yuan F, Li R, et al. A highly selective colorimetric and ratiometricfluorescent chemodosimeter for imaging fluoride ions in living cells.Chemical Communications,2011,47(25):7098-7100
    [298] Ren J, Wu Z, Zhou Y, et al. Colorimetric fluoride sensor based on1,8-naphthalimide derivatives. Dyes and Pigments,2011,91(3):442-445
    [299] Yang X F, Ye S J, Bai Q, et al. A Fluorescein-based Fluorogenic Probe forFluoride Ion Based on the Fluoride-induced Cleavage oftert-butyldimethylsilyl Ether. Journal of Fluorescence,2007,17(1):81-87
    [300] Kim S Y, Park J, Koh M, et al. Fluorescent probe for detection of fluoride inwater and bioimaging in A549human lung carcinoma cells. ChemicalCommunications,2009,(31):4735-4737
    [301] Lim N C, Schuster J V, Porto M C, et al. Coumarin-based chemosensors forzinc(II): Toward the determination of the design algorithm for CHEF-type andratiometric probes. Inorganic Chemistry,2005,44(6):2018-2030
    [302] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, revision E.01;Gaussian, Inc.: Wallingford, CT,2004
    [303] Becke A D. Density-functional thermochemistry. III. The role of exactexchange. Journal of Chemical Physics,1993,98(7):5648-5652
    [304] Lee C, Yang W, Parr R G. Development of the Colle-Salvetticorrelation-energy formula into a functional of the electron density. PhysicalReview B,1988,37(2):785-789
    [305] Miehlich B, Savin A, Stoll H, et al. Results obtained with the correlationenergy density functionals of Becke and Lee, Yang and Parr. Chemical PhysicsLetters,1989,157(3):200-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700