用户名: 密码: 验证码:
多头官能基芳炔硫醚的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装单分子膜(SAMs)和纳米团簇组装技术近年来引起了化学工作者广泛兴趣,它们在传感器、生物医学诊断、信息存储和催化等很多领域都有广阔的应用前景,已成为生物医学、物理化学、纳米材料等学科研究的热点。但是,粒子间空间结构如何能够根据中间模板分子的大小、形状及键合性质来进行调整仍然是一个难题。这一问题如能得以解决,将会提高纳米粒子自组装的适配性能。因此,这就需要合成一些特殊结构的中间化合物,这样的化合物在大小、形状和键位性能方面都需要进行精心的设计。
     本论文的目的就是设计并合成一些几何形状、尺度大小及功能基数相异,具有π共轭刚性特征的新的芳炔硫醚类化合物,系统地考察它们在团簇组装与拆卸、形态与尺度控制中的特殊行为,发现一些奇特性质和功能。RS?功能基的配位能力适中,它们的团簇组装体在加入强配位的巯基物质后可被拆散。此外,吸着在金属基质表面的不同分子对粒子的接近方式和聚集数目可能起到不同的控制作用,从而达到调节纳米团簇形态或尺度的组装效果。开展这项研究不仅能丰富合成化学的内容,对微型分子器件的自组装以及高效金属簇催化剂的创制等都有着重要的理论和实际意义。
     第二章和第三章分别讨论了一些平面结构和空间立体结构的多头官能基芳炔硫醚刚性分子的设计与合成。它们几何形状、尺度大小、功能基数目相异,从形状上分为“I”型、“V”型、“X”型、“Y”型;空间立体结构化合物中,又包括双头官能基螺旋结构的芳炔硫醚、具有联萘单元“V”型结构的芳炔硫醚,及三官能基三角锥型芳炔硫醚化合物。通过重氮化,亲电取代,保护基的控制导入、脱去以及Sonogashira偶连等一系列反应,进一步将带有功能基团的末端功能砌块与多种芳炔连接砌块进行交叉偶连,合成了目标化合物。一些中间化合物和所有的目标分子的结构经过1H NMR、13C NMR、IR及MS得到了确认。其中一部分化合物正在美国纽约州立大学进行性能测试,以期在纳米粒子自组装形状、尺寸以及粒子内部空间的可控性能方面获得更好的团簇自组装效果。预期这些刚性的硫醚类功能分子不仅具有良好的团簇自组装行为,而且在含巯基物质加入的情况下,金纳米团簇能够被重新拆散成纳米粒子。这些性质对于分子器件的组装和拆卸将具有重要意义,值得进一步研究。
Self-assembled monolayers (SAMs) and Self-assembly of nanocluster have attracted much interest from the chemists. Potential applications of the nanocluster assemblies include chemical sensors or biosensors, biomedical diagnostics, information storage, and catalysis. So they have attracted extensive attention in biomedical science, physical chemistry and nanomaterials. But one intriguing question is how the interparticle spatial properties of nanoparticle assemblies can be tuned by size, shape, and binding properties of the mediators. The answer would have a profound impact on the fine-tunability of the assembled nanostructures, which requires novel designs of the mediator structures in terms of size, shape, and ligand properties.
     This research is to design and synthesize some new molecules of arylthioether which are different in size, shape, and function base, and have the character ofπ-conjugate, the other is to have a systematically investigation of the special actions in Self-assembly and disassembly of nanocluster and controllable sizes and shapes to find some oddity characters and functions. Beacause the ability to assemble nanoparticles by RS?ligand is moderate, we can expect that it’s feasible to disassemble the Self-assembly of nanocluster after thioether added. Furthermore, because the different molucles which are adhered on the surface of template have different effects at approach quomodo and assembly numbers, it can reach the purpose of adjusting the size and shape of Self-assembly of nanocluster. This research can not only enrich the synthetic chemistry but also has important academic and application significance of minisize molecule property and high metal catalyzer.
     In the second and the third chapter, the design and synthesis of rigid multidentate alkythioether molecules with plane and solid structure were described. These compounds include I,V,X,Y, helical structure and triphenylamine derivative which have different size, shape, functional groups andπ-conjugated bone. Then we get the target compounds by diazotization, electronic substitute, introduction and removal of protecting group, and Sonogashira reaction. The structures of the new intermediates and target molecules were identified by 1H NMR, 13C NMR, IR, and MS. Some of the molecules is being expected to get some interesting results in NewYork University. We hope that these rigid alkythioether molecules can not only assemble but also disassemble after thioether added. These characters are very important to the assemble and disassemble of nanoparticles, so it’s worthy to continue the research.
引文
[1] Whiteside G T, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry-a chemical strategy for the synthesis of nanostructures. Science, 1991, 254(5036): 1312-1319
    [2] Laibinis P E, Whitesides G M, Allara D L, et al. Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of n-Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au. J Am Chem Soc, 1991, 113(19): 7152-7167
    [3] Ulman A. Formation and Structure of Self-Assembled Monolayers. Chem Rev, 1996, 96(4): 1533-1554
    [4] Abbott N L, Gorman C B, Whitesides G M. Active Control of Wetting Using Applied Electrical Potentials and Self-Assembled Monolayers. Langmuir, 1995, 11(1): 16-18
    [5] Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic optical and sensoric applications. Chemphyschem, 2000, 1(1): 18-52
    [6] Sagiv J. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc, 1980, 102(1): 92-98
    [7] Xiao X, Huang X. Single-electron tunneling study of two-dimensional gold clusters. Appl Phys Lett. 2000, 77(8), 1179-1181
    [8] Fisz J J. Theory of one-color two-photon excitation fluorescence depolarization in organized molecular assemblies and solutions. Chem Phys Lett. 2003, 373(3-4), 299-307
    [9] Troughton E B, Bain C D, Whitesides G M, et al. Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: structure, properties, and reactivity of constituent functional groups. Langmuir, 1988, 4(2): 365-385
    [10] Nuzzo R G, Allara D L. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc, 1983, 105(13): 4481-4483
    [11] Tillman N, Ulman A, Penner T L, et al. Formation of multilayers by self-assembly. Langmuir, 1989, 5(1): 101-111
    [12] Bain C D, Whitesides G M. Correlations between wettability and structure in monolayers of alkanethiols adsorbed on gold. J Am Chem Soc, 1988, 110(11):3665-3666
    [13] Strong L, Whitesides G M. Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir, 1988, 4(3): 546-558
    [14] Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe Nanocrystallites into three-dimensional quantum dot superlattices. Science, 1995, 270(5240): 1335-1338
    [15] Van B A, Ruel R, Wiltzius P. Template-directed colloidal crystallization. Nature, 1997, 385(6614): 321-324
    [16] Brust M, Bethell D, Schiffren D J, et al. Novel gold-dithiol nano-networks with nonometallic electronic-properties. Adv Mater, 1995, 7(9): 795-801
    [17] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide. Nature, 1992, 360(6403): 444-446
    [18] Remskar M, Mrzel A, Jesih A, et al. Metal-alloyed nanotubes synthesized by the self-assembly of nanoparticles. Adv Mater, 2002, 14(9): 680-684
    [19] Terech P, Geyer A, Struth B, et al. Self-assembled monodisperse steroid nanotubes in water. Adv Mater, 2002, 14(7): 495-498
    [20] Li G, Mcgown L B. Supramolecular Materials: Self-Organized Nanostructures. Science, 1997, 276(5311): 384-389
    [21] Skven L T, Stephen V, Alexander E R, et al. Self-Assembly of Cobalt Nanoparticle Rings. J Am Chem Soc, 2002, 124(27): 7914-7915
    [22] Sung H K. Design of TiO2 namoparticle self-assembles aromatic polyamide thin-film-composite membrane as an approach to solve biofouling problem. Journal of Membrane Science, 2003, 211(1): 157-165
    [23] Nirmalya B, Chaki K. Self-assembled monolayers as a tunable platform for biosensor applieations. Biosensors and Bioeleetronies, 2002, 17(1-2): 1-12
    [24] Sinapi F, Self-assembly of (3-mercaptopropy1)-trimethoxysilane on polyerystalline zinc substrates towards corrosion protection. Applied Surface Science, 2001, 181(3-4): 307-316
    [25] Santoso S. Hwang W, Hartman H, et al. Self-assembly of Surfactant-1ike peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett, 2002, 2(7): 687-691
    [26] Bielinska A U, Baker J J. The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the eomplexedDNA. Biochimica et Biophysica Acta, 1997, 1353(2): 180-190
    [27] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem Rev, 2004, 104(1): 293-346
    [28] Tan Y, Li Y, Zhu D, et al. Fabrication of Gold Nanoparticles Using a Trithiol (Thiocyanuric Acid) as the Capping Agent. Langmuir, 2002, 18(8): 3392-3395
    [29] Maye M M, Lim I I, Luo S, et al. Mediator-Template Assembly of Nanoparticles. J Am Chem Soc, 2005, 127(5): 1519-1529
    [30] Ibs A, Uvdal K, Liedberg B, et al. Infrared and photoelectron spectroscopic studies of ethyl and octyl xanthate ions adsorbed on metallic and sulfidized gold surfaces. Langmuir, 1993, 9(3): 733-739
    [31] Donhauser Z J, Nantooth B A, Kelly K F, et al. Molecular Engineering of Polarity and Interactions of Molecular Electronic Switches. J Am Chem Soc, 2005, 127(49): 17421-17426
    [32] Tour J M, Reed M A, Campbell I, et al. Synthesis and Preliminary Testing of Molecular Wires and Devices. Chem Eur J, 2001, 7(23): 5118-5134
    [33] Chen J, Reed M A, Rawlett A M. Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science, 1999, 286(5444): 1550-1552
    [34] Maya F, Flatt A K, Tour J M, et al. Formation and Analysis of Self-Assembled Monolayers from U-Shaped Oligo(phenylene ethynylene)s as Candidates for Molecular Electronics. Chem Mater, 2004, 16(16): 2987-2997
    [35] Jones L, Schumm J S, Tour J M. Rapid Solution and Solid Phase Syntheses of Oligo(1,4-phenylene ethynylene)s with Thioester Termini: Molecular Scale Wires with Alligator Clips. J Org Chem, 1997, 62(5): 1388-1410
    [36] Tour J M, Rawlett A M, Kozaki M, et al. Molecular Wires and Devices. Chem Eur J, 2001, 7(23): 5118-5134
    [37] Pearson D L, Tour J M. Rapid Syntheses of Oligo(2,5-thiophene ethynylene)s with Thioester Termini: Potential Molecular Scale Wires with Alligator Clips. J Org Chem, 1997, 62(5): 1376-1387
    [38] Han L, Daniel D R, Maye M M, et al. Core-Shell Nanostructured Nanoparticle Films as Chemically Sensitive Interfaces. Anal Chem, 2001, 73(18): 4441-4449
    [39] Zhong C J, Maye M M. Core-Shell Assembled Nanoparticles as Catalysts. Adv Mater, 2001, 13(19): 1507-1511
    [40] Elghanian R, Storhoff J J, Mucic R C, et al. Selective Colorimetric Detection ofPolynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 1997, 277(5329): 1078-1081
    [41] Zheng W X, Maye M M, Leibowitz F L, et al. Imparting Biomimetic Ion-Gating Recognition Properties to Electrodes with a Hydrogen-Bonding Structured Core-shell Nanoparticle Network. Anal Chem, 2000, 72(10): 2190-2199
    [42] Maye M M, Chun S C, Zhong C J, et al. Novel Spherical Assembly of Gold Nanoparticles Mediated by a Tetradentate Thioether. J Am Chem Soc, 2002, 124(18): 4958-4959
    [43] Maye M M, Luo J, Zhong C J, et al. Size-Controlled Assembly of Gold Nanoparticles Induced by a Tridentate Thioether Ligand. J Am Chem Soc, 2003, 125(33): 9906 -9907
    [44] Lim I S, Zhong C J, An D L, et al. X-Shaped Rigid Arylethynes to Mediate the Assembly of Nanoparticles. J Am Chem Soc, 2007, 129(51): 5368-5369
    [45] Rodriquez J M, Duran R, Wegner G. A comparative study of mesophase formation in rigid-chain polyesters with flexible side chains. Macromolecules, 1989, 22(5), 2507-2516
    [46] An D L, Nakano T, Orita A, et al. Enantiopure double-helical alkynyl cyclophanes. Angew Chem Int Ed, 2002, 41(1): 171-173
    [47] Orita A, Nakano T, An D L, et al. Metal-assisted assembly of pyridine-containing arylene ethynylene strands to enantiopure double helicates. J Am Chem Soc, 2004, 126(33): 10389-10396
    [48]安德烈,张志扬,杨少辉等.以手征性联萘为模板合成一种新的螺旋环芳分子.化学学报,2005,63(9): 861-865
    [49] Wan W B, Haley M M. Carbon networks Based on Dehydro-benzoannulenes. J Org Chem, 2001, 66(11): 3893-3901
    [50] Jones L, Schumn J S. Derivation of Iterative Reaction Efficiencies on a Polymer Support. J Org Chem, 1997, 62(5): 1338-1410
    [51] Wang Y, Kempa K, Kimball B, et al. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Applied Physics Letters, 2004, 85(13): 2607-2609
    [52] Gonzalo J, Rodriguez, Antonio L, et al, Synthesis and optical properties of conjugated N, N-dimethyl and thienyl end-capped 2, 5-(arylethynyl)thiophene oligomer structures. Tetrahedron Letters, 2004, 45: 7062-7064
    [53] Rodriguez J G, Tejedor J L. Carbon Networks Based on 1,5-Naphthalne Units: Synthesis of phthalene Nanostructu 1,5-Nares with Extended-Conjugation. JOrg Chem, 2002, 67(22): 7632-7632
    [54] Mongin O, Papamicael C. Modular Synthesis of Benzene Centered Porphyrin Tri-mers and a Dendritic Porphyrin Hexamer. J Org Chem, 1998, 63(16): 5569-5569
    [55] Jian H, Tour J M. In Route to Surface-Bound Electric Field-Driven Molecular Motors. J Org Chem, 2003, 68(13): 5096-5096
    [56] Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters, 1975, 16(50): 4467-4470
    [57] H?ger S, Bonrad K, Mourran A, et al. Synthesis, aggregation, and adsorption phenomena of shape-persistent macrocycles with extraannular polyalkyl substituents. J Am Chem Soc, 2001, 123(24): 5651-5659
    [58] Oleg P, Jacek C, Robert J, et al. Coherent Effects in Energy Transport in Model Dendritic Structures Investigated by Ultrafast Fluorescence Anisotropy Spectroscopy. J Am Chem Soc, 2002, 124(8): 1736-1743
    [59] Sean P, Emiliano C, Peter K, et al. Two-Photon Photosensitized Production of Singlet Oxygen: Sensitizers with Phenylene-Ethynylene-Based Chromophores. J Org Chem, 2005, 70(4): 1134-1146
    [60] Zheng R H, Dong H C, Jacky W Y, et al. Synthesis, Structural Characterization, and Thermal and Optical Properties of Hyperbranched Poly(aminoarylene)s. Macromolecules, 2006, 39(23): 7973-7984
    [61] Li Z, Qin A J, Jacky W Y, et al. Facile Synthesis, Large Optical Nonlinearity, and Excellent Thermal Stability of Hyperbranched Poly(aryleneethynylene)s Containing Azobenzene Chromophores. Macromolecules, 2006, 39(4): 1436-1442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700