用户名: 密码: 验证码:
杯芳烃衍生物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杯芳烃是由苯酚单元与甲醛缩合而成的大环化合物,具有空腔可调节、构象可变化、结构易修饰和合成较方便等优点,被认为是继冠醚、环糊精之后的第三代主体化合物。
     杯芳烃与树枝状大分子是超分子化学中两类极为重要的主体分子,将这两种主体分子结合在一起所得到的含有杯芳烃的树枝状大分子,不仅能够将两者的优点集中到一个分子之中,同时还有可能产生一些新颖的性能,成为新型的智能材料、分子器件或是纳米材料。
     十年前,一种新型的由硫原子取代杯芳烃中桥联亚甲基的硫杂杯[4]芳烃作为新型杯芳烃主体分子,成为超分子化学研究新热点受到广泛关注,与传统杯芳烃相比,桥联硫原子的存在使硫杂杯芳烃具有一些优异的特征,例如更好的络合能力,易于化学修饰,不同的空腔结构和立体构型等。在近十年中硫杂杯芳烃的化学研究取得了非常丰富的研究成果。
     本论文开展了以亚甲基杯芳烃为重复单元合成树枝状分子和以硫杂杯芳烃的为主体进行化学结构修饰合成含有硫醚功能基的分子的研究。以期在分子识别、多重识别以及自组装方面有有特异的性质,本文主要成果如下:
     1.通过Williamson成醚反应对叔丁基亚甲基杯芳烃的下沿结构进行了修饰;通过Sonogashira偶联合成“Y”、“X”型芳炔内核,并通过Sonogashira偶联反应高产率的合成了“Y”、“X”型树枝状目标分子。并对合成过程的一些重要反应进行研究。
     2.通过一步法合成了对叔丁基硫杂杯芳烃,随后以硫杂杯芳烃母体进行结构修饰,先后通过Friedel-crafts的逆反应、NBS溴化、Williamson成醚反应以及Sonogashira偶联反应成功的合成出了具有硫醚功能基的硫杂杯芳烃衍生物。
     一些中间化合物和所有的目标分子的结构经过~1H NMR、~(13)C NMR、及MS表征得到了确认。
Calixarene is one kind of macrocyclic compounds derived from the condensation of phenol with aldehyde. With ease of sythesis, much more functionality, persistent shape and size as well as easily chemical modification calixarenes are named as the third generation superamolecular hosters and have been used as the platforms for so many types of chemical researches.
     Calixarenes and dendrimers are two types of the most important host molecules in supramolecular chemistry. The link between calixarene and dendrimer has long been regarded as one of the most ambitious targets in this field. Calixarene-based dendrimers have some promising advantages and novel properties due to their unique structures consisting of both calixarene and dendrimer. They can be potentially applied to many fascinating areas such as smart materials, molecular devices and nano materials.
     Form 1997 thiacalixarene in which methylene bridge replaced by sulfur bond has been recongnized and quickly become new important class of synthetic host molecules and have versatile applications in supramolecular chemistry such as complex extraction, molecular devices, molecular recongnition, self-assembly and nanomaterials. The presence of sulfur atoms in place of the usual CH2 bridges makes thiacalix[4]arenas very interesting molecules, with many features that are not present in the chemistry of classical calixarenes. It is now obvious that these compounds posses some very uncommon features, different conformational preferences, and special complexation properties, and thus have many potential applications.
     In this paper we studied the synthesis of calixarene-based dendrimers and used thiacalix[4]arene as the platform for the synthesis of arylthioether. We hoped it could have some novel properties in molecular recognition、multiple recognition and self-assembly. The synthesis result of this paper as follows:
     1.We used the Williamson reaction to change the lower rim of the calixarene, then used the Sonogashira reaction to synthesis the shape of“Y”、“X”arylacetylene core. At last we got the dendrimers molecular used sonogashira reaction in high yield. We had also studied the process of some important reactions in the synthesis.
     2. We used one step reaction to synthesis of thiacalixarene, then used it as the platform for the synthesis of arylthioether compound. For the synthesis of the title compound we had been used Friedel-crafts reaction、NBS bromide、Williamson and Sonogashira coupling reaction.
     The structure of some intermediates and all target compounds synthesized in this paper were characterized by ~1H NMR, ~(13)C NMR, and MS.
引文
[1] Comforth J W, Mogen. Preparation of antituberculous polyoxyethylene ethers of homogeneous structure,Tetrahedron., 1973, 29(11):1659-1667
    [2] Gutsehe C D, Ramurthi M. Calixarene analysis of the product mixtures produced by the based-catalyzed condensation of formaldehyde with para-substituted phenols. J. Org. Chem., 1978, 43(25): 4905-4906
    [3] Tabakci M, Memon S, Yilmaz M, et al. Synthesis and evaluation of extraction ability of calix[4]-cown-6 cone conformer and its oligomeric analogue. Reactive and Functional Polymers., 2004, 58(l): 27-34
    [4] Narumi F, Hattori T, Matsumura N, et al. Synthesis of an inherently chiral O,Oˊ-bridged thiacalix[4]crowncarboxylic acid and its application to a chiral solvating agent. Tetrahedron., 2004, 60(36): 7827-7833
    [5] Bohmer V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem., Ed. Engl.,1995,34(7): 713-745
    [6] Casnati A,Sansone F,Ungaro R. Peptido-and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavity. Acc. Chem. Res., 2003,36(4): 246-254
    [7]吴萍,韩军,戈云.超分子砌块间苯二酚杯芳烃的研究进展.有机化学.,2006, 26(4): 431-441
    [8]王腾凤,杨石柱.杯芳烃催化剂在有机反应中的应用.化学试剂.,2000,22(5): 274-278
    [9] Gutsche C D, Nam K C. Synthesis Properties and metal complexation of aminocalixarenes. J. Am. Chem. Soc., 1988, 110(18): 6153-6162
    [10] Shinkai S, Mori S, Tsubrki T, et al. New water-soluble host molecules derived from calix[6]arene. Tetrahedron Lett., 1984, 25(46): 5315-5318
    [11] See K A, Fronczek F R, Gutsche C D, et al. Selective esterification and selective ester cleavage of calix[4]arenes. J. Org. Chem., 1991, 56(26): 7256-7268
    [12] Sharma S K, Gutsehe C D. Synthesis and Reactions of Calix[4]arene Bisanhydrides. J. Org. Chem., 1999, 64(10): 3507-3512.
    [13]褚惠虹,王谨,潘志刚,等.硫杂杯芳烃及其衍生物的合成与表征.有机化学2003, 23(l1): 1255-1259
    [14] Grootenhuis P D, Kollman P A, Groenen L C, et al. Computational study of thestructural, energetic, and acid-base properties of calix[4]arenas. J. Am. Chem. Soc., 1990, 112(11): 4165-4169
    [15] Stewart D R, Krawiec M, Gutsehe C D, et al. Conformational Characteristics of Ethers and Esters of p-tert-Butylcalix[5]arene. J. Am. Chem. Soc., 1995, 117(2): 586-591
    [16] Hoom W P, Frank C M, Reinhoudt D N. Conformation of Hexahydroxycalyx[6] arene. J. Org. Chem., 1996, 61(20): 7180-7186
    [17] Gutsehe C D, Levine J A. Synthesis of a functionalizable calix[4]arene in a conformationally rigid cone conformation. J. Am. Chem. Soc., 1982, 104(9): 2652-2656
    [18] Gutsche C D, Dhawan B, Muthukrishnan R. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc., 1981, 103(13): 3782-3785
    [19] Knop A, B?hmer V, Pilato L A. Phenol-Formaldehyde polymers, in Comprehensive Polymer Science, Pergamon Press plc. 1989 5: 611-647
    [20] Nakamoto Y, Ishida S I. Calix[7]arene from 4-tert-butylphenol and formaldehyde. Makromol. Chem. Rapid Commum.,1982, 3: 705-710
    [21] Dumazet I, Regnouf J B, Lamartine R. Synthesis and characterization of p-tert-butyl-calix[9, 10, 11 and 12]arenas. Synth. Commun., 1997, 27(15): 2547-2551.
    [22] Hayes B T, Hunter R F. Phenol-formaldehyde and alliedresins VI: Rational synthesis of a cyclic tetranuclear p-cresol novolak. J. Appl. Chem., 1958, 8: 743-748
    [23] Boehmer V, Marschollek F, Zetta L. Calix[4]arenes with four differently substituted phenolic units. J. Org. Chem., 1987, 52(15): 3200-3205
    [24] Boehmer V, Merkel L, Kunz U. Calix[4]arenas with four differently substituted phenolic units. J. Org. Chem., 1987, 50(6): 896-899
    [25] Boehmer V,Jung K, Schoen M, et al. Direct synthesis of calix[4]arenas with two different phenolic units in alternating order. J. Org. Chem., 1992, 57(2): 790-794
    [26] Prados P, Nieto P M, Mendoza J D, et al. A stepwise synthesis of functionalized calix [4]arenes and a calix[6]arene with alternate electron-withdrawing substituents. Tetrahedron., 1990, 46(2): 671-682
    [27] Boehmer V,Jung K, Schoen M, et al. Direct synthesis of calix[4]arenas with two different phenolic units in alternating order. J. Org. Chem., 1992, 57(2): 790-794
    [28] No K, Hwang K L. Calix[4]arenes with Two Differently Substituted PhenolicUnits. Bull. Korean. Chem. Soc., 1993, 14(6): 753-755
    [29] Buhleier E W, Wehner W, V?gtle F. "Cascade" and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies. Synthesis., 1978, 1978(2): 155-158
    [30] Tomalia D A, Baker H, Dewaid J R, et al. A New Class of Polymers: Starburst-Dendritic. Macromolecules. Polym. J. (Tokyo)., 1985, 17(1): l17-132
    [31] Lhotak P, Shinkai S. Synthesis and metal-binding properties of oligo-calixarenes. an approach towards the calix[4]arene-based dendrimers. Tetrahedron.,1995,5l(28): 7681-7696
    [32] B?hmer G, Parzuchowski P, Nissinen M. Covalently linked multi-calixarenes. Tetrahedron., 1998, 54(34): 10053-10058
    [33] Budka J, Dudi M, Lhothk P. Simple preparation of 5-hydroxy-25,26,27,28-tetra alkyloxycalix[4]arenes: Synthesis of multiple calixarenes. Tetrahedron., 1999, 55(43): 12647-12654
    [34] Wang J S, Gutsche C D. Tricalixarenes and Pentacalixarenes: Synthesis and Complexation Studies. J. Org. Chem., 2002, 67(13): 4423-4429
    [35] Liu J M, Zheng Y S, Zheng Q Y, et al. Macrocyclic, linear and starlike assemblies of calix[4]arenes covalently bridged by methylenes at the upper rims: simple route to novel receptors with defined polycavities. Tetrahedron., 2002, 58(19): 3729-3736
    [36]胡晓钧,王丽,任杰.硫杂杯芳烃一类新型的分子受体化合物.化学通报., 2004, (67)2: 90-95
    [37] Kon N, Iki N. Tuning of the cavity of water-soluble thiacalix[4]arene for the control of inclusion ability toward water-miscible organic molecules. Collection of Czeehoslovak Chemical Communications., 2004, 69(5): 1080-1096
    [38] Sone T, Ohba Y, Kumada H, et al. Synthesis and properties of sulfur-bridged analogs of p-tert-butylcalix[4]arene. Tetrahedron., 1997, 53(31): 10689-10698
    [39] Iki N, Kumagai H, Sone T, et al. Fluorescent chemo-sensor for metal cations based on thiacalix[4]arenas modified with dansyl moieties at the lower rim. Tetrahedron., 2000, 56(27): 4659-4666
    [40] Morohashi N, Iki N, Sugawara A, et al. Selective oxidation of thiacalix[4]arenas to the sulfinyl and sulfonyl counterparts and their complexation abilities toward metal ions as studied by solvent extraction. Tetrahedron., 2001, 57(26): 5557-5563
    [41] Lu Y F, Fallis A G. An intramolecular diels-alder approach to tricyclic taxoid skeletons. Tetrahedron Lett., 1993, 34(21): 3367-3370
    [42] Iwamoto K, Shinkai S. Synthesis and ion selectivity of all conformation isomers of tetrakis[(ethoxyearbonyl)methoxy]calyx[4]arene. J. Org. Chem., 1992, 57(26), 7066-7073
    [43] Gutsehe C D, Dhawan B, Muthukrishnan R, et al. The synthesis characterization and properties of the calixarenes From p-tert-butylphenol. J. Am. Chem. Soc., 1981, 103(13): 3782-3792
    [44] Loeber C, Fischer J, Matt D, et al. Multifunctional phosphane and phosphane oxide ligands derived from p-tert-butylcalix[4]arene. Synthesis of a large diphosphane with C2 Symmetry and behaving as a cis or trans binding ligand. J. Org. metal. Chem., 1994, 475(l-2): 297-305
    [45] Rudkuch D M, Verboom W, Reinhoudt D N. Calix[4]arene Salenes: A Bifunetional Recepter for NaH2PO4. J. Org. Chem., 1994, 59(13): 3683-3686
    [46] Beer P D, Szemes F, Shade M, et al. Anion recognition properties of new-rim bis[rhenium(I)bipyridyl, ruthenium(Π)bis(bipyri), cobaltocenium]calyx[4]arene receptors dictated by lower-rim substituents. J. Chem. Soc. Chem.Commun., 1996, 18: 2161-2162
    [47] Deligue X, Kieffer S, Dorsselaer A V, et al. MulticavitandsⅡ: Synthesis of a non centrosymmetric hollow molecular unit (koiland) based on fusion of two p-tert-butylcalix[4]arenas by both silicon and titanium atoms. Tetrahedron Lett., 1993, 34(47): 7561-7564
    [48] Dienst E V, Reinhoudt D N, Piekartz I V, et al. Novel water-soluble cyclodextrin-calix[4]arene host molecules with strongly enhanced binding properties. J. Chem.Soc. Chem.Commun., 1995, 11: 1151-1152
    [49]杨发福,陈远荫.大环杯芳烃冠醚的研究现状与展望.合成化学., 2003, 11(3): 203-208
    [50] Dmtry M, Verboom W, Reinhoudt D N. Capped Biscalix[4]arene-Zn-Porphyrin: Metal loreceptor with a Rgid Cavity. J. Org. Chem., 1995, 60(20): 6585-6587
    [51] Maye M M, Chun S C, Zhong C J, et al. Novel Spherical Assembly of Gold Nanoparticles Mediated by a Tetradentate Thioether. J Am Chem Soc, 2002, 124(18): 4958-4959
    [52] Maye M M, Luo J, Zhong C J, et al. Size-Controlled Assembly of Gold Nanoparticles Induced by a Tridentate Thioether Ligand. J. Am. Chem. Soc., 2003, 125(33): 9906 -9907
    [53] Lim I S, Zhong C J, An D L, et al. X-Shaped Rigid Arylethynes to Mediate the Assembly of Nanoparticles. J. Am. Chem. Soc., 2007, 129(51): 5368-5369
    [54] Iwamoto K, Araki K, Shinkai K. Conformations and structures of tetra-O-alkyl-p-tert-butylcalix[4]arenes. How is the conformation of calix[4] arenes immobilized?. J. Org. Chem., 1991, 56(16): 4955-4962
    [55] Willem V, Sumana D, Zouhair A, et al. Tetra-O-alkylated calix[4]arenes in the 1,3-alternate conformation. J. Org. Chem., 1992, 57(20): 5394-5398
    [56] Iwamoto K, Shiraiwa Y. Technical improvement in the purification of enzymes from red algae using an aqueous two-phase partitioning system. Phycological Research., 2005, 53 (2): 164-168
    [57] Gonzalo J, Rodriguez, Antonio L, et al. Synthesis and optical properties of conjugated N, N-dimethyl and thienyl end-capped 2, 5-(arylethynyl)thiophene oligomer structures. Tetrahedron Letters., 2004, 45(38): 7061-7064
    [58] Rodriguez J G, Tejedor J L. Carbon Networks Based on 1,5-Naphthalne Units: Synthesis of phthalene Nanostructu 1,5-Nares with Extended-Conjugation. J. Org. Chem., 2002, 67(22): 7632-7632
    [59] Mongin O, Papamicael C. Modular Synthesis of Benzene Centered Porphyrin Tri-mers and a Dendritic Porphyrin Hexamer. J. Org. Chem., 1998, 63(16): 5569-5569
    [60] Jian H, Tour J M. In Route to Surface-Bound Electric Field-Driven Molecular Motors. J. Org. Chem., 2003, 68(13): 5096-5096
    [61] Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters., 1975, 16(50): 4467-4470
    [62] Ohba Y, Moriya K, Sone T. Synthesis and Inclusion Properties of Sulfur-Bridged Analogs of Acyclic Phenol-Formaldehyde Oligomers. Bul1. Chem. Soc. Jpn., 1991, 64(2): 576-582
    [63] Miyano S, Hasegawa M, Miyanari S, et al. Facile synthesis of p-tert-butyl thiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett., 1997, 38(22): 3971-3972
    [64] Akdas H, Bringel L, Graf E, et al. Thiacalixarenes: Synthesis and structural analysis of thiacalix[4]arene and of p-tert-butylthiacalix[4]arene. Tetrahedron Lett., 1998, 39(16): 2311-2314
    [65] Wong M S, Li Z H, Kwok C C. Highly extended styrylstyrylcalix[4]arene assemblies: synthesis and optical properties. Tetrahedron Lett., 2000, 41(30): 5719-5723
    [66] Larsen M S, Jorgensen M. Selective Halogen?Lithium Exchange Reaction ofBromine-Substituted 25,26,27,28-Tetrapropoxycalix[4]arene. J. Org. Chem., 1996, 61(19): 6651-6655
    [67] Oleg K, Dariusz S, Andrew D, et al. Upper rim substituted thiacalix[4]arenas. Tetrahedron Lett. 2003, 44(38): 7167-7170.
    [68] Lhoták P, Himl M, Stibor I, et al. Upper rim substitution of thiacalix[4]arene. Tetrahedron Lett., 2001, 42(40): 7107-7110
    [69] Lhoták P, Himl M, Pakhomova S, et al. Tetraalkylated 2,8,14,20-tetra thiacalix[4]arenes: Novel infinite channels in the solid state. Tetrahedron Lett., 1998, 39(48): 8915-8918
    [70] Lhoták P, Himl M, Stibor I, et al. Alkylation of thiacalix[4]arenas. Tetrahedron Lett., 2002, 43(52): 9621-9624
    [71] Himl M, PojarováM, Stibor I, et al. Stereoselective alkylation of thiacalix[4]arenas. Tetrahedron Lett., 2005, 46(3): 461-464
    [72] Lhoták P, Kaplánek L, Stibor I, et al. NMR and X-ray analysis of 25,27-dimethoxythiacalix[4]arene: unique infinite channels in the solid state. Tetrahedron Lett., 2000, 41(48): 9339-9344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700