用户名: 密码: 验证码:
新型转移氢化反应及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转移氢化是指不使用氢气,而使用甲酸、异丙醇等有机物小分子作为氢源的还原反应。转移氢化具有操作简便的特点,同时能避免氢化反应中因使用H2而带来的一些危险操作。但是就目前文献报道而言,转移氢化反应的效率低于氢化反应,因此如何提高转移氢化反应的活性是化学工作者们面临的重大挑战。本文第一部分综述了转移氢化反应的进展及应用。从上个世纪50年代以来,大量的关于转移氢化反应的研究工作被发表,其中Noyori课题组发展的具有金属-配体双功能作用的钌催化体系是比较突出的代表。该类催化体系可以高效、高立体选择性的完成转移氢化反应。许多化学工作者对该类型的催化剂进行了改造、修饰,取得了不错的催化效果。不同于Noyori催化剂的其它类型催化剂也有所发展。同时发展更加绿色的转移氢化反应也获得了关注,如使用大量存在,便宜绿色的水作为反应的溶剂。
     本文第二部分研究了水相中环金属化Ir催化剂通过转移氢化还原羰基化合物的反应。通过控制HCOOH/HCOONa水溶液的pH值,可实现将不同电子性能的催化剂用于反应,并取得较好的转化率。通过对实验条件的进一步优化,发现该体系可高效的还原各种酮类化合物和醛类化合物。该反应可以放大到克级进行,展示了该催化体系的实用性。该催化体系可能具有不同于传统金属配体双官能的机理。该反应使用绿色、廉价的水做溶剂,避免了使用有机溶剂而带来的一些缺点,是一种环境友好的羰基还原方法。反应中使用的催化剂结构简单,性能稳定,不仅可以高效催化还原胺化反应,通过改变反应条件同样可以高效用于羰基的还原。
     乙酰丙酸是一种生物质平台分子,从其出发制备高附加值的化学品具有重要意义。例如,从乙酰丙酸出发制备的5-甲基-2-吡咯烷酮是一类重要的化学中间体,广泛应用于材料、化工、制药等领域。本文第三部分报道了在环金属化Ir作为催化剂的条件下,通过转移氢化的方法将乙酰丙酸还原胺化生成具有高附加值的吡咯烷酮的方法。该反应以水为溶剂,HCOOH为氢源,通过加入HCOONa对反应体系pH进行调控,可以在S/C=3000条件下实现乙酰丙酸的高效转化。在该反应体系中,乙酰丙酸可以与芳香胺、脂肪胺进行高效的反应。在该反应体系下,乙酰丁酸同样可以与芳香胺、脂肪胺进行反应生成具有六元环的内酰胺类化合物。对反应的机理进行了初步研究。反应中合成的中间体88可在无催化剂、室温条件下进行自发的关环反应,证明了该反应速控步骤为催化剂参与的还原胺化反应,而不是关环反应。该反应体系以水为溶剂,反应条件温和,催化剂用量少,是较理想的乙酰丙酸转化体系。
     在以往乙酰丙酸合成吡咯烷酮的文献中,金属催化剂是反应进行的必要条件之一。本文第四部分研究了在没有金属催化剂参与的情况下通过转移氢化方法将乙酰丙酸还原胺化生成具有高附加值的吡咯烷酮的方法。该体系对反应溶剂要求高,仅在二甲亚砜中可取得高效的转化率。反应以HCOOH为氢源,通过加入Et抖调控反应的酸碱性,可以提高反应活性。该体系对脂肪胺具有很好的活性,但对芳香胺活性稍差。通过氘代实验,确定了该反应经历的是亚胺还原过程,而非烯胺还原。动力学同位素效应表明反应的速控步骤是HCOOH负氢转移至亚胺正离子的过程。该体系是对经典Leuckart-Wallach反应的一个补充,并且提供了一个有效而经济的方式将LA进行高价值转化。
     在众多合成胺的方法中,通过硝基还原获得胺是应用最广泛的方法之一。传统的Bechamp还原法,操作简便,但是反应产生的废弃物多,污染大,已逐步被催化氢化法取代。以廉价、易操作的HCOOH、IPA等为还原剂的转移氢化方法在硝基的还原中应用不多,本文第五部分研究了通过转移氢化方法进行硝基还原的反应。该反应以简单二聚体[Cp*RhCl2]2为催化剂,KI作为添加剂,以HCOOH为氢源,在DMSO中加入Et3N进行反应体系酸碱性的调节,可实现硝基的还原。研究发现,添加剂KI是实现该反应的关键之一。通过控制反应条件,可选择性的分别得到相应的胺和甲酰胺。该反应体系对底物所带的卤素、羰基等有较好选择性。
Transfer hydrogenation, which uses small molecules other than H2as hydrogen source for catalytic reduction, has the merit of operational simplicity and avoiding the use of hazardous hydrogen gas. However, the activities and selectivities of transfer hydrogenation systems are generally lower than hydrogenation. Since the1950s, great effort has been devoted to developing various transfer hydrogenation systems. Among the catalytic systems discovered, the Noyori metal-ligand bifunctional ruthenium catalysts have attracted the most attention. Many new transfer hydrogenation systems have been developed based on these catalysts or the metal-ligand bifuntion concept. Transfer hydrogenation catalysts without metal-ligand bifunction are also emerging, but fewer. Effects have also been made to develop aqueous transfer hydrogenation systems, which use the abundant, cheap and green water as solvent.
     Charpter II describes the use of cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water. By controlling the solution pH, cyclometalated iridium complexes can be "switched on" to function as excellent catalysts for transfer hydrogenation of carbonyl compounds in water, with no need for organic solvents. This catalyst system is not only capable of the reduction of different ketones, but also aldehydes. These catalysts have simple and modular ligands, operate in a mechanism different from most of the current transfer hydrogenation catalysts, and offer new opportunities for developing more enabling and versatile catalysts for hydrogenation and other reactions in water or conventional solvents.
     Levulinic acid has been identified as a platform chemical from biomass-derived products, and can be transformed into pyrrolidinones via reductive amination. Charpter III reports a highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. By controlling the pH of the HCOOH/HCOONa solution, a high conversion of reductive amination can be achieved in water. The system works for both aromatic and aliphatic amine, affording pyrrolidinones from levulinic acid.5-Oxohexanoic acid reacts with different amines to produce six membered heterocycles with this system. Mechanistic study was carried out to determine the rate-limiting step of the reductive amination reaction. This mild and green system provides a practical means for converting biomass derived chemicals into value added products.
     All the literature-reported examples of transformation of levulinic acid to pyrrolidinone, including the work described in Chapter III, use precious metals-based catalyst. Chapter IV showcases a catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. The solvent DMSO is critical for the reaction to proceed. Addition of Et3N can help to adjust the solution acidity, and improve the conversion. In this system, aromatic amines are less active than aliphatic ones. Mechanistic studies suggest that the rate-limiting step for the reaction is hydride transfer from formic acid to the iminium intermediate. The method described here is an extension to the classic Leuckart-Wallach reaction and provides a practical and economic way to convert LA to value-added chemicals.
     Among various methods for the preparation of aromatic amines, the reduction of nitroarenes is the mostly adopted method. Despite its development, homogeneous transfer hydrogenation of nitroarenes is still a challenge and successful examples are few. Chapter V develops a system for transfer hydrogenation of nitroarenes to corresponding amines or formanilides. Combining [Cp*RhCl2]2and KI and, using formic acid as hydrogen donor, nitro compounds can be reduced efficiently. By controlling the reaction conditions, amines and formanilides can been obtained separately in good yields. The protocol has a good tolerance and selectivity for the carbonyl and halogen groups. The iodide anion, I-helps to accelerate the reaction.
引文
[1]E. Knoevenagei, B. Bergdolt. Behaviour of methyl 2.5-dihydroterephthalate at high temperatures and in presence of spongy platinum. Chem. Ber.1903,36: 2857-2860.
    [2]R. P. L. E. A. Braude, L. M. Jackman, P. W. D. Mitchell, K. R. H. Wooldridge. Transfer Hydrogen in Organic System. Nature.1952,169:100-103.
    [3]M. Vol'pin, V. Kukolev, V. Chernyshev, I. Kolomnikov. Reduction of olefins and acetylenes by means of formic acid and formates in presence of transition metals complexes. Tetrahedron Lett.1971,12(46):4435-4438.
    [4]J. T. Grimshaw, H. B. Henbest. Catalysis of the transfer of hydrogen from 2-propanol to α,β-unsaturated ketones by organoiridium compounds. A carbon-iridium compound containing a chelate keto-group. Chem. Commun.1967, 11:544.544.
    [5]Y. Sasson, G. L. Rempel. Homogeneous rearrangement of unsaturated carbinols to saturated ketones catalyzed by ruthenium complexes. Tetrahedron Lett.1974, 15(47):4133-4136.
    [6]Y. Sasson, J. Blum. Homogeneous catalytic transfer-hydrogenation of α,β-unsaturated carbonyl compounds by dichlorotris (triphenylphosphine) ruthenium(II). Tetrahedron Lett.1971,12(24):2167-2170.
    [7]D. E. W. R. Mozingo, S. A. Harris, K. Folkers. Hydrogenolysis of Sulfur Compounds by Raney Nickel Catalyst. J. Am. Chem. Soc.1954,65(6):1013-1016.
    [8]M. Gullotti, R. Ugo, S. Colonna. Homogeneous catalysis by transition-metal complexes. Part II. An investigation of the hydrogen-transfer reaction catalysed by the henbest system. J. Chem. Soc. C.1971,2652-2656.
    [9]J. Blum, Y. Sasson, S. Iflah. Hydrogen transfer from formyl compounds to α,β-unsaturated ketones catalyzed by Ru, Rh and Ir complexes. Tetrahedron Lett. 1972,13(11):1015-1018.
    [10]K. Ohkubo, K.Hirata, K. Yoshinaga, M. Okada. Catalytic enantioselection by chiral transition-metal complexes. I. dehydrogenation of racemic a-phenylethanol by RuCl2(PPh3)3 and (+)-neomenthyldiphenylphosphine. Chem Lett.1976,5(3): 183-184.
    [11]G. Descotes, D. Sinou. Hydrogenation par transfert d'hydrogene a partir des glucides reduction asymetrique de cetones insaturees prochirales. Tetrahedron Lett.1976,17(45):4083-4086.
    [12]S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium (Ⅱ) complexes. J. Am. Chem. Soc.1995,117(28):7562-7563.
    [13]K. Matsumura, S. Hashiguchi, T. Ikariya, R. Noyori. Asymmetric Transfer Hydrogenation of α,β-Acetylenic Ketones. J. Am. Chem. Soc.1997,119(37): 8738-8739.
    [14]A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori. Ruthenium (Ⅱ)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture. J. Am. Chem. Soc.1996,118(10):2521-2522.
    [15]K. Wagner. Reactions with addition compounds containing activated formic acid. Angew. Chem. Int. Ed.1970,9(1):50-54.
    [16]N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya, R. Noyori. Asymmetric transfer hydrogenation of imines. J. Am. Chem. Soc.1996,118(20):4916-4917.
    [17]J. Takehara, S. Hashiguchi, A. Fujii, S. Inoue, T. Ikariya, R. Noyori. Amino alcohol effects on the ruthenium(Ⅱ)-catalysed asymmetric transfer hydrogenation of ketones in 2-propanol. Chem. Commun.1996,2):233-234.
    [18]K. Puntener, L. Schwink, P. Knochel. New efficient catalysts for enantioselective transfer hydrogenations. Tetrahedron Lett.1996,37(45):8165-8168.
    [19]Y. Jiang, Q. Jiang, X. Zhang. A New Chiral Bis(oxazolinylmethyl)amine Ligand for Ru-Catalyzed Asymmetric Transfer Hydrogenation of Ketones. J. Am. Chem. Soc.1998,120(15):3817-3818.
    [20]J. Gao, T. Ikariya, R. Noyori. A Ruthenium(Ⅱ) Complex with a C2-Symmetric Diphosphine/Diamine Tetradentate Ligand for Asymmetric Transfer Hydrogenation of Aromatic Ketones. Organometallics.1996,15(4):1087-1089.
    [21]T. Ohkuma, N. Utsumi, K. Tsutsumi, K. Murata, C. Sandoval, R. Noyori. The Hydrogenation/Transfer Hydrogenation Network:Asymmetric Hydrogenation of Ketones with Chiral η6-Arene/N-Tosylethylenediamine-Ruthenium(Ⅱ) Catalysts. J. Am. Chem. Soc.2006,128(27):8724-8725.
    [22]T. Ikariya, K. Murata, R. Noyori. Bifunctional transition metal-based molecular catalysts for asymmetric syntheses. Org Biomol Chem.2006,4(3):393-406.
    [23]J. Hannedouche, G. J. Clarkson, M. Wills. A New Class of "Tethered" Ruthenium(II) Catalyst for Asymmetric Transfer Hydrogenation Reactions. J. Am. Chem. Soc.2004,126(4):986-987.
    [24]A. M. Hayes, D. J. Morris, G. J. Clarkson, M. Wills. A Class of Ruthenium(II) Catalyst for Asymmetric Transfer Hydrogenations of Ketones. J. Am. Chem. Soc. 2005,127(20):7318-7319.
    [25]F. K. Cheung, A. M. Hayes, J. Hannedouche, A. S. Y. Yim, M. Wills. "Tethered" Ru(II) Catalysts for Asymmetric Transfer Hydrogenation of Ketones. J. Org. Chem.2005,70(8):3188-3197.
    [26]D. S. Matharu, D. J. Morris, A. M. Kawamoto, G. J. Clarkson, M. Wills. A Stereochemically Weil-Defined Rhodium(Ⅲ) Catalyst for Asymmetric Transfer Hydrogenation of Ketones. Org. Lett.2005,7(24):5489-5491.
    [27]J. B. Sortais, V. Ritleng, A. Voelklin, A. Holuigue, H. Smail, L. Barloy, C. Sirlin, G. K. M. Verzijl, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, M. Pfeffer. Cycloruthenated Primary and Secondary Amines as Efficient Catalyst Precursors for Asymmetric Transfer Hydrogenation. Org. Lett.2005,7(7):1247-1250.
    [28]M. T. Reetz, X. Li. An Efficient Catalyst System for the Asymmetric Transfer Hydrogenation of Ketones:Remarkably Broad Substrate Scope. J. Am. Chem. Soc.2006,128(4):1044-1045.
    [29]C. Thoumazet, M. Melaimi, L. Ricard, F. Mathey, P. Le Floch. A cationic l-(2-methylpyridine) phosphole cymene ruthenium chloride complex as an efficient catalyst in the transfer hydrogenation of ketones. Organometallics.2003, 22(8):1580-1581.
    [30]R. J. Lundgren, M. A. Rankin, R. McDonald, G. Schatte, M. Stradiotto. A Formally Zwitterionic Ruthenium Catalyst Precursor for the Transfer Hydrogenation of Ketones that Does Not Feature an Ancillary Ligand NH Functionality. Angew. Chem. Int. Ed.2007,46(25):4732-4735.
    [31]W. Baratta, P. Da Ros, A. Del Zotto, A. Sechi, E. Zangrando, P. Rigo. Cyclometalated ruthenium(II) complexes as highly active transfer hydrogenation catalysts. Angew. Chem.2004,116(27):3668-3672.
    [32]W. Baratta, E. Herdtweck, K. Siega, M. Toniutti, P. Rigo. 2-(Aminomethyl)pyridine-Phosphine Ruthenium(II) Complexes:Novel Highly Active Transfer Hydrogenation Catalysts. Organometallics.2005,24(7): 1660-1669.
    [33]W. Baratta, M. Bosco, G. Chelucci, A. Del Zotto, K. Siega, M. Toniutti, E. Zangrando, P. Rigo. Terdentate RuX(CNN)(PP) (X=Cl, H, OR) Complexes: Synthesis, Properties, and Catalytic Activity in Fast Transfer Hydrogenation. Organometallics.2006,25(19):4611-4620.
    [34]W. Baratta, G. Chelucci, E. Herdtweck, S. Magnolia, K. Siega, P. Rigo. Highly diastereoselective formation of ruthenium complexes for efficient catalytic asymmetric transfer hydrogenation. Angew. Chem. Int. Ed.2007,46(40): 7651-7654.
    [35]K. Jothimony, S. Vancheesan, J. Kuriacose. Phase transfer-catalysed transfer hydrogenation of ketones using iron carbonyls as catalysts. J. Mol. Catal.1985, 32(1):11-16.
    [36]K. Jothimony, S. Vancheesan. Mechanism for transfer hydrogenation of ketones to alcohols catalysed by hydridotri-ironundecacarbonylate anion under phase transfer conditions. J. Mol. Catal.1989,52(2):301-304.
    [37]C. Bianchini, E. Farnetti, M. Graziani, M. Peruzzini, A. Polo. Chemoselective hydrogen-transfer reduction of α,β-unsaturated ketones catalyzed by isostructural iron(Ⅱ), ruthenium(Ⅱ), and osmium(Ⅱ) c/s-hydride (η2-dihydrogen) complexes. Organometallics.1993,12(9):3753-3761.
    [38]S. Enthaler, G. Erre, M. K. Tse, K. Junge, M. Beller. Biomimetic transfer hydrogenation of ketones with iron porphyrin catalysts. Tetrahedron Lett.2006, 47(46):8095-8099.
    [39]A. Mikhailine, A. J. Lough, R. H. Morris. Efficient Asymmetric Transfer Hydrogenation of Ketones Catalyzed by an Iron Complex Containing a P-N-N-P Tetradentate Ligand Formed by Template Synthesis. J. Am. Chem. Soc.2009, 131(4):1394-1395.
    [40]F. N. Suisque, A. Hadzovic, A. Putz, V. Reuss, N. Meyer, A. J. Lough, M. Zimmer De Iuliis, R. H. Morris. Synthesis and Characterization of Iron(Ⅱ) Complexes with Tetradentate Diiminodiphosphine or Diaminodiphosphine Ligands as Precatalysts for the Hydrogenation of Acetophenone. Inorg Chem. 2008,48(2):735-743.
    [41]C. Suiseng, F. Freutel, A. J. Lough, R. H. Morris. Highly efficient catalyst systems using iron complexes with a tetradentate PNNP ligand for the asymmetric hydrogenation of polar bonds. Angew. Chem.2008,120(5):954-957.
    [42]W. Zuo, A. J. Lough, Y. F. Li, R. H. Morris. Amine (imine) diphosphine Iron Catalysts for Asymmetric Transfer Hydrogenation of Ketones and Imines. Science,2013,342(6162):1080-1083.
    [43]S. Zhou, S. Fleischer, K. Junge, S. Das, D. Addis, M. Beller. Enantioselective Synthesis of Amines:General, Efficient Iron-catalyzed Asymmetric Transfer Hydrogenation of Imines. Angew. Chem. Int. Ed.2010,49(44):8121-8125.
    [44]M. Poliakoff, J. M. Fitzpatrick, T. R. Farren, P. T. Anastas. Green chemistry: science and politics of change. Science.2002,297(5582):807-810.
    [45]I. T. Horvath, P. T. Anastas. Innovations and green chemistry. Chem. Rev.2007, 107(6):2169-2173.
    [46]F. Joo, A. Katho. Recent developments in aqueous organometallic chemistry and catalysis. J. Mol. Catal. A:Chem.1997,116(1):3-26.
    [47]S. Ogo, N. Makihara, Y. Watanabe. pH-Dependent Transfer Hydrogenation of Water-Soluble Carbonyl Compounds with [Cp*IrⅢ(H2O)3]2+(Cp*=η5-C5Me5) as a Catalyst Precursor and HCOONa as a Hydrogen Donor in Water. Organometallics.1999,18(26):5470-5474.
    [48]S. Ogo, N. Makihara, Y. Kaneko, Y. Watanabe. pH-Dependent Transfer Hydrogenation, Reductive Amination, and Dehalogenation of Water-Soluble Carbonyl Compounds and Alkyl Halides Promoted by Cp*Ir Complexes. Organometallics.2001,20(23):4903-4910.
    [49]C. Bubert, J. Blacker, S. M. Brown, J. Crosby, S. Fitzjohn, J. P. Muxworthy, T. Thorpe, J. M. J. Williams. Synthesis of water-soluble aminosulfonamide ligands and their application in enantioselective transfer hydrogenation. Tetrahedron Lett. 2001,42(24):4037-4039.
    [50]X. Wu, X. Li, W. Hems, F. King, J. Xiao. Accelerated asymmetric transfer hydrogenation of aromatic ketones in water. Org Biomol Chem.2004,2(13): 1818-1821.
    [51]X. Wu, D. Vinci, T. Ikcariya, J. Xiao. A remarkably effective catalyst for the asymmetric transfer hydrogenation of aromatic ketones in water and air. Chem. Commun.2005,35:4447-4449.
    [52]X. Wu, J. Liu, D. Di Tommaso, J. A. Iggo, C. R. A. Catlow, J. Bacsa, J. Xiao. A multilateral mechanistic study into asymmetric transfer hydrogenation in water. Chem. Eur. J.2008,14(25):7699-7715.
    [53]M. Kitamura, D. Lee, S. Hayashi, S. Tanaka, M. Yoshimura. Catalytic Leuckart-Wallach-Type Reductive Amination of Ketones. The Journal of Organic Chemistry.2002,67(24):8685-8687.
    [54]G. D. Williams, R. A. Pike, C. E. Wade, M. Wills. A One-Pot Process for the Enantioselective Synthesis of Amines via Reductive Amination under Transfer Hydrogenation Conditions. Org. Lett.2003,5(22):4227-4230.
    [55]R. Kadyrov, T. H. Riermeier. Highly Enantioselective Hydrogen-Transfer Reductive Amination:Catalytic Asymmetric Synthesis of Primary Amines. Angew. Chem. Int. Ed.2003,42(44):5472-5474.
    [56]D. Gnanamgari, A. Moores, E. Rajaseelan, R. H. Crabtree. Transfer Hydrogenation of Imines and Alkenes and Direct Reductive Amination of Aldehydes Catalyzed by Triazole-Derived Iridium(I) Carbene Complexes. Organometallics.2007,26(5):1226-1230.
    [57]C. Wang, A. Pettman, J. Bacsa, J. Xiao. A versatile catalyst for reductive amination by transfer hydrogenation. Angew. Chem.2010,122(41):7710-7714.
    [58]G. Wienhofer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar, M. Beller. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc.2011,133(32):12875-12879.
    [59]S. Werkmeister, C. Bornschein, K. Junge, M. Beller. Selective Ruthenium-Catalyzed Transfer Hydrogenations of Nitriles to Amines with 2-Butanol. Chem. Eur. J.2013,19(14):4437-4440.
    [60]U. Eder, G. Sauer, R. Wiechert. New type of asymmetric cyclization to optically active steroid CD partial structures. Angew. Chem. Int. Ed.1971,10(7):496-497.
    [61]Z. G. Hajos, D. R. Parrish. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. The Journal of Organic Chemistry.1974,39(12): 1615-1621.
    [62]B. List, R. A. Lerner, C. F. Barbas. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc.2000,122(10):2395-2396.
    [63]K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan. New Strategies for Organic Catalysis:The First Highly Enantioselective Organocatalytic Diels-Alder Reaction. J. Am. Chem. Soc.2000,122(17):4243-4244.
    [64]A. G. Wenzel, E. N. Jacobsen. Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives:Enantioselective Synthesis of β-Aryl-β-Amino Acids. J. Am. Chem. Soc.2002,124(44):12964-12965.
    [65]P. Vachal, E. N. Jacobsen. Enantioselective Catalytic Addition of HCN to Ketoimines. Catalytic Synthesis of Quaternary Amino Acids. Org. Lett.2000, 2(6):867-870.
    [66]P. Vachal, E. N. Jacobsen. Structure-Based Analysis and Optimization of a Highly Enantioselective Catalyst for the Strecker Reaction. J. Am. Chem. Soc.2002, 124(34):10012-10014.
    [67]J. F. Austin, D. W. MacMillan. Enantioselective organocatalytic indole alkylations. Design of a new and highly effective chiral amine for iminium catalysis. J. Am. Chem. Soc.2002,124(7):1172-1173.
    [68]M. S. Taylor, E. N. Jacobsen. Highly Enantioselective Catalytic Acyl-Pictet-Spengler Reactions. J. Am. Chem. Soc.2004,126(34):10558-10559.
    [69]J. W. Yang, M. T. Hechavarria Fonseca, B. List. A Metal-Free Transfer Hydrogenation:Organocatalytic Conjugate Reduction of α,β-Unsaturated Aldehydes. Angew. Chem. Int. Ed.2004,43(48):6660-6662.
    [70]J. W. Yang, M. T. Hechavarria Fonseca, N. Vignola, B. List. Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of α,β-Unsaturated Aldehydes. Angew. Chem.2005,117(1):110-112.
    [71]S. G. Ouellet, J. B. Tuttle, D. W. MacMillan. Enantioselective organocatalytic hydride reduction. J. Am. Chem. Soc.2005,127(1):32-33.
    [72]J. B. Tuttle, S. G. Ouellet, D. W. C. MacMillan. Organocatalytic Transfer Hydrogenation of Cyclic Enones. J. Am. Chem. Soc.2006,128(39): 12662-12663.
    [73]P. R. Schreiner. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev.2003,32(5):289-296.
    [74]P. M. Pihko. Activation of Carbonyl Compounds by Double Hydrogen Bonding: An Emerging Tool in Asymmetric Catalysis. Angew. Chem. Int. Ed.2004,43(16): 2062-2064.
    [75]S. J. Connon. Chiral Phosphoric Acids:Powerful Organocatalysts for Asymmetric Addition Reactions to Imines. Angew. Chem. Int. Ed.2006,45(24):3909-3912.
    [76]M. Rueping, E. Sugiono, C. Azap, T. Theissmann, M. Bolte. Enantioselective Bronsted Acid Catalyzed Transfer Hydrogenation:Organocatalytic Reduction of Imines. Org. Lett.2005,7(17):3781-3783.
    [77]M. Rueping, A. P. Antonchick, T. Theissmann. Remarkably low catalyst loading in Bransted acid catalyzed transfer hydrogenations:enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones. Angew. Chem. Int. Ed.2006, 45(40):6751-6755.
    [78]M. Rueping, A. P. Antonchick. Organocatalytic enantioselective reduction of pyridines. Angew. Chem. Int. Ed.2007,46(24):4562-4565.
    [79]M. Rueping, E. Sugiono, F. R. Schoepke. Thieme Chemistry Journal Awardees-Where Are They Now? Asymmetric Br(?)nsted Acid Catalyzed Transfer Hydrogenations. Synlett.2010,2010(06):852-865.
    [80]M. Rueping, A. P. Antonchick, T. Theissmann. A Highly Enantioselective Br(?)nsted Acid Catalyzed Cascade Reaction:Organocatalytic Transfer Hydrogenation of Quinolines and their Application in the Synthesis of Alkaloids. Angew. Chem. Int. Ed.2006,45(22):3683-3686.
    [81]S. Hoffmann, A. M. Seayad, B. List. A powerful Br(?)nsted acid catalyst for the organocatalytic asymmetric transfer hydrogenation of imines. Angew. Chem. 2005,117(45):7590-7593.
    [82]R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan. Enantioselective Organocatalytic Reductive Amination. J. Am. Chem. Soc.2005,128(1):84-86.
    [83]G. Li, Y. Liang, J. C. Antilla. A Vaulted Biaryl Phosphoric Acid-Catalyzed Reduction of a-Imino Esters:The Highly Enantioselective Preparation of a-Amino Esters. J. Am. Chem. Soc.2007,129(18):5830-5831.
    [84]Q. S. Guo, D. M. Du, J. Xu. The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines. Angew. Chem. Int. Ed.2008,47(4):759-762.
    [85]J. G. de Vries, N. Mrsic. Organocatalytic asymmetric transfer hydrogenation of imines. Catal. Sci. Technol.2011,1(5):727-735.
    [86]S. Hoffmann, M. Nicoletti, B. List. Catalytic Asymmetric Reductive Amination of Aldehydes via Dynamic Kinetic Resolution. J. Am. Chem. Soc.2006,128(40): 13074-13075.
    [87]V. N. Wakchaure, J. Zhou, S. Hoffmann, B. List. Catalytic Asymmetric Reductive Amination of a-Branched Ketones. Angew. Chem. Int. Ed.2010,49(27): 4612-4614.
    [88]V. N. Wakchaure, M. Nicoletti, L. Ratjen, B. List. Towards a Practical Br(?)nsted Acid Catalyzed and Hantzsch Ester Mediated Asymmetric Reductive Amination of Ketones with Benzylamine. Synlett.2010,2010(18):2708-2710.
    [89]R. Ruppert, S. Herrmann, E. Steckhan. Very efficient reduction of NAD(P)+with formate catalysed by cationic rhodium complexes. J. Chem. Soc., Chem. Commun.1988,17):1150-1151.
    [90]V. D. Westerhausen, S. Herrmann, W. Hummel, E. Steckhan. Formate-Driven, Non-Enzymatic NAD(P)H Regeneration for the Alcohol Dehydrogenase Catalyzed Stereoselective Reduction of 4-Phenyl-2-butanone. Angew. Chem. Int. Ed.1992,31(11):1529-1531.
    [91]H. C. Lo, O. Buriez, J. B. Kerr, R. H. Fish. Regioselective Reduction of NAD+ Models with [Cp*Rh(bpy)H]+:Structure-Activity Relationships and Mechanistic Aspects in the Formation of the 1,4-NADH Derivatives. Angew. Chem. Int. Ed. 1999,38(10):1429-1432.
    [92]H. C. Lo, R. H. Fish. Biomimetic NAD+Models for Tandem Cofactor Regeneration, Horse Liver Alcohol Dehydrogenase Recognition of 1,4-NADH Derivatives, and Chiral Synthesis. Angew. Chem. Int. Ed.2002,41(3):478-481.
    [93]J. Lutz, F. Hollmann, A. Schnyder, R. H. Fish, A. Schmid. Bioorganometallic chemistry:biocatalytic oxidation reactions with biomimetic NAD/NADH co-factors and [Cp*Rh(bpy)H] for selective organic synthesis. J. Organometal. Chem.2004,689(25):4783-4790.
    [94]R. Breslow. Biomimetic control of chemical selectivity. Acc. Chem. Res.1980, 13(6):170-177.
    [95]K. Takahashi. Organic Reactions Mediated by Cyclodextrins. Chem. Rev.1998, 98(5):2013-2034.
    [96]J. Yang, B. Gabriele, S. Belvedere, Y. Huang, R. Breslow. Catalytic Oxidations of Steroid Substrates by Artificial Cytochrome P-450 Enzymes. J. Org. Chem.2002, 67(15):5057-5067.
    [97]A. Schlatter, M. K. Kundu, W. D. Woggon. Enantioselective Reduction of Aromatic and Aliphatic Ketones Catalyzed by Ruthenium Complexes Attached to β-Cyclodextrin. Angew. Chem.2004,116(48):6899-6902.
    [98]A. Schlatter, W. Woggon. Enantioselective Transfer Hydrogenation of Aliphatic Ketones Catalyzed by Ruthenium Complexes Linked to the Secondary Face of β-Cyclodextrin. Adv. Synth. Catal.2008,350(7-8):995-1000.
    [99]R. Leuckart. Ueber eine neue Bildungsweise von Tribenzylamin. Ber.1885,18(2): 2341-2344.
    [100]O. Wallach. Ann.1892,272:99.
    [101]O. Wallach. Zur Kenntniss der Terpene und der atherischen Oele; Zweiundzwanzigste Abhandlung. I. Ueber die Bestandtheile des Tujaols. Justus Liebigs Annalen der Chemie.1893,272(1):99-122.
    [102]W. Eschweiler. Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hiilfe von Formaldehyd. Berichte der deutschen chemischen Gesellschaft.1905,38(1):880-882.
    [103]H. T. Clarke, H. B. Gillespie, S. Z. Weisshaus. The Action of Formaldehyde on Amines and Amino Acidsl. J. Am. Chem. Soc.1933,55(11):4571-4587.
    [104]A. Ingersoll, J. Brown, C. Kim, W. Beauchamp, G. Jennings. Extensions of the Leuckart synthesis of Amines. J. Am. Chem. Soc.1936,58(9):1808-1811.
    [105]E. Staple, E. Wagner. A study of the Wallach reaction for alkylation of amines by action of aldehydes or ketones and formic acid. J. Org. Chem.1949,14(4): 559-578.
    [106]P. L. deBenneville, J. H. Macartney. The behavior of aliphatic aldehydes in the Leuckart-Wallach reaction. J. Am. Chem. Soc.1950,72(7):3073-3075.
    [107]F. Crossley, M. Moore. Studies on the Leuckart reaction. J. Org. Chem.1944, 9(6):529-536.
    [108]R. Baltzly, O. Kauder. The preparation of secondary amines through the Wallach reaction. J. Org. Chem.1951,16(2):173-177.
    [109]N. J. Leonard, R. R. Sauers. Unsaturated Amines. XI. The Course of Formic Acid Reduction of Enamines. J. Am Chem. Soc.1957,79(23):6210-6214.
    [110]R. D. Bach. Preparation of tertiary N,N-dimethylamines by the Leuckart reaction. J. Org. Chem.1968,33(4):1647-1649.
    [111]M. Allegretti, V. Berdini, M. Cesta, R. Curti, L. Nicolini, A. Topai. One-pot, new stereaselective synthesis of endo-tropanamine. Tetrahedron Lett.2001, 42(25):4257-4259.
    [112]V. Kunalan, N. Nic Daeid, W. J. Kerr, H. A. Buchanan, A. R. McPherson. Characterization of route specific impurities found in methamphetamine synthesized by the Leuckart and reductive amination methods. Anal Chem.2009, 81(17):7342-7348.
    [113]J. R. Regalbuto. Cellulosic biofuels-got gasoline. Science.2009,325(5942): 822-824.
    [114]J. N. Chheda, G. W. Huber, J. A. Dumesic. Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angew. Chem. Int. Ed.2007,46(38):7164-7183.
    [115]Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., and Manheim, A. Top value-added chemicals from biomass, volume I:Results of screening for potential candidates from sugars and synthesis gas[R]. wwwl.eere.energy.gov/biomass?pdfs/35523.pdf.
    [116]G. W. Huber, S. Iborra, A. Corma. Synthesis of Transportation Fuels from Biomass:Chemistry, Catalysts, and Engineering. Chem. Rev.2006,106(9): 4044-4098.
    [117]J. J. Bozell, G. R. Petersen. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "top 10" revisited. Green Chem.2010,12(4):539-554.
    [118]M. J. Climent, A. Corma, S. Iborra. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem.2011,13(3): 520-540.
    [119]M. E. Zakrzewska, E. B. Lukasik, R. B. Lukasik. Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural-A Promising Biomass-Derived Building Block. Chem. Rev.2010,111(2):397-417.
    [120]C. Moreau, M. N. Belgacem, A. Gandini. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal.2004,27(1-4):11-30.
    [121]M. L. Ribeiro, U. Schuchardt. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid. Catal. Commun.2003,4(2):83-86.
    [122]M. A. Lilga, R. T. Hallen, M. Gray. Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Top. Catal.2010,53(15-18):1264-1269.
    [123]C. Moreau, R. Durand, C. Pourcheron, D. Tichit. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furan-dicarboxaldehyde in the presence of titania supported vanadia catalysts. Studies in Surface Science and Catalysis.1997,108: 399-406.
    [124]G. A. Halliday, R. J. Young, V. V. Grushin. One-Pot, Two-Step, Practical Catalytic Synthesis of 2,5-Diformylfuran from Fructose. Org. Lett.2003,5(11): 2003-2005.
    [125]T. Thananatthanachon, T. B. Rauchfuss. Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation. Chemsuschem.2010,3(10):1139-1141.
    [126]Y. R. Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature.2007, 447(7147):982-985.
    [127]W. Yang, A. Sen. One-Step Catalytic Transformation of Carbohydrates and Cellulosic Biomass to 2,5-Dimethyltetrahydrofuran for Liquid Fuels. Chemsuschem.2010,3(5):597-603.
    [128]S. W. Fitzpatrick. Production of levulinic acid from carbohydrate-containing materials:U.S.A,5608105[P].1997
    [129]F. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer, W. Leitner. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew. Chem.2010,122(32): 5642-5646.
    [130]Y. Guo, K. Li, X. Yu, J. H. Clark. Mesoporous H3PW1204-silica composite: Efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Applied catalysis. B, Environmental.2008,81(3-4): 182-191.
    [131]I. T. Horvath, H. Mehdi, V. Fabos, L. Boda, L. T. Mika. γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem.2008, 10(2):238-242.
    [132]D. Fegyverneki, L. Orha, G. Lang, I. T. Horvath. Gamma-valerolactone-based solvents. Tetrahedron.2010,66(5):1078-1081.
    [133]H. Heeres, R. Handana, D. Chunai, C. B. Rasrendra, B. Girisuta, H. J. Heeres. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to y-valerolactone using ruthenium catalysts. Green Chem.2009, 11(8):1247-1255.
    [134]L. Deng, J. Li, D. M. Lai, Y. Fu, Q. X. Guo. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 supply. Angew. Chem. Int. Ed.2009,48(35):6529-6532.
    [135]L. E. Manzer. Catalytic synthesis of α-methylene-γ-valerolactone:a biomass-derived acrylic monomer. Appl. Catal, A:Gen.2004,272(1):249-256.
    [136]L. E. Manzer. Production of 5-Methyl-N-aryl-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with nitro compounds:U.S.A,6818593 [P].2004
    [137]L. E. Manzer, D. Wilmington. Production of 5-methyl-N-aryl-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid esters with nitro compounds:U.S.A,6855731[P].2005
    [138]L. E. Manzer, W. DE. Production of 5-methyl-N-(methyl aryl)-2-pyrrolidone, 5-methyl-N-(methyl cycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid with cyano compounds:U.S.A,6874520[P].2005
    [139]L. E. Manzer, W. DE. Production of 5-methyl-N-(methyl aryl)-2-pyrrolidone, 5-methyl-N-(methyl cycloalkyl)-2-pyrrolidone and 5-methyl-N-alkyl-2-pyrrolidone by reductive amination of levulinic acid esters with cyano compounds:U.S.A,6916842[P].2005
    [140]X. L. Du, L. He, S. Zhao, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan. Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into y-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angew. Chem.2011,123(34):7961-7965.
    [141]Y. B. Huang, J. J. Dai, X. J. Deng, Y. C. Qu, Q. X. Guo, Y. Fu. Ruthenium-Catalyzed Conversion of Levulinic Acid to Pyrrolidines by Reductive Amination. Chemsuschem.2011,4(11):1578-1581.
    [142]G. J. Suppes, M. A. Dasari, E. J. Doskocil, P. J. Mankidy, M. J. Goff. Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal, A:Gen.2004,257(2):213-223.
    [143]J. J. Bozell, G. R. Petersen. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "top 10" revisited. Green Chem.2010,12(4):539-554.
    [144]T. M. Che, W. N.J. Production of propanediols:U.S.A,4642394[P].1987
    [145]M. A. Dasari, P. P. Kiatsimkul, W. R. Sutterlin, G. J. Suppes. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal, A:Gen.2005, 281(1):225-231.
    [146]C. W. Chiu, M. A. Dasari, G. J. Suppes, W. R. Sutterlin. Dehydration of glycerol to acetol via catalytic reactive distillation. AIChE J.2006,52(10):3543-3548.
    [147]E. P. Maris, W. C. Ketchie, M. Murayama, R. J. Davis. Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J Catal.2007,251(2): 281-294.
    [148]G. Rokicki, P. Rakoczy, P. Parzuchowski, M. Sobiecki. Hyperbranched aliphatic polyethers obtained from environmentally benign monomer:glycerol carbonate. Green Chem.2005,7(7):529-539.
    [149]M. Aresta, A. Dibenedetto, F. Nocito, C. Pastore. A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide:The role of the catalyst, solvent and reaction conditions. J. Mol. Catal. A:Chem.2006,257(1):149-153.
    [150]J. R. Ochoa-Gomez, O. Gomez-Jimenez-Aberasturi, C. Ramirez-Lopez, J. Nieto-Mestre, S. Gil-Rio, B. Maestro-Madurga, J. Torrecilla-Soria, M. Belsue. An industrial approach to the manufacturing of glycerol carbonate:Some synthetic alternatives. Catal. Lett.1998,56:245-247.
    [151]AJ Bechamp. De l'action des protosels de fer sur la nitronaphtaline et la nitrobenzine. Nouvelle methode de formation des bases organiques artificielles de Zinin. Ann. Chim. Phys.1854,42:186-196.
    [152]赵海丽,姚开胜.催化还原硝基芳烃的研究现状及进展[J].化工进展.2008,27(12):1887-1902.
    [153]洪仲苓.化工有机原料深加工[M].北京:化学工业出版社,2005:568-582.
    [154]A. Corma, P. Serna. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science.2006,313(5785):332-334.
    [155]J. Wu, C. Wang, W. Tang, A. Pettman, J. Xiao. The Remarkable Effect of a Simple Ion:Iodide-Promoted Transfer Hydrogenation of Heteroaromatics. Chem. Eur. J.2012,18(31):9525-9529.
    [156]J. Wu, W. Tang, A. Pettman, J. Xiao. Efficient and Chemoselective Reduction of Pyridines to Tetrahydropyridines and Piperidines via Rhodium-Catalyzed Transfer Hydrogenation. Adv. Synth. Catal.2013,355(1):35-40.
    [157]D. Talwar, N. P. Salguero, C. M. Robertson, J. Xiao. Primary Amines by Transfer Hydrogenative Reductive Amination of Ketones by Using Cyclometalated IrⅢ Catalysts. Chem. Eur. J.2014,20(1):245-252.
    [158]B. Villa-Marcos, W. Tang, X. Wu, J. Xiao. A highly active cyclometallated iridium catalyst for the hydrogenation of imines. Org. Biomol. Chem.2013, 11(40):6934-6939.
    [159]J. Wu, J. H. Barnard, Y. Zhang, D. Talwar, C. M. Robertson, J. Xiao. Robust cyclometallated Ir (III) catalysts for the homogeneous hydrogenation of N-heterocycles under mild conditions. Chem. Commun.2013,49(63): 7052-7054.
    [160]C. Wang, H. Y. Chen, J. Bacsa, C. R. A. Catlow, J. Xiao. Synthesis and X-ray structures of cyclometalated inidium complexes including the hydrides. Dalton Trans.2013,42(4):935-940.
    [161]X. Wu, X. Li, F. King, J. Xiao. Insight into and Practical Application of pH-Controlled Asymmetric Transfer Hydrogenation of Aromatic Ketones in Water. Angew. Chem. Int. Ed.2005,44(22):3407-3411.
    [162]X. Wu, J. Liu, X. Li, A. Z. Gerosa, F. Hancock, D. Vinci, J. Ruan, J. Xiao. On water and in air:fast and highly chemoselective transfer hydrogenation of aldehydes with iridium catalysts. Angew. Chem. Int. Ed.2006,45(40): 6718-6722.
    [163]X. Wu, J. Xiao. Aqueous-phase asymmetric transfer hydrogenation of ketones-a greener approach to chiral alcohols. Chem. Commun.2007,24:2449-2466.
    [164]N. Menashe, Y. Shvo. Catalytic disproportionation of aldehydes with ruthenium complexes. Organometallics.1991,10(11):3885-3891.
    [165]J. H. Barnard, C. Wang, N. G. Berry, J. Xiao. Long-range metal-ligand bifunctional catalysis:cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid. Chem. Sci.2013,4(3):1234-1244.
    [166]O. Soltani, M. A. Ariger, H. Vazquez-Villa, E. M. Carreira. Transfer Hydrogenation in Water:Enantioselective, Catalytic Reduction of a-Cyano and a-Nitro Substituted Acetophenones. Org. Lett.2010,12(13):2893-2895.
    [167]S. Ogo, T. Abura, Y. Watanabe. pH-Dependent Transfer Hydrogenation of Ketones with HCOONa as a Hydrogen Donor Promoted by (η6-C6Me6) Ru Complexes. Organometallics.2002,21(14):2964-2969.
    [168]Y. Huang, A. K. Unni, A. N. Thadani, V. H. Rawal. Hydrogen bonding:Single enantiomers from a chiral-alcohol catalyst. Nature.2003,424(6945):146-146.
    [169]J. S. Samec, J. Backvall. Ruthenium-Catalyzed Transfer Hydrogenation of Imines by Propan-2-ol in Benzene. Chem. Eur. J.2002,8(13):2955-2961.
    [170]R. Ball, W. Graham, D. Heinekey, J. Hoyano, A. McMaster, B. Mattson, S. Michel. Synthesis and structure of dicarbonylbis (η5-pentamethylcyclopentadienyl) diiridium. Inorg. Chem.1990,29(10): 2023-2025.
    [171]D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, D. R. Russell. Room-temperature cyclometallation of amines, imines and oxazolines with [MCl2Cp*]2 (M= Rh, Ir) and [RuCl2 (p-cymene)]2. Dalton Trans.2003,21: 4132-4138.
    [172]L. E. Manzer, D. Wilmington. Production of 5-methyl-N-aryl-2-pyrrolidone and 5-methyl-N-cycloalkyl-2-pyrrolidone by reductive amination of levulinic acid with aryl amines:U.S.A,6900337[P].2004
    [173]J. Li, D. J. Ding, L. Deng, Q. X. Guo, Y. Fu. Catalytic Air Oxidation of Biomass-Derived Carbohydrates to Formic Acid. Chemsuschem.2012,5(7): 1313-1318.
    [174]J. Deng, Y. Wang, T. Pan, Q. Xu, Q. X. Guo, Y. Fu. Conversion of Carbohydrate Biomass to y-Valerolactone by using Water-Soluble and Reusable Iridium Complexes in Acidic Aqueous Media. Chemsuschem.2013,6(7):1163-1167.
    [175]舒畅,郑纯智,王日杰,张继炎.催化转移加氢[J].化学通报,2004,67(9):w73
    [176]P. G. Reddy, S. Baskaran. A chemoselective method for the reductive N-formylation of aryl azides under catalytic transfer hydrogenation conditions. Tetrahedron Lett.2002,43(10):1919-1922.
    [177]M. Shamma, P. D. Rosenstock. The Synthesis and Properties of Some α,β-Unsaturated Valerolactams. J. Org. Chem.1961,26(3):718-725.
    [178]J. Qi, C. Sun, Y. Tian, X. Wang, G. Li, Q. Xiao, D. Yin. Highly Efficient and Versatile Synthesis of Lactams and N-Heterocycles via Al(OTf)3-Catalyzed Cascade Cyclization and Ionic Hydrogenation Reactions. Org. Lett.2014,16(1): 190-192.
    [179]J. R. Harding, J. R. Jones, S.-Y. Lu, R. Wood. Development of a microwave-enhanced isotopic labelling procedure based on the Eschweiler-Clarke methylation reaction. Tetrahedron Lett.2002,43(52): 9487-9488.
    [180]B. M. Adger, U. C. Dyer, I. C. Lennon, P. D. Tiffin, S. E. Ward. A novel synthesis of tert-leucine via a Leuckart type reaction. Tetrahedron Lett.1997, 38(12):2153-2154.
    [181]A. G. a. Martinez, E. Teso Vilar, A. G. a. Fraile, P. Martinez-Ruiz. Enantioselective synthesis of both enantiomers of vicinal norbornanediamines through the Leuckart reaction of 2-norbornanones. Tetrahedron:Asym.2001, 12(15):2153-2158.
    [182]C. Ziebart, C. Federsel, P. Anbarasan, R. Jackstell, W. Baumann, A. Spannenberg, M. Beller. Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J. Am. Chem. Soc.2012,134(51): 20701-20704.
    [183]S. Enthaler, K. Junge, M. Beller. Sustainable metal catalysis with iron:from rust to a rising star? Angew. Chem. Int. Ed.2008,47(18):3317-3321.
    [184]J. S. Chen, L. L. Chen, Y. Xing, G. Chen, W. Y. Shen, Z. R. Dong, Y. Y. Li, J. X. Gao. Asymmetric transfer hydrogenation of ketones catalyzed by chiral carbonyl iron systems. Acta Chim. Sinica.2004,62(18):1745-1750.
    [185]S. Enthaler, B. Hagemann, G. Erre, K. Junge, M. Beller. An environmentally benign process for the hydrogenation of ketones with homogeneous iron catalysts. Chem. Asian J.2006,1(4):598-604.
    [186]S. Fleischer, S. Zhou, K. Junge, M. Beller. An Easy and General Iron-catalyzed Reductive Amination of Aldehydes and Ketones with Anilines. Chem. Asian J. 2011,6(9):2240-2245.
    [187]B. T. Khai, A. Arcelli. Selective reduction of aldehydes by a formic acid-trialkylamine-RuCl2(PPh3)3 system. Tetrahedron Lett.1985,26(28): 3365-3368.
    [188]B. T. Khai, A. Arcelli. RuCl2(PPh3)3/HCOOH/Et3N as a new dydrogen source-selective reduction of aromatic nitrocompounds catalyzed by Pd on carbon. J. Organomet. Chem.1986,309(3):63-66.
    [189]K. J. Laidler, P. A. Landskroener. The influence of the solvent on reaction rates. Trans. Faraday Soc.1956,52:200-210.
    [190]V. J. Webers, W. F. Bruce. The Leuckart reaction:A study of the mechanism. J. Am. Chem. Soc.1948,70(4):1422-1424.
    [191]P. I. Awachie, V. C. Agwada. Evidence for rate limiting CH bond cleavage in the leuckart reaction. Tetrahedron.1990,46(6):1899-1910.
    [192]F. G. Bordwell. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res.1988,21(12):456-463.
    [193]S. Kobayashi, H. Ishitani. Catalytic enantioselective addition to imines. Chem. Rev.1999,99(5):1069-1094.
    [194]S. Guizzetti, M. Benaglia, S. Rossi. Highly Stereoselective Metal-Free Catalytic Reduction of Imines:An Easy Entry to Enantiomerically Pure Amines and Natural and Unnatural a-Amino Esters. Org. Lett.2009,11(13):2928-2931.
    [195]S. Gomez, J. A. Peters, T. Maschmeyer. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles:mechanistic aspects and selectivity control. Adv. Synth. Catal.2002,344(10):1037-1058.
    [196]M. Vilches-Herrera, S. Werkmeister, K. Junge, A. B6rner, M. Beller. Selective catalytic transfer hydrogenation of nitriles to primary amines using Pd/C. Catal. Sci. Technol.2014,4:629-632.
    [197]B. Wojcik, H. Adkins. Catalytic hydrogenation of amides to amines. J. Am. Chem. Soc.1934,56(11):2419-2424.
    [198]E. Balaraman, B. Gnanaprakasam, L. J. Shimon, D. Milstein. Direct hydrogenation of amides to alcohols and amines under mild conditions. J. Am. Chem. Soc.2010,132(47):16756-16758.
    [199]P. Ji, J. H. Atherton, M. I. Page. Copper(I)-Catalyzed Amination of Aryl Halides in Liquid Ammonia. J. Org. Chem.2012,77(17):7471-7478.
    [200]M. H. S. Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell, H. C. Maytum, A. J. Watson, J. M. Williams. Ruthenium-catalyzed N-alkylation of amines and sulfonamides using borrowing hydrogen methodology. J. Am. Chem. Soc.2009, 131(5):1766-1774.
    [201]R. Yamaguchi, S. Kawagoe, C. Asai, K. Fujita. Selective synthesis of secondary and tertiary amines by Cp*iridium-catalyzed multialkylation of ammonium salts with alcohols. Org. Lett.2008,10(2):181-184.
    [202]D. Hollmann, S. Bahn, A. Tillack, M. Beller. A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angew. Chem. Int. Ed.2007,46(43): 8291-8294.
    [203]V. Pandarus, R. Ciriminna, F. Beland, M. Pagliaro. Selective hydrogenation of functionalized nitroarenes under mild conditions. Catal. Sci. Technol.2011,1(9): 1616-1623.
    [204]M. Takasaki, Y. Motoyama, K. Higashi, S. H. Yoon, I. Mochida, H. Nagashima. Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinum and palladium nanoparticles. Org. Lett.2008,10(8):1601-1604.
    [205]S. Ram, R. E. Ehrenkaufer. A general procedure for mild and rapid reduction of aliphatic and aromatic nitro compounds using ammonium formate as a catalytic hydrogen transfer agent. Tetrahedron Lett.1984,25(32):3415-3418.
    [206]E. Braude, R. Linstead, K. H. Wooldridge. Hydrogen transfer. Part VII. Metal-catalysed transfer-hydrogenation of nitro-compounds. J. Chem. Soc.1954: 3586-3595.
    [207]A. Furst, R. C. Berlo, S. Hooton. Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions). Chem. Rev.1965,65(1):51-68.
    [208]R. A. Johnstone, A. H. Wilby, I. D. Entwistle. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem. Rev.1985,85(2):129-170.
    [209]A. Saha, B. Ranu. Highly Chemoselective Reduction of Aromatic Nitro Compounds by Copper Nanoparticles/Ammonium Formate. J. Org. Chem.2008, 73(17):6867-6870.
    [210]R. V. Jagadeesh, G. Wienhofer, F. A. Westerhaus, A. E. Surkus, H. Junge, K. Junge, M. Beller. A Convenient and General Ruthenium-Catalyzed Transfer Hydrogenation of Nitro-and Azobenzenes. Chem. Eur. J.2011,17(51): 14375-14379.
    [211]I. Sorribes, G. Wienhofer, C. Vicent, K. Junge, R. Llusar, M. Beller. Chemoselective Transfer Hydrogenation to Nitroarenes Mediated by Cubane-Type Mo3S4 Cluster Catalysts. Angew. Chem.2012,124(31): 7914-7918.
    [212]R. Burch. Importance of electronic ligand effects in metal alloy catalysts. Ace. Chem. Res.1982,15(1):24-31.
    [213]J. W. Kang, K. Moseley, P. M. Maitlis. Pentamethylcyclopentadienylrhodium and -iridium halides. I. Synthesis and properties. J. Am. Chem. Soc.1969, 91(22):5970-5977.
    [214]L. Panella, A. M. Aleixandre, G. J. Kruidhof, J. Robertus, B. L. Feringa, J. G. de Vries, A. J. Minnaard. Enantioselective Rh-catalyzed hydrogenation of N-formyl dehydroamino esters with monodentate phosphoramidite ligands. J. Org. Chem. 2006,71(5):2026-2036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700