用户名: 密码: 验证码:
生物阴极强化氯霉素还原降解及电极微生物功能机制解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素进入环境可以诱发进化新的抗生素抗性基因和抗性细菌,对人类健康产生巨大威胁,因此抗生素的抗性问题已引起全球关注。氯代硝基芳香类抗生素氯霉素对人类可导致再生障碍性贫血且具有潜在的遗传毒性和致癌性。环境中频繁检测出低浓度的氯霉素和氯霉素抗性基因存在,因此在废水处理过程中消除氯霉素抗细菌活性至关重要。生物电化学系统(BES)生物阴极可以还原降解多种污染物,重要地是微生物作为阴极催化剂具有可自我更新和环境友好等特性,发展颇具潜力。硝基基团对于决定氯霉素抗细菌活性非常重要,本研究采用生物阴极还原降解氯霉素为脱氯芳香胺产物,对应的硝基还原和脱氯反应解除了氯霉素抗细菌活性;揭示了加速阴极电子传递还原氯霉素的核心微生物群落与关键功能基因组成;发现了低温启动生物阴极更能应激环境温度变化维持稳定的催化活性,为开发抗生素废水高效降解生物技术提供了重要依据。
     生物阴极(阴极电位为-0.7V和提供500mg/L葡萄糖)还原氯霉素速率比非生物阴极和单纯厌氧生物膜还原分别快10倍和1.6倍,证明了生物阴极强化还原氯霉素为芳香胺产物AMCl2,并进一步依赖脱卤素酶脱氯生成AMCl产物。非生物阴极还原氯霉素明显积累毒性较大的亚硝基和羟基胺基中间产物,并通过加氢脱氯机制脱氯AMCl2生成AMCl。微生物催化氯霉素短暂积累独特的氯霉素乙酰化产物。阴极还原氯霉素过程解除了其抗细菌活性。电化学分析表明生物阴极明显降低了氯霉素还原反应过电位(正移400mV),暗示了阴极微生物促进阴极电子传递。生物阴极中多个占优势菌属具有硝基芳香烃还原能力(Salmonella、Enterobacter、Clavibacter和Pseudomonas)和阴极电化学活性(Enterobacter、Pseudomonas和Dechloromonas),说明了这些功能微生物参与强化氯霉素还原降解过程。
     生物阴极还原氯霉素效率显著高于单纯厌氧生物膜。基于高通量功能基因芯片(GeoChip)和16S rRNA基因Illumina测序结果表明阴极给电子刺激具有选择性,显著改变了阴极生物膜的群落结构与功能基因组成,并明显降低了阴极生物膜群落多样性。生物阴极显著富集了具有电化学活性革兰氏阳性Lactococcus(P=0.004;51.50±24.60%),Lactococcus能够分泌电子传递中介体这与生物阴极检测到显著低水平的典型电子传递蛋白细胞色素c基因丰度(P=0.023)相一致,重要地是Lactococcus具有硝基芳香烃还原能力;而厌氧生物膜显著富集了葡萄糖发酵细菌Escherichia(P=0.002;10.64±4.49%)和Dysgonomonas(P=0.015;25.25±13.17%),其中Escherichia具有氯霉素还原能力。生物膜中占优势其它菌属比如Desulfovibrio、Geobacter、Pseudomonas和Klebsiella均具有还原硝基芳香化合物到对应的芳香胺产物的能力。生物阴极显著高的氯霉素还原效率与生物膜中占优势的Lactococcus丰度成显著正相关(r=0.7769;P=0.003),而与细胞色素c基因丰度成显著负相关(r=-0.5857;P=0.045),暗示了生物阴极主要通过电子传递中介体捕获电子加速还原降解氯霉素。
     北方寒冷地区环境温度变化大,启动能够应激温度变化的生物阴极来稳定还原氯霉素至关重要。对比常温25℃和低温10℃启动生物阴极,并分别降低或升高15℃后,发现10℃比25℃启动生物阴极更能应激温度变化来稳定还原降解氯霉素,而且常温下产物AMCl形成效率与低温运行时无显著差异。基于GeoChip和16S rRNA基因Illumina测序结果,温度提升15℃显著改变阴极生物膜群落结构与功能基因组成。在菌门水平上温度变化前后阴极生物膜没有显著差别,主要富集变形菌门(>60%)和厚壁菌门(>20%)细菌,但占优势菌属差异非常显著。10℃和25℃阴极生物膜分别富集1067和2113个独特功能基因,其中各富集了9个独特的电子传递有关基因。进一步分析发现了维持生物阴极催化功能的关键功能基因及优势菌属。低温运行显著富集适低温环境的Aeromonas和Vagococcus细菌,而温度提升显著富集具有硝基芳香烃还原能力细菌Raoultella和硝基还原酶基因丰度。参与热激响应的基因在阴极生物膜环境温度提高后显著富集,而细胞色素c和氢化酶等重要电子传递基因丰度均未显著改变。这些重要功能基因类群和生物膜占优势菌属参与应激环境温度变化,对于维持生物阴极稳定还原降解氯霉素具有重要作用。
Antibiotics entering into the environments can result in evolution of novel antibiotic resistant genes and bacteria, and then has enormous ramifications for human health. Thus antibiotic resistance problem has attracted global attentions. For humans, chlorinated nitroaromatic antibiotic, chloramphenicol (CAP) can lead to aplastic anemia and have potential genotoxicity and carcinogenicity. Trace CAP and the CAP-resistant genes were frequently detected in diverse environments, thus elimination of the antibacterial activity of CAP is very important during wastewater treatment. The bioelectrochemical system (BES) with biocathode is an emerging technology that could reductively degrade various pollutants. Importantly, microbes worked as the cathode catalyst has great potential as the characteristic of self-renewal and environmental friendliness. The nitro group of CAP is the essential functional group determining its antibiotic properties. In this study BES biocathode was employed for the reductive degradation of CAP to the corresponding dechlorinated aromatic amine product. Corresponding nitro group reduction and dechlorination reactions eliminated the antibacterial activity of CAP. The key microbial community structure and functional genes composition for the accelerating the cathodic electrons transfer associated with the CAP reduction was revealed. It discovers that the low temperature performed biocathode had stronger stress response to environment temperature changes and keeping the stable catalytic activity. These results provides the important basis for the development of efficient degradation biotechnology for the antibiotics wastewater treatment.
     The CAP reduction speed constant of biocathode was10and1.6times higher than an abiotic cathode and opened biocathode (pure anaerobic microbial reduction) experiment, respectively. Biocathode enhanced reduction of CAP to the corresponding aromatic amine product AMCl2, and the AMCl2was further dechlorinated to AMCl with dehalogenase catalysis. Toxic intermediates, hydroxylamino (HOAM), and nitroso (NO), from CAP reduction were obviously accumulated only in the abiotic cathode, and electrochemical hydrodechlorination was responsible for the dechlorination of AMCl2to AMCl in abiotic BES. Acetylation of one hydroxyl of CAP (CAP-acetyl) was briefly accumulated exclusive in the biocatalyzed process. Cathodic CAP reduction lost the antibacterial activity. The electrochemical analysis indicated the obvious decrease of overpotentials (positive shift of400mV) for the CAP reduction at the biocathode compared with abiotic cathode, suggesting that the cathodophilic microbes maybe improve the cathodic electrons transfer. Some dominant genera from biocathode had the nitroaromatics reduction ability (Salmonella, Enterobacter, Stenotrophomonas, Clavibacter and Pseudomonas) and cathodic electrochemical activity (Enterobacter, Pseudomonas and Dechloromonas), indicating that these functional microbes involved in the enhanced reduction of CAP.
     The cathode biofilm showed significant higher CAP reduction efficiency than that of the pure anaerobic biofilm. The cathode providing electrons stimulation had the selectivity, which significantly altered the community structure and functional genes composition of cathode biofilm, and obviously lowered the microbial diversity based on the highthroughput functional gene array (GeoChip) and Illumina16S rRNA gene sequencing analysis. The electrochemically active Gram-positive Lactococcus (P=0.004;51.50±24.60%) was significantly enriched in the biocathode community. Lactococcus could self-excrete electrons transfer mediator was consistent with that the cathode biofilm detected significantly lower cytochrome c gene abundances (P=0.023). Importantly, Lactococcus was capable of reducing nitroaromatics to the corresponding aromatic amines. While anaerobic glucose fermentative bacteria Escherichia (P=0.002;10.64±4.49%) and Dysgonomonas (P=0.015;25.25±13.17%) were significantly enriched in the anaerobic biofilm, among them Escherichia was capable of reducing CAP. Some other dominant genera such as Desulfovibrio, Geobacter, Pseudomonas and Klebsiella all were capable of reducing nitroaromatics to corresponding aromatic amines. The significant higher CAP reduction efficiency in the biocathode community, which significantly positively (r=0.78; P=0.003) correlated with the dominant Lactococcus, while significantly negatively correlated with the significantly lower cytochrome c genes (r=-0.5802; P=0.048), suggested that electrons transfer mediator was mainly employed to capture cathodic electrons for accelerated reduction of CAP within biocathode communities.
     Environment temperature changes greatly in northern cold regions, it is crucial for the enrichment of cathode biofilm that have stress responses ability to stably reduce CAP upon temperature changes. Comparing with the room temperature25°C, low temperature10°C performed biocathode and the corresponding15°C decrement and increment for the performed biocathode BES reactors respectively, the results showed that the10°C performed biocathode had more stress response ability to stably reduce CAP upon temperature changes, and the formation efficiency of reduced product AMCl under room temperature was not significant different from that of the low temperature performed biocathode. Based on the GeoChip and Illumina16S rRNA gene sequencing analysis, the results indicated that the15°C increment significantly altered the microbial phylogenetic community structure and functional genes composition. Before and after of temperature changes, the cathode biofilm was not obviously differed at the phylum level (enriched>60%Proteobacteria and>20%Firmicutes) but at the genus level showed the significant differences. The10°C and25°C performed biocathode enriched1067and2113unique functional genes respectively, thereinto both enriched9unique genes that related to electrons transfer. Further analysis revealed that the key functional genes and dominant genera were employed for the maintaining the biocathode catalytic function. Cold-adapting Aeromonas and Vagococcus dominated in the10°C performed biocathode, while the25°C performed biocathode had higher abundance of nitroaromatics-reducing Raoultella and nitroreductase genes. Genes related to heat shock protein were significantly enriched in the25°C performed biocathode, however the abundances of important electrons transfer genes such as cytochrome c and hydrogenase was not significantly differed. These important functional gene categories and dominant genera in the cathode biofilms involved in the stress response to environment temperature changes, which played the key role for the maintaining the stability of CAP reduction.
引文
[1] Andam C P,Fournier G P,Gogarten J P. Multilevel populations and theevolution of antibiotic resistance through horizontal gene transfer [J]. FEMSMicrobiology Reviews.2011,35(5):756-767.
    [2] Davies J,Davies D. Origins and evolution of antibiotic resistance [J].Microbiology and Molecular Biology Reviews.2010,74(3):417-433.
    [3] Leung H W,Minh T B,Murphy M B,et al. Distribution, fate and riskassessment of antibiotics in sewage treatment plants in Hong Kong, SouthChina [J]. Environment International.2012,42:1-9.
    [4] Zhang T,Li B. Occurrence, transformation, and fate of antibiotics in municipalwastewater treatment plants [J]. Critical Reviews in Environmental Scienceand Technology.2011,41(11):951-998.
    [5] Michael I,Rizzo L,McArdell C S,et al. Urban wastewater treatment plantsas hotspots for the release of antibiotics in the environment: A review [J].Water Research.2013,47(3):957-995.
    [6] Le-Minh N,Khan S J,Drewes J E,et al. Fate of antibiotics during municipalwater recycling treatment processes [J]. Water Research.2010,44(15):4295-4323.
    [7]曹巧玲,杨凯,武泽新.氯霉素的毒性作用和检测方法研究进展[J].职业与健康.2013,29:2095-2097.
    [8] Gross B J,Branchflower R V,Burke T R,et al. Bone marrow toxicity in vitroof chloramphenicol and its metabolites [J]. Toxicology and AppliedPharmacology.1982,64(3):557-565.
    [9] Martelli A,Mattioli F,Pastorino G,et al. Genotoxicity Testing ofChloramphenicol in Rodent and Human-Cells [J]. Mutation Research.1991,260(1):65-72.
    [10]汤轶伟,励建荣,孟良玉等.水产品中氯霉素药物残留检测方法研究进展[J].食品科学.2013,34:333-337.
    [11]华娟,方勤美,熊春娥等.市售动物源性食品中氯霉素类药物残留量的调查研究[J].食品安全质量检测学报.2013,4(1):165-170.
    [12] Lin A,Yu T,Lin C. Pharmaceutical contamination in residential, industrial,and agricultural waste streams: Risk to aqueous environments in Taiwan [J].Chemosphere.2008,74(1):131-141.
    [13] Kasprzyk-Hordern B,Dinsdale R M,Guwy A J. The occurrence ofpharmaceuticals, personal care products, endocrine disruptors and illicit drugsin surface water in South Wales, UK [J]. Water Research.2008,42(13):3498-3518.
    [14] Peng X,Wang Z,Kuang W,et al. A preliminary study on the occurrence andbehavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials inwastewaters of two sewage treatment plants in Guangzhou, China [J]. Scienceof the Total Environment.2006,371(1-3):314-322.
    [15] Xu W,Zhang G,Li X,et al. Occurrence and elimination of antibiotics at foursewage treatment plants in the Pearl River Delta (PRD), South China [J].Water Research.2007,41(19):4526-4534.
    [16] Liu H,Zhang G,Liu C Q,et al. The occurrence of chloramphenicol andtetracyclines in municipal sewage and the Nanming River, Guiyang City, China[J]. Journal of Environmental Monitoring.2009,11(6):1199-1205.
    [17] Li J,Shao B,Shen J,et al. Occurrence of chloramphenicol-resistance genes asenvironmental pollutants from swine feedlots [J]. Environmental Science&Technology.2013,47(6):2892-2897.
    [18] Xi C,Zhang Y,Marrs C F,et al. Prevalence of antibiotic resistance in drinkingwater treatment and distribution systems [J]. Applied and EnvironmentalMicrobiology.2009,75(17):5714-5718.
    [19] Parsley L C,Consuegra E J,Kakirde K S,et al. Identification of diverseantimicrobial resistance determinants carried on bacterial, plasmid, or viralmetagenomes from an activated sludge microbial assemblage [J]. Applied andEnvironmental Microbiology.2010,76(11):3753-3757.
    [20] Shi P,Jia S Y,Zhang X X,et al. Metagenomic insights into chlorination effectson microbial antibiotic resistance in drinking water [J]. Water Research.2013,47(1):111-120.
    [21]刘虹,张国平,刘丛强等.贵阳城市污水及南明河中氯霉素和四环素类抗生素的特征[J].环境科学.2009,30:687-692.
    [22] Sui Q,Huang J,Deng S B,et al. Seasonal variation in the occurrence andremoval of pharmaceuticals and personal care products in different biologicalwastewater treatment processes [J]. Environmental Science&Technology.2011,45(8):3341-3348.
    [23] Sui Q,Huang J,Deng S B,et al. Occurrence and removal of pharmaceuticals,caffeine and DEET in wastewater treatment plants of Beijing, China [J]. WaterResearch.2010,44(2):417-426.
    [24] Jiang L,Hu X,Yin D,et al. Occurrence, distribution and seasonal variation ofantibiotics in the Huangpu River, Shanghai, China [J]. Chemosphere.2011,82(6):822-828.
    [25] Zhou L J,Ying G G,Liu S,et al. Occurrence and fate of eleven classes ofantibiotics in two typical wastewater treatment plants in South China [J].Science of the Total Environment.2013,452–453(0):365-376.
    [26] Bu Q W,Wang B,Huang J,et al. Pharmaceuticals and personal care productsin the aquatic environment in China: A review [J]. Journal of Hazardousmaterials.2013,262:189-211.
    [27] Minh T B,Leung H W,Loi I H,et al. Antibiotics in the Hong Kongmetropolitan area: Ubiquitous distribution and fate in Victoria Harbour [J].Marine Pollution Bulletin.2009,58(7):1052-1062.
    [28] Kasprzyk-Hordern B,Dinsdale R M,Guwy A J. The removal ofpharmaceuticals, personal care products, endocrine disruptors and illicit drugsduring wastewater treatment and its impact on the quality of receiving waters[J]. Water Research.2009,43(2):363-380.
    [29] Choi K,Kim Y,Jung J,et al. Occurrences and ecological risks ofroxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea [J].Environmental Toxicology and Chemistry.2008,27(3):711-719.
    [30] Hirsch R,Ternes T,Haberer K,et al. Occurrence of antibiotics in the aquaticenvironment [J]. Science of the Total Environment.1999,225(1-2):109-118.
    [31] Chatzitakis A,Berberidou C,Paspaltsis I,et al. Photocatalytic degradation anddrug activity reduction of Chloramphenicol [J]. Water Research.2008,42(1-2):386-394.
    [32] Zuorro A,Fidaleo M,Lavecchia R. Degradation and antibiotic activityreduction of chloramphenicol in aqueous solution by UV/H2O2process [J].Journal of Environmental Management.2014,133:302-308.
    [33] Singh K P,Singh A K,Gupta S,et al. Modeling and optimization of reductivedegradation of chloramphenicol in aqueous solution by zero-valent bimetallicnanoparticles [J]. Environmental Science and Pollution Research.2012,19(6):2063-2078.
    [34] Shokri M,Jodat A,Modirshahla N,et al. Photocatalytic degradation ofchloramphenicol in an aqueous suspension of silver-doped TiO2nanoparticles[J]. Environmental Technology.2013,34(9):1161-1166.
    [35] Czech B,Rubinowska K. TiO2-assisted photocatalytic degradation ofdiclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors inwater [J]. Adsorption-Journal of the International Adsorption Society.2013,19(2-4):619-630.
    [36] Badawy M I,Wahaab R A,El-Kalliny A S. Fenton-biological treatmentprocesses for the removal of some pharmaceuticals from industrial wastewater[J]. Journal of Hazardous materials.2009,167(1-3):567-574.
    [37]范国良.氯霉素废水的电化学处理方法研究[D].华中科技大学硕士学位论文.2009.
    [38] Garcia-Segura S,Cavalcanti E B,Brillas E. Mineralization of the antibioticchloramphenicol by solar photoelectro-Fenton: From stirred tank reactor tosolar pre-pilot plant [J]. Applied Catalysis B: Environmental.2014,144(0):588-598.
    [39] Csay T,Rácz G,Takács E,et al. Radiation induced degradation ofpharmaceutical residues in water: Chloramphenicol [J]. Radiation Physics andChemistry.2012,81(9):1489-1494.
    [40] Nie M,Yang Y,Zhang Z,et al. Degradation of chloramphenicol by thermallyactivated persulfate in aqueous solution [J]. Chemical Engineering Journal.2014,246(0):373-382.
    [41]史富丽,王志平.臭氧氧化降解水中氯霉素的效能[J].净水技术.2013,32(2):25-29.
    [42] Smith G N,Worrel C S. Enzymatic reduction of chloramphenicol [J]. Archivesof Biochemistry.1949,24(1):216-223.
    [43] Smith G N,Worrel C S. Reduction of chloromycetin and related compounds byEscherichia coli [J]. Journal of Bacteriology.1953,65(3):313-317.
    [44] Egami F,Ebata M,Sato R. Reduction of chloromycetin by a cell-free bacterialextract and its relation to nitrite reduction [J]. Nature.1951,167(4238):118-119.
    [45] O'Brien R W,Morris J G. The Ferredoxin-dependent reduction ofchloramphenicol by Clostridium acetobutylicum [J]. J Gen Microbiol.1971,67(3):265-271.
    [46] Smith A L,Erwin A L,Kline T,et al. Chloramphenicol is a substrate for a novelnitroreductase pathway in Haemophilus influenzae [J]. Antimicrobial Agentsand Chemotherapy.2007,51(8):2820-2829.
    [47]吕玄文.淡水养殖鱼塘中氯霉素污染及微生物降解研究[D].华南理工大学博士学位论文.2009.
    [48] Zhao X,Tian F W,Wang G,et al. Isolation, identification and characterizationof human intestinal bacteria with the ability to utilize chloramphenicol as thesole source of carbon and energy [J]. FEMS Microbiology Ecology.2012,82(3):703-712.
    [49] Tao W,Lee M H,Wu J,et al. Inactivation of chloramphenicol and florfenicolby a novel chloramphenicol hydrolase [J]. Applied and EnvironmentalMicrobiology.2012,78(17):6295-6301.
    [50] Rabaey K,Rodriguez J,Blackall L L,et al. Microbial ecology meetselectrochemistry: electricity-driven and driving communities [J]. ISME Journal.2007,1(1):9-18.
    [51] Rosenbaum M,Aulenta F,Villano M,et al. Cathodes as electron donors formicrobial metabolism: Which extracellular electron transfer mechanisms areinvolved?[J]. Bioresource Technology.2011,102(1):324-333.
    [52] Geelhoed J S,Stams A J. Electricity-assisted biological hydrogen productionfrom acetate by Geobacter sulfurreducens [J]. Environmental Science&Technology.2011,45(2):815-820.
    [53] Jeremiasse A W,Hamelers H V,Buisman C J. Microbial electrolysis cell witha microbial biocathode [J]. Bioelectrochemistry.2010,78(1):39-43.
    [54] Rozendal R A,Jeremiasse A W,Hamelers H V,et al. Hydrogen production witha microbial biocathode [J]. Environmental Science&Technology.2008,42(2):629-634.
    [55] Steinbusch K J J,Hamelers H V M,Schaap J D,et al. Bioelectrochemicalethanol production through mediated acetate reduction by mixed cultures [J].Environmental Science&Technology.2010,44(1):513-517.
    [56] Cheng S A,Xing D F,Call D F,et al. Direct biological conversion of electricalcurrent into methane by electromethanogenesis [J]. Environmental Science&Technology.2009,43(10):3953-3958.
    [57] Nevin K P,Hensley S A,Franks A E,et al. Electrosynthesis of organiccompounds from carbon dioxide is catalyzed by a diversity of acetogenicmicroorganisms [J]. Applied and Environmental Microbiology.2011,77(9):2882-2886.
    [58] Nevin K P,Woodard T L,Franks A E,et al. Microbial electrosynthesis: feedingmicrobes electricity to convert carbon dioxide and water to multicarbonextracellular organic compounds [J]. mBio.2010,1(2): e00103-10.doi:10.1128/mBio.00103-10.
    [59] Lohner S T,Becker D,Mangold K M,et al. Sequential reductive and oxidativebiodegradation of chloroethenes stimulated in a coupled bioelectro-process [J].Environmental Science&Technology.2011,45(15):6491-6497.
    [60]王宁.生物阴极MFCs降解不同氯酚及诱导效应[D].大连理工大学硕士学位论文.2012.
    [61] Liang B,Jiang J,Zhang J,et al. Horizontal transfer of dehalogenase genesinvolved in the catalysis of chlorinated compounds: evidence and ecologicalrole [J]. Critical Reviews in Microbiology.2012,38(2):95-110.
    [62] Wang A J,Cheng H Y,Liang B,et al. Efficient reduction of nitrobenzene toaniline with a biocatalyzed cathode [J]. Environmental Science&Technology.2011,45(23):10186-10193.
    [63] Feng H,Zhang X,Liang Y,et al. Enhanced removal of p-fluoronitrobenzeneusing bioelectrochemical system [J]. Water Research.2014,60:54-63.
    [64] Sun J A,Bi Z,Hou B,et al. Further treatment of decolorization liquid of azodye coupled with increased power production using microbial fuel cellequipped with an aerobic biocathode [J]. Water Research.2011,45(1):283-291.
    [65] Huang L P,Chai X L,Chen G H,et al. Effect of set potential on hexavalentchromium reduction and electricity generation from biocathode microbial fuelcells [J]. Environmental Science&Technology.2011,45(11):5025-5031.
    [66]王刚.以六价铬为阴极电子受体的微生物燃料电池的研究[D].大连理工大学硕士学位论文.2008.
    [67] Gregory K B,Lovley D R. Remediation and recovery of uranium fromcontaminated subsurface environments with electrodes [J]. EnvironmentalScience&Technology.2005,39(22):8943-8947.
    [68] Virdis B,Rabaey K,Yuan Z,et al. Microbial fuel cells for simultaneous carbonand nitrogen removal [J]. Water Research.2008,42(12):3013-3024.
    [69]梁鹏,张玲,黄霞等.双筒型微生物燃料电池生物阴极反硝化研究[J].环境科学.2010,31(8):1932-1936.
    [70] Puig S,Serra M,Vilar-Sanz A,et al. Autotrophic nitrite removal in the cathodeof microbial fuel cells [J]. Bioresource Technology.2011,102(6):4462-4467.
    [71] Su W T,Zhang L X,Tao Y,et al. Sulfate reduction with electrons directlyderived from electrodes in bioelectrochemical systems [J]. ElectrochemistryCommunications.2012,22:37-40.
    [72]符诗雨,刘广立,骆海萍等.微生物电解系统生物阴极的硫酸盐还原特性研究[J].环境科学.2014,35(2):626-632.
    [73] Thrash J C,Van Trump J I,Weber K A,et al. Electrochemical stimulation ofmicrobial perchlorate reduction [J]. Environmental Science&Technology.2007,41(5):1740-1746.
    [74] Desloover J,Puig S,Virdis B,et al. Biocathodic nitrous oxide removal inbioelectrochemical systems [J]. Environmental Science&Technology.2011,45(24):10557-10566.
    [75] Lovley R D. Powering microbes with electricity: direct electron transfer fromelectrodes to microbes [J]. Environmental Microbiology Reports.2011,3(1):27-35.
    [76] Lovley D R,Nevin K P. A shift in the current: new applications and conceptsfor microbe-electrode electron exchange [J]. Current Opinion in Biotechnoloy.2011,22(3):441-448.
    [77] Clauwaert P,Van der Ha D,Boon N,et al. Open air biocathode enableseffective electricity generation with microbial fuel cells [J]. EnvironmentalScience&Technology.2007,41(21):7564-7569.
    [78] Rismani-Yazdi H,Carver S M,Christy A D,et al. Cathodic limitations inmicrobial fuel cells: An overview [J]. Journal of Power Sources.2008,180(2):683-694.
    [79] Holmes D E,Bond D R,O'Neill R A,et al. Microbial communities associatedwith electrodes harvesting electricity from a variety of aquatic sediments [J].Microbial Ecology.2004,48(2):178-190.
    [80] De Schamphelaire L,Boeckx P,Verstraete W. Evaluation of biocathodes infreshwater and brackish sediment microbial fuel cells [J]. AppliedMicrobiology and Biotechnology.2010,87(5):1675-1687.
    [81] Vandecandelaere I,Nercessian O,Faimali M,et al. Bacterial diversity of thecultivable fraction of a marine electroactive biofilm [J]. Bioelectrochemistry.2010,78(1):62-66.
    [82] Erable B,Vandecandelaere I,Faimali M,et al. Marine aerobic biofilm asbiocathode catalyst [J]. Bioelectrochemistry.2010,78(1):51-56.
    [83] Chung K,Fujiki I,Okabe S. Effect of formation of biofilms and chemical scaleon the cathode electrode on the performance of a continuous two-chambermicrobial fuel cell [J]. Bioresource Technology.2011,102(1):355-360.
    [84] Rabaey K,Read S T,Clauwaert P,et al. Cathodic oxygen reduction catalyzedby bacteria in microbial fuel cells [J]. ISME Journal.2008,2(5):519-527.
    [85] Parot S,Vandecandelaere I,Cournet A,et al. Catalysis of the electrochemicalreduction of oxygen by bacteria isolated from electro-active biofilms formed inseawater [J]. Bioresource Technology.2011,102(1):304-311.
    [86] Parot S,Nercessian O,Delia M L,et al. Electrochemical checking of aerobicisolates from electrochemically active biofilms formed in compost [J]. Journalof Applied Microbiology.2009,106(4):1350-1359.
    [87] Cournet A,Berge M,Roques C,et al. Electrochemical reduction of oxygencatalyzed by Pseudomonas aeruginosa [J]. Electrochimica Acta.2010,55(17):4902-4908.
    [88] Cournet A,Delia M L,Bergel A,et al. Electrochemical reduction of oxygencatalyzed by a wide range of bacteria including Gram-positive [J].Electrochemistry Communications.2010,12(4):505-508.
    [89] Freguia S,Tsujimura S,Kano K. Electron transfer pathways in microbialoxygen biocathodes [J]. Electrochimica Acta.2010,55(3):813-818.
    [90] Chen G W,Choi S J,Lee T H,et al. Application of biocathode in microbial fuelcells: cell performance and microbial community [J]. Applied Microbiologyand Biotechnology.2008,79(3):379-388.
    [91] Butler C S,Clauwaert P,Green S J,et al. Bioelectrochemical perchloratereduction in a microbial fuel cell [J]. Environmental Science&Technology.2010,44(12):4685-4691.
    [92] Wrighton K C,Virdis B,Clauwaert P,et al. Bacterial community structurecorresponds to performance during cathodic nitrate reduction [J]. ISMEJournal.2010,4(11):1443-1455.
    [93] Gregory K B,Bond D R,Lovley D R. Graphite electrodes as electron donorsfor anaerobic respiration [J]. Environmental Microbiology.2004,6(6):596-604.
    [94] Virdis B,Read S T,Rabaey K,et al. Biofilm stratification during simultaneousnitrification and denitrification (SND) at a biocathode [J]. BioresourceTechnology.2011,102(1):334-341.
    [95] Kondaveeti S,Lee S H,Park H D,et al. Bacterial communities in abioelectrochemical denitrification system: the effects of supplemental electronacceptors [J]. Water Research.2014,51:25-36.
    [96] Lee S H,Kondaveeti S,Min B,et al. Enrichment of Clostridia during theoperation of an external-powered bio-electrochemical denitrification system [J].Process Biochemistry.2013,48(2):306-311.
    [97] Cong Y Q,Xu Q,Feng H J,et al. Efficient electrochemically active biofilmdenitrification and bacteria consortium analysis [J]. Bioresource Technology.2013,132:24-27.
    [98] Su W T,Zhang L X,Li D P,et al. Dissimilatory nitrate reduction byPseudomonas alcaliphila with an electrode as the sole electron donor [J].Biotechnology and Bioengineering.2012,109(11):2904-2910.
    [99] Venkataraman A,Rosenbaum M A,Perkins S D,et al. Metabolite-basedmutualism between Pseudomonas aeruginosa PA14and Enterobacteraerogenes enhances current generation in bioelectrochemical systems [J].Energy&Environmental Science.2011,4(11):4550-4559.
    [100] Liang B,Cheng H,Van Nostrand J D,et al. Microbial community structureand function of nitrobenzene reduction biocathode in response to carbonsource switchover [J]. Water Research.2014,54:137-148.
    [101] Mohn W W,Tiedje J M. Microbial reductive dehalogenation [J].Microbiological Reviews.1992,56(3):482-507.
    [102] Huang L,Chai X,Quan X,et al. Reductive dechlorination and mineralizationof pentachlorophenol in biocathode microbial fuel cells [J]. BioresourceTechnology.2012,111:167-174.
    [103] Liu D,Lei L C,Yang B,et al. Direct electron transfer from electrode toelectrochemically active bacteria in a bioelectrochemical dechlorinationsystem [J]. Bioresource Technology.2013,148:9-14.
    [104] Tandukar M,Huber S J,Onodera T,et al. Biological chromium(VI) reductionin the cathode of a microbial fuel cell [J]. Environmental Science&Technology.2009,43(21):8159-8165.
    [105] Huang L P,Chen J W,Quan X,et al. Enhancement of hexavalent chromiumreduction and electricity production from a biocathode microbial fuel cell [J].Bioprocess and Biosystems Engineering.2010,33(8):937-945.
    [106] Thrash J C,Ahmadi S,Torok T,et al. Magnetospirillum bellicus sp nov., anovel dissimilatory perchlorate-reducing alphaproteobacterium isolated from abioelectrical reactor [J]. Applied and Environmental Microbiology.2010,76(14):4730-4737.
    [107] Shea C,Clauwaert P,Verstraete W,et al. Adapting a denitrifying biocathodefor perchlorate reduction [J]. Water Science&Technology.2008,58(10):1941-1946.
    [108] Dennis P G,Harnisch F,Yeoh Y K,et al. Dynamics of cathode-associatedmicrobial communities and metabolite profiles in a glycerol-fedbioelectrochemical system [J]. Applied and Environmental Microbiology.2013,79(13):4008-4014.
    [109] Carlson H K,Iavarone A T,Gorur A,et al. Surface multiheme c-typecytochromes from Thermincola potens and implications for respiratory metalreduction by Gram-positive bacteria [J]. Proceedings of the National Academyof Sciences of the United States of America.2012,109(5):1702-1707.
    [110] Wrighton K C,Thrash J C,Melnyk R A,et al. Evidence for direct electrontransfer by a gram-positive bacterium isolated from a microbial fuel cell [J].Applied and Environmental Microbiology.2011,77(21):7633-7639.
    [111] Lovley D R. Electromicrobiology [J]. Annual Review of Microbiology.2012,66:391-409.
    [112] Okamoto A,Hashimoto K,Nealson K H,et al. Rate enhancement of bacterialextracellular electron transport involves bound flavin semiquinones [J].Proceedings of the National Academy of Sciences of the United States ofAmerica.2013,110(19):7856-7861.
    [113] Okamoto A,Saito K,Inoue K,et al. Uptake of self-secreted flavins as boundcofactors for extracellular electron transfer in Geobacter species [J]. Energy&Environmental Science.2014,7(4):1357-1361.
    [114] Nevin K P,Lovley D R. Lack of production of electron-shuttling compoundsor solubilization of Fe(III) during reduction of insoluble Fe(III) oxide byGeobacter metallireducens [J]. Applied and Environmental Microbiology.2000,66(5):2248-2251.
    [115] Bond D R,Lovley D R. Electricity production by Geobacter sulfurreducensattached to electrodes [J]. Applied and Environmental Microbiology.2003,69(3):1548-1555.
    [116] Methe B A,Nelson K E,Eisen J A,et al. Genome of Geobacter sulfurreducens:metal reduction in subsurface environments [J]. Science.2003,302(5652):1967-1969.
    [117] Inoue K,Leang C,Franks A E,et al. Specific localization of the c-typecytochrome OmcZ at the anode surface in current-producing biofilms ofGeobacter sulfurreducens [J]. Environmental Microbiology Reports.2011,3(2):211-217.
    [118] Magnuson T S,Isoyama N,Hodges-Myerson A L,et al. Isolation,characterization and gene sequence analysis of a membrane-associated89kDaFe(III) reducing cytochrome c from Geobacter sulfurreducens [J]. BiochemicalJournal.2001,359(Pt1):147-152.
    [119] Qian X L,Reguera G,Mester T,et al. Evidence that OmcB and OmpB ofGeobacter sulfurreducens are outer membrane surface proteins [J]. FEMSMicrobiology Letters.2007,277(1):21-27.
    [120] Leang C,Adams L A,Chin K J,et al. Adaptation to disruption of the electrontransfer pathway for Fe(III) reduction in Geobacter sulfurreducens [J]. Journalof Bacteriology.2005,187(17):5918-5926.
    [121] Leang C,Coppi M V,Lovley D R. OmcB, a c-type polyheme cytochrome,involved in Fe(III) reduction in Geobacter sulfurreducens [J]. Journal ofBacteriology.2003,185(7):2096-2103.
    [122] Mehta T,Coppi M V,Childers S E,et al. Outer membrane c-type cytochromesrequired for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens[J]. Applied and Environmental Microbiology.2005,71(12):8634-8641.
    [123] Orellana R,Leavitt J J,Comolli L R,et al. U(VI) reduction by diverse outersurface c-type cytochromes of Geobacter sulfurreducens [J]. Applied andEnvironmental Microbiology.2013,79(20):6369-6374.
    [124] Shelobolina E S,Coppi M V,Korenevsky A A,et al. Importance of c-Typecytochromes for U(VI) reduction by Geobacter sulfurreducens [J]. BMCMicrobiology.2007,7:16.
    [125] Voordeckers J W,Kim B C,Izallalen M,et al. Role of Geobactersulfurreducens outer surface c-type cytochromes in reduction of soil humicacid and anthraquinone-2,6-disulfonate [J]. Applied and EnvironmentalMicrobiology.2010,76(7):2371-2375.
    [126] Busalmen J P,Esteve-Nunez A,Berna A,et al. C-type cytochromes wireelectricity-producing bacteria to electrodes [J]. AngewandteChemie-International Edition.2008,47(26):4874-4877.
    [127] Dumas C,Basseguy R,Bergel A. Electrochemical activity of Geobactersulfurreducens biofilms on stainless steel anodes [J]. Electrochimica Acta.2008,53(16):5235-5241.
    [128] Holmes D E,Chaudhuri S K,Nevin K P,et al. Microarray and geneticanalysis of electron transfer to electrodes in Geobacter sulfurreducens [J].Environmental Microbiology.2006,8(10):1805-1815.
    [129] Nevin K P,Kim B C,Glaven R H,et al. Anode biofilm transcriptomicsreveals outer surface components essential for high density current productionin Geobacter sulfurreducens fuel cells [J]. PLos One.2009,4(5):e5628.
    [130] Marshall C W,May H D. Electrochemical evidence of direct electrodereduction by a thermophilic Gram-positive bacterium, Thermincolaferriacetica [J]. Energy&Environmental Science.2009,2(6):699-705.
    [131] Wrighton K C,Agbo P,Warnecke F,et al. A novel ecological role of theFirmicutes identified in thermophilic microbial fuel cells [J]. ISME Journal.2008,2(11):1146-1156.
    [132] Lies D P,Hernandez M E,Kappler A,et al. Shewanella oneidensis MR-1usesoverlapping pathways for iron reduction at a distance and by direct contactunder conditions relevant for Biofilms [J]. Applied and EnvironmentalMicrobiology.2005,71(8):4414-4426.
    [133] Nevin K P,Lovley D R. Mechanisms for accessing insoluble Fe(III) oxideduring dissimilatory Fe(III) reduction by Geothrix fermentans [J]. Applied andEnvironmental Microbiology.2002,68(5):2294-2299.
    [134] Nevin K P,Lovley D R. Mechanisms for Fe(III) oxide reduction insedimentary environments [J]. Geomicrobiology Journal.2002,19(2):141-159.
    [135] Newman D K,Kolter R. A role for excreted quinones in extracellular electrontransfer [J]. Nature.2000,405(6782):94-97.
    [136] von Canstein H,Ogawa J,Shimizu S,et al. Secretion of flavins by Shewanellaspecies and their role in extracellular electron transfer [J]. Applied andEnvironmental Microbiology.2008,74(3):615-623.
    [137] Lanthier M,Gregory K B,Lovley D R. Growth with high planktonic biomassin Shewanella oneidensis fuel cells [J]. FEMS Microbiology Letters.2008,278(1):29-35.
    [138] Marsili E,Baron D B,Shikhare I D,et al. Shewanella Secretes flavins thatmediate extracellular electron transfer [J]. Proceedings of the NationalAcademy of Sciences of the United States of America.2008,105(10):3968-3973.
    [139] Baron D,LaBelle E,Coursolle D,et al. Electrochemical measurement ofelectron transfer kinetics by Shewanella oneidensis MR-1[J]. Journal ofBiological Chemistry.2009,284(42):28865-28873.
    [140] Coursolle D,Baron D B,Bond D R,et al. The Mtr respiratory pathway isessential for reducing flavins and electrodes in Shewanella oneidensis [J].Journal of Bacteriology.2010,192(2):467-474.
    [141] Clarke T A,Edwards M J,Gates A J,et al. Structure of a bacterial cell surfacedecaheme electron conduit [J]. Proceedings of the National Academy ofSciences of the United States of America.2011,108(23):9384-9389.
    [142] Hartshorne R S,Reardon C L,Ross D,et al. Characterization of an electronconduit between bacteria and the extracellular environment [J]. Proceedings ofthe National Academy of Sciences of the United States of America.2009,106(52):22169-22174.
    [143] Liu H A,Newton G J,Nakamura R,et al. Electrochemical characterization ofa single electricity-producing bacterial cell of shewanella by using opticaltweezers [J]. Angewandte Chemie-International Edition.2010,49(37):6596-6599.
    [144] Jiang X C,Hu J S,Fitzgerald L A,et al. Probing electron transfer mechanismsin Shewanella oneidensis MR-1using a nanoelectrode platform and single-cellimaging [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America.2010,107(39):16806-16810.
    [145] Ross D E,Brantley S L,Tien M. Kinetic characterization of OmcA and MtrC,terminal reductases involved in respiratory electron transfer for dissimilatoryiron reduction in Shewanella oneidensis MR-1[J]. Applied and EnvironmentalMicrobiology.2009,75(16):5218-5226.
    [146] Kotloski N J,Gralnick J A. Flavin electron shuttles dominate extracellularelectron transfer by Shewanella oneidensis [J]. mBio.2013,4(1):e00553-12.doi:10.1128/mBio.00553-12.
    [147] Bond D R,Lovley D R. Evidence for involvement of an electron shuttle inelectricity generation by Geothrix fermentans [J]. Applied and EnvironmentalMicrobiology.2005,71(4):2186-2189.
    [148] Mehta-Kolte M G,Bond D R. Geothrix fermentans secretes two differentredox-active compounds to utilize electron acceptors across a wide range ofredox potentials [J]. Applied and Environmental Microbiology.2012,78(19):6987-6995.
    [149] Freguia S,Masuda M,Tsujimura S,et al. Lactococcus lactis catalyseselectricity generation at microbial fuel cell anodes via excretion of a solublequinone [J]. Bioelectrochemistry.2009,76(1-2):14-18.
    [150] Zhang T T,Zhang L X,Su W T,et al. The direct electrocatalysis ofphenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila underalkaline condition in microbial fuel cells [J]. Bioresource Technology.2011,102(14):7099-7102.
    [151] Rabaey K,Boon N,Hofte M,et al. Microbial phenazine production enhanceselectron transfer in biofuel cells [J]. Environmental Science&Technology.2005,39(9):3401-3408.
    [152] Wang Y F,Tsujimura S,Cheng S S,et al. Self-excreted mediator fromEscherichia coli K-12for electron transfer to carbon electrodes [J]. AppliedMicrobiology and Biotechnology.2007,76(6):1439-1446.
    [153] Liu X W,Li W W,Yu H Q. Cathodic catalysts in bioelectrochemical systemsfor energy recovery from wastewater [J]. Chem Soc Rev.2014,DOI:10.1039/C3CS60130G
    [154] Reguera G,Nevin K P,Nicoll J S,et al. Biofilm and nanowire productionleads to increased current in Geobacter sulfurreducens fuel cells [J]. Appliedand Environmental Microbiology.2006,72(11):7345-7348.
    [155] Malvankar N S,Vargas M,Nevin K P,et al. Tunable metallic-likeconductivity in microbial nanowire networks [J]. Nature Nanotechnology.2011,6(9):573-579.
    [156] Franks A E,Nevin K P,Glaven R H,et al. Microtoming coupled to microarrayanalysis to evaluate the spatial metabolic status of Geobacter sulfurreducensbiofilms [J]. ISME Journal.2010,4(4):509-519.
    [157] Malvankar N S,Lovley D R. Microbial nanowires for bioenergy applications[J]. Current Opinion in Biotechnology.2014,27(0):88-95.
    [158] Qian F,Li Y. Biomaterials: a natural source of nanowires [J]. NatureNanotechnology.2011,6(9):538-539.
    [159] Childers S E,Ciufo S,Lovley D R. Geobacter metallireducens accessesinsoluble Fe(III) oxide by chemotaxis [J]. Nature.2002,416(6882):767-769.
    [160] Craig L,Pique M E,Tainer J A. Type IV pilus structure and bacterialpathogenicity [J]. Nature Reviews Microbiology.2004,2(5):363-378.
    [161] Reguera G,McCarthy K D,Mehta T,et al. Extracellular electron transfer viamicrobial nanowires [J]. Nature.2005,435(7045):1098-1101.
    [162] Leang C,Qian X,Mester T,et al. Alignment of the c-type cytochrome OmcSalong pili of Geobacter sulfurreducens [J]. Applied and EnvironmentalMicrobiology.2010,76(12):4080-4084.
    [163] Malvankar N S,Tuominen M T,Lovley D R. Lack of cytochromeinvolvement in long-range electron transport through conductive biofilms andnanowires of Geobacter sulfurreducens [J]. Energy&Environmental Science.2012,5(9):8651-8659.
    [164] Bonanni P S,Massazza D,Busalmen J P. Stepping stones in the electrontransport from cells to electrodes in Geobacter sulfurreducens biofilms [J].Physical Chemistry Chemical Physics.2013,15(25):10300-10306.
    [165] Veazey J P,Reguera G,Tessmer S H. Electronic properties of conductive piliof the metal-reducing bacterium Geobacter sulfurreducens probed by scanningtunneling microscopy [J]. Phys Rev E Stat Nonlin Soft Matter Phys.2011,84(6Pt1):060901.
    [166] Liu X,Tremblay P L,Malvankar N S,et al. A Geobacter sulfurreducens strainexpressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but isdeficient in Fe(III) oxide reduction and current production [J]. Applied andEnvironmental Microbiology.2014,80(3):1219-1224.
    [167] Vargas M,Malvankar N S,Tremblay P L,et al. Aromatic amino acids requiredfor pili conductivity and long-range extracellular electron transport inGeobacter sulfurreducens [J]. mBio.2013,4(2):e00105-00113.
    [168] Feliciano G T,da Silva A J,Reguera G,et al. Molecular and electronicstructure of the peptide subunit of Geobacter sulfurreducens conductive pilifrom first principles [J]. The Journal of Physical Chemistry A.2012,116(30):8023-8030.
    [169] Reardon P N,Mueller K T. Structure of the type IVa major pilin from theelectrically conductive bacterial nanowires of Geobacter sulfurreducens [J].Journal of Biological Chemistry.2013,288(41):29260-29266.
    [170] Snider R M,Strycharz-Glaven S M,Tsoi S D,et al. Long-range electrontransport in Geobacter sulfurreducens biofilms is redox gradient-driven [J].Proceedings of the National Academy of Sciences of the United States ofAmerica.2012,109(38):15467-15472.
    [171] Strycharz-Glaven S M,Snider R M,Guiseppi-Elie A,et al. On the electricalconductivity of microbial nanowires and biofilms [J]. Energy&EnvironmentalScience.2011,4(11):4366-4379.
    [172] Gorby Y A,Yanina S,McLean J S,et al. Electrically conductive bacterialnanowires produced by Shewanella oneidensis strain MR-1and othermicroorganisms [J]. Proceedings of the National Academy of Sciences of theUnited States of America.2006,103(30):11358-11363.
    [173] El-Naggar M Y,Gorby Y A,Xia W,et al. The molecular density of states inbacterial nanowires [J]. Biophys J.2008,95(1):L10-12.
    [174] El-Naggar M Y,Wanger G,Leung K M,et al. Electrical transport alongbacterial nanowires from Shewanella oneidensis MR-1[J]. Proceedings of theNational Academy of Sciences of the United States of America.2010,107(42):18127-18131.
    [175] Pirbadian S,El-Naggar M Y. Multistep hopping and extracellular chargetransfer in microbial redox chains [J]. Physical Chemistry Chemical Physics.2012,14(40):13802-13808.
    [176] Leung K M,Wanger G,Guo Q Q,et al. Bacterial nanowires: conductive assilicon, soft as polymer [J]. Soft Matter.2011,7(14):6617-6621.
    [177] Leung K M,Wanger G,El-Naggar M Y,et al. Shewanella oneidensis MR-1bacterial nanowires exhibit p-type, tunable electronic behavior [J]. NanoLetters.2013,13(6):2407-2411.
    [178] Polizzi N F,Skourtis S S,Beratan D N. Physical constraints on chargetransport through bacterial nanowires [J]. Faraday Discussions.2012,155:43-62.
    [179] Lovley D R. Powering microbes with electricity: direct electron transfer fromelectrodes to microbes [J]. Environmental Microbiology Reports.2011,3(1):27-35.
    [180] Rabaey K,Rozendal R A. Microbial electrosynthesis-revisiting the electricalroute for microbial production [J]. Nature Reviews Microbiology.2010,8(10):706-716.
    [181] Thrash J C,Coates J D. Review: Direct and indirect electrical stimulation ofmicrobial metabolism [J]. Environmental Science&Technology.2008,42(11):3921-3931.
    [182] Strycharz S M,Woodard T L,Johnson J P,et al. Graphite electrode as a soleelectron donor for reductive dechlorination of tetrachlorethene by Geobacterlovleyi [J]. Applied and Environmental Microbiology.2008,74(19):5943-5947.
    [183] Strycharz S M,Glaven R H,Coppi M V,et al. Gene expression and deletionanalysis of mechanisms for electron transfer from electrodes to Geobactersulfurreducens [J]. Bioelectrochemistry.2011,80(2):142-150.
    [184] Ross D E,Flynn J M,Baron D B,et al. Towards electrosynthesis inShewanella: energetics of reversing the Mtr pathway for reductive metabolism[J]. PLos One.2011,6(2), e16649.
    [185] Bose A,Gardel E J,Vidoudez C,et al. Electron uptake by iron-oxidizingphototrophic bacteria [J]. Nature Communications.2014,5,doi:10.1038/ncomms4391.
    [186] Xing D,Zuo Y,Cheng S,et al. Electricity generation by Rhodopseudomonaspalustris DX-1[J]. Environmental Science&Technology.2008,42(11):4146-4151.
    [187] Summers Z M,Gralnick J A,Bond D R. Cultivation of an obligateFe(II)-oxidizing lithoautotrophic bacterium using electrodes [J]. mBio.2013,4(1):e00420-00412.
    [188] Loffler F E,Edwards E A. Harnessing microbial activities for environmentalcleanup [J]. Current Opinion in Biotechnology.2006,17(3):274-284.
    [189] Coleman N V,Mattes T E,Gossett J M,et al. Biodegradation ofcis-dichloroethene as the sole carbon source by a beta-proteobacterium [J].Applied and Environmental Microbiology.2002,68(6):2726-2730.
    [190] Aulenta F,Canosa A,Reale P,et al. Microbial reductive dechlorination oftrichloroethene to ethene with electrodes serving as electron donors withoutthe external addition of redox mediators [J]. Biotechnology andBioengineering.2009,103(1):85-91.
    [191] Strycharz S M,Gannon S M,Boles A R,et al. Reductive dechlorination of2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode servingas the electron donor [J]. Environmental Microbiology Reports.2010,2(2):289-294.
    [192] Kong F,Wang A,Ren H Y,et al. Improved dechlorination and mineralizationof4-chlorophenol in a sequential biocathode-bioanode bioelectrochemicalsystem with mixed photosynthetic bacteria [J]. Bioresource Technology.2014,158:32-38.
    [193] Huang L P,Wang Q,Quan X,et al. Bioanodes/biocathodes formed at optimalpotentials enhance subsequent pentachlorophenol degradation and powergeneration from microbial fuel cells [J]. Bioelectrochemistry.2013,94:13-22.
    [194] Huang L,Shi Y,Wang N,et al. Anaerobic/aerobic conditions andbiostimulation for enhanced chlorophenols degradation in biocathodemicrobial fuel cells [J]. Biodegradation.2014:1-18.
    [195] Huang L P,Chai X L,Quan X,et al. Reductive dechlorination andmineralization of pentachlorophenol in biocathode microbial fuel cells [J].Bioresource Technology.2012,111:167-174.
    [196]高淑红. Shewanella oneidensis MR-1强化生物电化学系统阴极还原降解酸性橙7研究[D].哈尔滨工业大学硕士学位论文.2012.
    [197] Hsu L,Masuda S A,Nealson K H,et al. Evaluation of microbial fuel cellShewanella biocathodes for treatment of chromate contamination [J]. RSCAdvances.2012,2(13):5844-5855.
    [198] Wang Y Z,Wang A J,Zhou A J,et al. Electrode as sole electrons donor forenhancing decolorization of azo dye by an isolated Pseudomonas sp. WYZ-2[J]. Bioresource Technology.2014,152(0):530-533.
    [199] Kopke M,Held C,Hujer S,et al. Clostridium ljungdahlii represents amicrobial production platform based on syngas [J]. Proceedings of theNational Academy of Sciences of the United States of America.2010,107(29):13087-13092.
    [200] Banerjee A,Leang C,Ueki T,et al. Lactose-inducible system for metabolicengineering of Clostridium ljungdahlii [J]. Applied and EnvironmentalMicrobiology.2014,80(8):2410-2416.
    [201] Villano M,Aulenta F,Ciucci C,et al. Bioelectrochemical reduction of CO2to CH4via direct and indirect extracellular electron transfer by ahydrogenophilic methanogenic culture [J]. Bioresource Technology.2010,101(9):3085-3090.
    [202] Lovley D R,Nevin K P. Electrobiocommodities: powering microbialproduction of fuels and commodity chemicals from carbon dioxide withelectricity [J]. Current Opinion in Biotechnology.2013,24(3):385-390.
    [203] Dumas C,Basseguy R,Bergel A. Microbial electrocatalysis with Geobactersulfurreducens biofilm on stainless steel cathodes [J]. Electrochimica Acta.2008,53(5):2494-2500.
    [204] Clauwaert P,Verstraete W. Methanogenesis in membraneless microbialelectrolysis cells [J]. Applied Microbiology and Biotechnology.2009,82(5):829-836.
    [205]王丹,隋倩,赵文涛等.中国地表水环境中药物和个人护理品的研究进展[J].科学通报.2014,59(9):743-751.
    [206] Brown D. The aerobic biodegradability of primary aromatic amines [J].Chemosphere.1983,12:405-414.
    [207] Donlon B A,Razo-Flores E,Lettinga G,et al. Continuous detoxification,transformation, and degradation of nitrophenols in upflow anaerobic sludgeblanket (UASB) reactors [J]. Biotechnology and Bioengineering.1996,51(4):439-449.
    [208] Sun M,Reible D D,Lowry G V,et al. Effect of applied voltage, initialconcentration, and natural organic matter on sequential reduction/oxidation ofnitrobenzene by graphite electrodes [J]. Environmental Science&Technology.2012,46(11):6174-6181.
    [209] Liu W Z,Huang S C,Zhou A J,et al. Hydrogen generation in microbialelectrolysis cell feeding with fermentation liquid of waste activated sludge [J].International Journal of Hydrogen Energy.2012,37(18):13859-13864.
    [210] DuBois M,Gilles K A,Hamilton J K,et al. Colorimetric method fordetermination of sugars and related substances [J]. Analytical Chemistry.1956,28(3):350-356.
    [211] Kim O S,Cho Y J,Lee K,et al. Introducing EzTaxon-e: a prokaryotic16SrRNA gene sequence database with phylotypes that represent unculturedspecies [J]. International Journal of Systematic and Evolutionary Microbiology.2012,62:716-721.
    [212] Zhou J,Bruns M A,Tiedje J M. DNA recovery from soils of diversecomposition [J]. Applied and Environmental Microbiology.1996,62(2):316-322.
    [213] Caporaso J G,Lauber C L,Walters W A,et al. Ultra-high-throughputmicrobial community analysis on the Illumina HiSeq and MiSeq platforms [J].ISME Journal.2012,6(8):1621-1624.
    [214] Schloss P D,Westcott S L,Ryabin T,et al. Introducing mothur: open-source,platform-independent, community-supported software for describing andcomparing microbial communities [J]. Applied and EnvironmentalMicrobiology.2009,75(23):7537-7541.
    [215] Wang Q,Garrity G M,Tiedje J M,et al. Naive Bayesian classifier for rapidassignment of rRNA sequences into the new bacterial taxonomy [J]. Appliedand Environmental Microbiology.2007,73(16):5261-5267.
    [216]谢建平.功能基因芯片(GeoChip)在两种典型环境微生物群落分析中应用的研究[D].中南大学博士学位论文.2011.
    [217] Tu Q,Yu H,He Z,et al. GeoChip4: a functional gene array-based highthroughput environmental technology for microbial community analysis [J].Mol Ecol Resour.2014, doi:10.1111/1755-0998.12239
    [218] Zhou J,Deng Y,Zhang P,et al. Stochasticity, succession, and environmentalperturbations in a fluidic ecosystem [J]. Proceedings of the National Academyof Sciences of the United States of America.2014,111(9):E836-845.
    [219] Chan Y,Van Nostrand J D,Zhou J,et al. Functional ecology of an AntarcticDry Valley [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America.2013,110(22):8990-8995.
    [220] He Z,Deng Y,Zhou J. Development of functional gene microarrays formicrobial community analysis [J]. Current Opinion in Biotechnoloy.2012,23(1):49-55.
    [221] He Z,Deng Y,Van Nostrand J D,et al. GeoChip3.0as a high-throughput toolfor analyzing microbial community composition, structure and functionalactivity [J]. ISME Journal.2010,4(9):1167-1179.
    [222]于皓,陈川,张莉等.溶解氧对碳氮硫共脱除工艺中微生物群落影响解析[J].环境科学.2013,34:2368-2374.
    [223]刘文宗.有机废水微生物电解产氢研究及电极微生物功能解析[D].哈尔滨工业大学博士学位论文.2011.
    [224]于皓,王爱杰,陈川.反硝化脱硫工艺中微生物群落结构及动态分析[J].环境科学.2013,34:1190-1195.
    [225] Rizzo L,Manaia C,Merlin C,et al. Urban wastewater treatment plants ashotspots for antibiotic resistant bacteria and genes spread into the environment:A review [J]. Science of the Total Environment.2013,447:345-360.
    [226] Shaw W V,Leslie A G W. Chloramphenicol acetyltransferase [J]. AnnualReview of Biophysics and Biophysical Chemistry.1991,20:363-386.
    [227] Aminov R I,Mackie R I. Evolution and ecology of antibiotic resistance genes[J]. FEMS Microbiology Letters.2007,271(2):147-161.
    [228] Zhang X X,Zhang T,Fang H H P. Antibiotic resistance genes in waterenvironment [J]. Applied Microbiology and Biotechnology.2009,82(3):397-414.
    [229] Qu Y,Spain J C. Catabolic pathway for2-nitroimidazole involves a novelnitrohydrolase that also confers drug resistance [J]. EnvironmentalMicrobiology.2011,13(4):1010-1017.
    [230] Logan B E,Call D,Cheng S,et al. Microbial electrolysis cells for high yieldhydrogen gas production from organic matter [J]. Environmental Science&Technology.2008,42(23):8630-8640.
    [231]程浩毅.生物电化学系统定向还原硝基苯及能量循环补偿模式研究[D].哈尔滨工业大学博士学位论文.2013.
    [232] Cui D,Kong F Y,Liang B,et al. Decolorization of azo dyes in dual-chamberbiocatalyzed electrolysis systems seeding with enriched inoculum [J]. Journalof Environmental&Analytical Toxicology.2011, S3:001.
    [233] Yang B,Yu G,Huang J. Electrocatalytic hydrodechlorination of2,4,5-trichlorobiphenyl on a palladium-modified nickel foam cathode [J].Environmental Science&Technology.2007,41(21):7503-7508.
    [234] Li Y P,Cao H B,Liu C M,et al. Electrochemical reduction of nitrobenzeneat carbon nanotube electrode [J]. Journal of Hazardous materials.2007,148(1-2):158-163.
    [235] Chuanuwatanakul S,Chailapakul O,Motomizu S. Electrochemical analysis ofchloramphenicol using boron-doped diamond electrode applied to aflow-injection system [J]. Analytical Sciences.2008,24(4):493-498.
    [236] Jeon B Y,Park D H. Improvement of ethanol production by electrochemicalredox coupling of Zymomonas mobilis and Saccharomyces cerevisiae [J].Journal of Microbiology and Biotechnology.2010,20(1):94-100.
    [237] Shin H S,Zeikus J G,Jain M K. Electrically enhanced ethanol fermentationby Clostridium thermocellum and Saccharomyces cerevisiae [J]. AppliedMicrobiology and Biotechnology.2002,58(4):476-481.
    [238] Peguin S,Soucaille P. Modulation of metabolism of Clostridiumacetobutylicum grown in chemostat culture in a three-electrode potentiostaticsystem with methyl viologen as electron carrier [J]. Biotechnology andBioengineering.1996,51(3):342-348.
    [239] Park S M,Kang H S,Park D W,et al. Electrochemical control of metabolicflux of Weissella kimchii AM: Neutral red immobilized in cytoplasmicmembrane as electron channel [J]. Journal of Microbiology and Biotechnology.2005,15(1):80-85.
    [240] Yu L,Duan J Z,Zhao W,et al. Characteristics of hydrogen evolution andoxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolyticgraphite electrode [J]. Electrochimica Acta.2011,56(25):9041-9047.
    [241] Rahal A G a L A M. Degradation of2,4,6-Trinitrotoluene (TNT) by soilbacteria isolated from TNT contaminated soil [J]. Australian Journal of Basicand Applied Sciences.2011,5(2):8-17.
    [242] Roldán M D,Pérez-Reinado E,Castillo F,et al. Reduction ofpolynitroaromatic compounds: the bacterial nitroreductases [J]. FEMSMicrobiology Reviews.2008,32(3):474-500.
    [243] Pham T H,Boon N,Aelterman P,et al. Metabolites produced byPseudomonas sp enable a Gram-positive bacterium to achieve extracellularelectron transfer [J]. Applied Microbiology and Biotechnology.2008,77(5):1119-1129.
    [244] Zuo Y,Xing D,Regan J M,et al. Isolation of the exoelectrogenic bacteriumOchrobactrum anthropi YZ-1by using a U-tube microbial fuel cell [J].Applied and Environmental Microbiology.2008,74(10):3130-3137.
    [245] Zhang G,Zhao Q,Jiao Y,et al. Biocathode microbial fuel cell for efficientelectricity recovery from dairy manure [J]. Biosensors and Bioelectronics.2012,31(1):537-543.
    [246] Shin K H,Lim Y,Ahn J H,et al. Anaerobic biotransformation ofdinitrotoluene isomers by Lactococcus lactis subsp lactis strain27isolatedfrom earthworm intestine [J]. Chemosphere.2005,61(1):30-39.
    [247] Kuda T,Kyoi D,Takahashi H,et al. Detection and isolation ofp-nitrophenol-lowering bacteria from intestine of marine fishes caught inJapanese waters [J]. Marine Pollution Bulletin.2011,62(8):1622-1627.
    [248] Lechardeur D,Cesselin B,Fernandez A,et al. Using heme as an energy boostfor lactic acid bacteria [J]. Current Opinion in Biotechnology.2011,22(2):143-149.
    [249] Bedernjak A F,Groundwater P W,Gray M,et al. Synthesis and evaluation ofhalogenated nitrophenoxazinones as nitroreductase substrates for the detectionof pathogenic bacteria [J]. Tetrahedron.2013,69(39):8456-8462.
    [250] Luan F B,Burgos W D,Xie L,et al. Bioreduction of nitrobenzene, naturalorganic matter, and hematite by Shewanella putrefaciens CN32[J].Environmental Science&Technology.2010,44(1):184-190.
    [251] Spain J C. Biodegradation of nitroaromatic compounds [J]. Annual Review ofMicrobiology.1995,49:523-555.
    [252] Xia X,Cao X X,Liang P,et al. Electricity generation from glucose by aKlebsiella sp in microbial fuel cells [J]. Applied Microbiology andBiotechnology.2010,87(1):383-390.
    [253] Xu S,Liu H. New exoelectrogen Citrobacter sp SX-1isolated from amicrobial fuel cell [J]. Journal of Applied Microbiology.2011,111(5):1108-1115.
    [254] Hasan K,Patil S A,Gorecki K,et al. Electrochemical communication betweenheterotrophically grown Rhodobacter capsulatus with electrodes mediated byan osmium redox polymer [J]. Bioelectrochemistry.2013,93:30-36.
    [255] Logan B E. Exoelectrogenic bacteria that power microbial fuel cells [J].Nature Reviews Microbiology.2009,7(5):375-381.
    [256] Malki M,De Lacey A L,Rodrfguez N,et al. Preferential use of an anode asan electron acceptor by an acidophilic bacterium in the presence of oxygen [J].Applied and Environmental Microbiology.2008,74(14):4472-4476.
    [257] Pokkuluri P R,Londer Y Y,Duke N E,et al. Structure of a novel dodecahemecytochrome c from Geobacter sulfurreducens reveals an extended12nmprotein with interacting hemes [J]. Journal of Structural Biology.2011,174(1):223-233.
    [258] Bianco P,Haladjian J. Recent Progress in the Electrochemistry of C-TypeCytochromes [J]. Biochimie.1994,76(7):605-613.
    [259] Richter K,Schicklberger M,Gescher J. Dissimilatory reduction ofextracellular electron acceptors in anaerobic respiration [J]. Applied andEnvironmental Microbiology.2012,78(4):913-921.
    [260] Bonanni P S,Schrott G D,Robuschi L,et al. Charge accumulation andelectron transfer kinetics in Geobacter sulfurreducens biofilms [J]. Energy&Environmental Science.2012,5(3):6188-6195.
    [261] Aulenta F,Reale P,Canosa A,et al. Characterization of an electro-activebiocathode capable of dechlorinating trichloroethene and cis-dichloroethene toethene [J]. Biosensors&Bioelectronics.2010,25(7):1796-1802.
    [262] Heidelberg J F,Seshadri R,Haveman S A,et al. The genome sequence of theanaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough[J]. Nature Biotechnology.2004,22(5):554-559.
    [263] Shi L,Squier T C,Zachara J M,et al. Respiration of metal (hydr)oxides byShewanella and Geobacter: a key role for multihaem c-type cytochromes [J].Molecular Microbiology.2007,65(1):12-20.
    [264] Zhou J Z,He Q,Hemme C L,et al. How sulphate-reducing microorganismscope with stress: lessons from systems biology [J]. Nature ReviewsMicrobiology.2011,9(6):452-466.
    [265] Caffrey S M,Park H S,Been J,et al. Gene expression by the sulfate-reducingbacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrodeunder cathodic protection conditions [J]. Applied and EnvironmentalMicrobiology.2008,74(8):2404-2413.
    [266] Aulenta F,Canosa A,Majone M,et al. Trichloroethene dechlorination and H2evolution are alternative biological pathways of electric charge utilization by adechlorinating culture in a bioelectrochemical system [J]. EnvironmentalScience&Technology.2008,42(16):6185-6190.
    [267] Koder R L,Haynes C A,Rodgers M E,et al. Flavin thermodynamics explainthe oxygen insensitivity of enteric nitroreductases [J]. Biochemistry.2002,41(48):14197-14205.
    [268] Yanto Y,Hall M,Bommarius A S. Nitroreductase from Salmonellatyphimurium: characterization and catalytic activity [J]. Organic&Biomolecular Chemistry.2010,8(8):1826-1832.
    [269] Sevrioukova I F,Li H,Zhang H,et al. Structure of a cytochrome P450-redoxpartner electron-transfer complex [J]. Proceedings of the National Academy ofSciences of the United States of America.1999,96(5):1863-1868.
    [270] Anusevicius Z,MartinezJulvez M,Genzor C G,et al. Electron transferreactions of Anabaena PCC7119ferredoxin:NADP(+) reductase withnonphysiological oxidants [J]. Biochimica Et Biophysica Acta-Bioenergetics.1997,1320(3):247-255.
    [271] Huang S,Lindahl P A,Wang C,et al.2,4,6-Trinitrotoluene reduction bycarbon monoxide dehydrogenase from Clostridium thermoaceticum [J].Applied and Environmental Microbiology.2000,66(4):1474-1478.
    [272] Lettinga G,Rebac S,Zeeman G. Challenge of psychrophilic anaerobicwastewater treatment [J]. Trends in Biotechnology.2001,19(9):363-370.
    [273] Liu L H,Tsyganova O,Lee D J,et al. Double-chamber microbial fuel cellsstarted up under room and low temperatures [J]. International Journal ofHydrogen Energy.2013,38(35):15574-15579.
    [274] Michie I S,Kim J R,Dinsdale R M,et al. The influence of psychrophilic andmesophilic start-up temperature on microbial fuel cell system performance [J].Energy&Environmental Science.2011,4(3):1011-1019.
    [275] Lu L,Ren N Q,Zhao X,et al. Hydrogen production, methanogen inhibitionand microbial community structures in psychrophilic single-chamber microbialelectrolysis cells [J]. Energy&Environmental Science.2011,4(4):1329-1336.
    [276] Lu L,Xing D F,Ren N Q. Bioreactor performance and quantitative analysis ofmethanogenic and bacterial community dynamics in microbial electrolysiscells during large temperature fluctuations [J]. Environmental Science&Technology.2012,46(12):6874-6881.
    [277] Casas C,Anderson E C,Ojo K K,et al. Characterization of pRAS1-likeplasmids from atypical North American psychrophilic Aeromonas salmonicida[J]. FEMS Microbiology Letters.2005,242(1):59-63.
    [278] Moschonas G,Bolton D J,McDowell D A,et al. Diversity of culturablepsychrophilic and psychrotrophic anaerobic bacteria isolated from beefabattoirs and their environments [J]. Applied and Environmental Microbiology.2011,77(13):4280-4284.
    [279] Pham C A,Jung S J,Phung N T,et al. A novel electrochemically active andFe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila,isolated from a microbial fuel cell [J]. FEMS Microbiology Letters.2003,223(1):129-134.
    [280] Knight V V,Blakemore R. Reduction of diverse electron acceptors byAeromonas hydrophila [J]. Archives of Microbiology.1998,169(3):239-248.
    [281] Claus H,Perret N,Bausinger T,et al. TNT transformation products areaffected by the growth conditions of Raoultella terrigena [J]. BiotechnologyLetters.2007,29(3):411-419.
    [282] Schulz A,Schumann W. hrcA, the first gene of the Bacillus subtilis dnaKoperon encodes a negative regulator of class I heat shock genes [J]. Journal ofBacteriology.1996,178(4):1088-1093.
    [283] Zhou A F,He Z L,Qin Y J,et al. StressChip as a high-throughput tool forassessing microbial community responses to environmental stresses [J].Environmental Science&Technology.2013,47(17):9841-9849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700