牡丹花色与花色苷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡丹为我国著名花卉,被称为“万花一品”、“冠绝群芳”的“花王”。花色是牡丹重要的观赏性状,花色素则是牡丹花色形成的物质基础,又因多种生理活性而具有潜在的应用价值。本文主要研究了中原牡丹品种群的花色、花色苷及二者的相关性,确定了大孔吸附树脂法纯化牡丹花色苷的工艺条件,测定了牡丹花提取液与花色苷的抗氧化活性。具体研究内容及结果如下:
     1 .利用色差仪按国际照明委员会( International Commission on Illumination,CIE)表色系统对94个中原牡丹品种的花色进行测定,并在此基础上,通过CLUSTER过程将花色三刺激值(明度L*、色相a*和b*)采用Ward离差平方和法进行了聚类分析。结果表明:94个中原牡丹品种花色在CIE表色系统坐标系上的分布广泛,聚类分析将其分为9个色系:白(20种)、绿(1种)、浅粉(8种)、粉红(13种)、粉蓝(12种)、红(14种)、紫(11种)、红紫(7种)、红黑(8种),不同色系牡丹的L*、a*和b*值特征明显。白、浅粉、粉红和红色系以及粉蓝、紫和红紫色系的L*与a*、L*与彩度(C*)均表现出显著的负相关性(L*与a*的相关系数R2分别为0.9703和0.6067,L*与C*的相关系数R2分别为0.8519和0.714);多数色系牡丹(除红和红黑外)的L*与b*呈显著的正相关关系(R2为0.8653)。
     2.采用高效液相色谱与二极管陈列检测器和电喷雾电离质谱联用技术(HPLC-DAD-ESI-MS)分析了48个品种的中原牡丹花瓣中的花色苷总含量、种类以及各花色苷单体的相对丰度。结果表明:中原牡丹花中共含有基于天竺葵色素、芍药色素和矢车菊色素的五种花色苷,分别为矢车菊色素-3, 5-O-二葡萄糖苷(Cy3G5G),矢车菊色素-3-O-葡萄糖苷(Cy3G)、芍药色素-3, 5-O-二葡萄糖苷(Pn3G5G)、芍药色素-3-O-葡萄糖苷(Pn3G)和天竺葵色素-3, 5-O-二葡萄糖苷(Pg3G5G),不含天竺葵色素-3-O-葡萄糖苷(Pg3G)。48个品种中原牡丹花色苷总含量变化范围为0~289.5mg/100g;不同色系牡丹花色苷单体的相对丰度差异显著,粉红和红色系品种以天竺葵色素-3, 5- O-二葡萄糖苷为主(相对丰度分别为88.09%和79.06%),不含或含有近少量Pn类色素,属于PgPn类;粉蓝、紫和红黑、红紫色系以芍药色素-3, 5- O-二葡萄糖苷为主(相对丰度分别为88.35%、82.19%和75.65%、72.74%),矢车菊类色素在红紫和红黑色系牡丹中的相对丰度较大,属于PnCy类。通过分析牡丹花色与花色苷关系可知,亮度值L*与花色苷总量(TA)有显著负相关性,在PnCy类中a*和b*都与TA没有相关性,而PnPg类a*与TA正相关,b*与TA没有相关性。
     3.研究比较了多种大孔吸附树脂的静态吸附特性,筛选出了适宜牡丹花色苷纯化的树脂,并确定了固定床吸附和解吸的工艺参数。结果表明:南开化工D-101、天津大钧D-401和安徽三星D-1300三种树脂的吸附率和解析率较高。三种树脂的吸附动力学行为符合二级吸附速率方程,吸附等温线可用Langmuir等温吸附方程描述。在相同条件下,D-1300树脂的吸附量高于另外两种,因此选择安徽三星D-1300树脂作为牡丹花色苷纯化的树脂。花色苷在D-1300树脂上的穿透曲线实验数据可用Bohart-Adams模型方程拟合,拟合公式可用于给定操作条件下花色苷穿透时间的计算。牡丹花色苷提取液经过D-1300树脂动态吸附分离的适宜上样浓度为0.141mg·mL-1 ,上样流速为2BV·h-1;洗脱溶剂为60%乙醇,洗脱流速为2BV·h-1。上述操作条件下,花色苷纯度可由0.31%提高到了20.05%。
     4.测定了48个品种牡丹花瓣提取液的DPPH·清除活性和还原力,研究了‘洛阳红’品种的花色苷部分纯化样品清除DPPH·活性和还原力,并采用SDS-聚丙烯胺凝胶电泳法研究了其对牛血清白蛋白氧化损伤的抑制作用。结果表明:不同品种中原牡丹花色苷提取液的DPPH·清除率和还原力差异显著,分别为8.45~33.46、19.73~74.86 mg Vc/100g花瓣鲜重,且DPPH·清除率和还原力之间具有良好的线性相关关系(R2=0.9387)。‘洛阳红’部分纯化的花色苷样品对DPPH·的清除活性高于芦丁,低于抗坏血酸,半清除浓度为96.28μg·mL-1;其还原力强于芦丁,与抗坏血酸接近。0.1~500μg·mL-1花色苷样品对牛血清白蛋白(BSA)的氧化损伤具有一定抑制作用,量效关系明显。高浓度抗坏血酸和芦丁对牛血清白蛋白氧化有一定的促进作用。
Tree peony is well-known in China, be named as“Wan Hua Yi Pin”and enjoy the honor of“The King of Flowers”. Flower color is one of the most important ornamental characters of tree peony . Anthocyanidins is material basis of forming flower colors of tree peony and have potential practical values bacause of many physiological activeties. The flower colors, anthocyanins, the relationship between them of Zhongyuan tree peony cultivar-groups were studied.The optimum conditions of the purification of anthocyanins from tree poney flowers were determined by the method of macroporous adsorbtion resins and the antioxidant activity of extract and anthocyanins from tree peony flower were assayed. The results were as follows:
     1.The flower colors of 94 cultivars of Zhongyuan tree peony were measured by a NF333 spectrophotometer based on the International Commission on Illumination(CIE) color system. CIE color system L*, a* and b* were cluster analysed by CLUSTER process using Ward square sum of deviations. The results indicated that Zhongyuan tree peony was classified into nine color series ,such as , white(20), green(1), pale red and blue(8), pale red(13), pale blue(12), red(14), purple(11), reddish purple(7) and reddish black(8). And it showed the features of the values of L*, a* and b* of different color tree peony. The relationship between L* and a*, and L* and C* were showed obviously negative correlation of white, light pink, pale red, red and pale blue, purple , reddish purple tree peony ( the correlation coefficient between L* and a* were 0.9703 and 0.6067, L* and C* were 0.8519 and 0.714). Most flower color tree peony( except red and reddish black) had notebility positive correlation between L* and b* (R2 0.8653).
     2. The total content and varieties of anthocyanins and the relative abundance of anthocyanin monomers in the petals of 48 cultivars of Zhongyuan tree peony were analysed by HPLC-DAD-ESI-MS. Five anthocyanins extracted from Zhongyuan tree peony were respectively cyanidin-3,5-di-O-glucoside(Cy3G5G), cyanidin-3-O-glucoside(Cy3G5G), peonidin-3,5-di-O-glucoside(Pn3G5G), peonidin-3-O- glucoside(Pn3G) and pelargonidin-3,5-di-O-glucoside(Pg3G5G), except for pelargonidin-3-O-glucoside(Pg3G). The variation range of total content of anthocyanins in 48 cultivars tree peony was 0~289.5mg/100g. The diversity of relative abundance of anthocyanin monomers in different color tree peony was obvious, and the major anthocyanins in pale red and red cultivars were Pg3G5G (respectively, 88.09 and 79.06%), belongs to PgPn and in pale blue, purple, reddish purple and reddish black cultivars Pn3G5G was major (respectively, 88.35、82.19 and 75.65、72.74%), belongs to PnCy. The relative abundance of cyanidin was bigger in reddish purple and reddish black cultivars. The relationship between flower colors and anthocyanins of tree peony was analysed, which indicated that the bright value(L*) and total anthocyanins(TA) had obviously negative correlation, and no correletion in PnCy type between a* and TA, or b* and TA but in PnPg tree peony between a* and TA displayed positive correlation, and no relation between b* and TA.
     3. The static adsorption characters of a variety of macroporous adsorption resins were studied, a resin fitted to purify peony anthocyanins was selected and the process parameters of Fixed-bed adsorption and desorption were determined. The results indicated that the adsorptive capacity and the rate of desorption of 3 resins D-101, D-401 and D-1300 were higher than others. The adsorption kinetics behavior was accord with the secondary adsorption rate equation and the adsorption isotherm curves could be described by Langmuir equation of the three macroporous resins. D-1300 was chosen to purify peony anthocyanin because at the same conditions the saturated adsorption amount was higher than other 2 resins. The breakthrough curve experiment data of D-1300 on anthocyanin was fitted by the Bohart-Adams equation, and the fitted formula can calculate breakthrough time of anthocyanins in given conditions. The optimum conditions of dynamic adsorption by D-1300 were as follows: the sample concentration, 0.141mg·mL-1; flow velocity, 2BV·h-1; eluent solvent, 60% ethanol; eluent velocity, 2BV·h-1. The purity of anthocyanins was increased from 0.31% to 20.05% at the conditions mentioned above.
     4. Anthocyanins from 48 cultivars of tree penoy flowers were extracted with methanol. Antioxidant activities were determined by the ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH·) methods. The results showed all clutivar extracts exhibited different DDPH·scavenging capacity and the reducing power, however, varying within a wide range, respectively 8.45~33.46、19.73~74.86 mg Vc/100g Petal fresh weight. Reducing power was highly correlated with DDPH·scavenging capacity (R2=0.9396). Antioxidant activities of partial puried ‘Luo Yang Hong’anthocyanin (LYHA) were further evaluated. It is found that DDPH·scavenging capacity of LYHA (IC50=96.28μg·mL-1) was higher than rutin and significantly lower than ascorbic acid, while its reduing power was much greater than rutin and equal to ascorbic acid. Also, LYHA at 0.1~500μg·mL-1 inhibited oxidative damage of Bovine Serum Albumin(BSA) induced by hydroxy radical in a concentration-dependent manner. However, rutin and ascorbic acid showed prooxidant activity towards BSA at high concentrations.
引文
[1]安田齐.花色的生理生物化学学[M].(傅玉兰).北京:中国林业出版社,1989,1-38.
    [2]陈建,陈晨甜,吕长平.观赏植物花色形成影响因子研究进展[J].现代园艺.2009,(6):4-10.
    [3]徐渊金.杨梅和桑椹花色苷的提取分离、结构鉴定及其生物活性研究[D].杭州:浙江工商大学,2007,1.
    [4] Kosaku Takeda, Satoko Tominaga. The anthocyanin in blue flowers of Centaurea cuanus[J]. Bot May Tokyo, 1983, (96): 359-363.
    [5]王少波.黑豆皮种花色苷的提取及纯化研究[D].西安:西安理工大学,2008,3-6.
    [6]丁九斤,穆春,罗洲飞等.醋酸溶液提取蓝莓花色苷工艺的研究[J].中国酿造.2008,199(22):62-64.
    [7]赵慧芳,王小敏,闾连飞等。黑莓果实中花色苷的提取和测定方法研究[J].食品工业科技.2008,(5):176-179.
    [8]李婷,侯晓东,陈文学等.超声波萃取技术的研究现状及展望[J].安徽农业科学.2006,13(34):3188-3190.
    [9]孟凡丽,苏晓田,矫天育.超声波提取法在越橘果实花色苷提取方面的应用研究[J].辽宁农业职业技术学院学报.2009,11(1):21-22.
    [10]朱洪梅,赵猛.超声波辅助提取紫甘薯花色苷工艺研究[J].陕西农业科学.2009,(2):3-5.
    [11] M. Corrales, S. Toepfl, P. Butz, et al. Extraction of anthocyanins from grape by-products assisted by ultrasonics,high hydrostatic pressure or pulsed electric fields: A comparison[J].Innovative Food Science and Amerging Technologies.2008, (9):85-91.
    [12] Fang Chen, Yangzhao Sun, Guanghua Zhao, et al.Optimizing of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatograph-mass spectrometry [J].Ultrasonics Sonochemistry. 2007, (14):767-778.
    [13]郭耀东.葡萄皮花色苷提取纯化技术及稳定性研究[D].杨凌:西北农林科技大学.2008,4-5.
    [14]余红英,尹艳,吴雅红等.木棉花色素的微波提取与其抗菌作用[J].食品与发酵工业.2004,30(5):92-93.
    [15] Yangzhao Sun, Xiaojun Liao, Zhengfu Wang, et al. Optimization of microwave-assisted eatraction of anthocyanins in red raspberries and identification of anthocyanins of extractsusing high-performance liquid chromatography-mass spectrometry[J].Eur Food Res Technol. 2007, (225):511-523.
    [16]马越.紫玉米花色苷提取纯化、性质研究及中试生产[D].北京:中国农业科学院. 2009,3-4.
    [17]李颖畅,孟宪军.酶法提取蓝莓果中花色苷的研究[J].食品工业科技.2008,29(4):215-218.
    [18]赵玉红,张立钢,苗雨.酶-超声波联用提取蓝靛果果渣中花色苷的研究[J].食品工业科技.2008,29(8):183-185.
    [19] B.B. Li, B. Smith, Md. M. Hossaain. Extraction of phenolics from citrus peels II. Enzyme-assisted extraction method[J]. Separation and Purification Techology. 2006, (48):189-196.
    [20]高福成.现代食品工程高新技术[M].北京:中国轻工业出版社,2007,
    [21]张树宝.超临界CO2萃取大花葵花色苷工艺的研究[J].特种野生经济动物和植物研究.2006,(1):29-33.
    [22] Tünde Vatai, Mojia ? kerget, ? eljko Knez. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide[J]. Journal of Food Engineering. 2009, (90):246-254.
    [23]王茂田,谢培山,王忠东等.天然有机化合物提取分离与结构鉴定[M].北京:化学工业出版社,2004,69-200.
    [24]于东,陈桂星,方忠祥等.花色苷提取、分离纯化及鉴定的研究进展[J].食品与发酵工业.2009,35(3):127-133.
    [25]张卓,王晓红,周园等.D101型大孔树脂纯化玉米紫色植株花色苷色素的研究[J].农业科技与装备.2008,(1):48-52.
    [26]李颖畅,郑凤娥,孟宪军.大孔树脂纯化蓝莓果中花色苷的研究[J].食品与生物技术学报.2009,28(4):496-500.
    [27]徐金瑞,张名位,刘兴华等.大孔树脂对黑大豆种皮花色苷的纯化研究[J].农业机械学报.2006,37(4):145-148.
    [28]王萍,苗雨.大孔树脂对黑加仑果渣花色苷的纯化研究[J].哈尔滨商业大学学报(自然科学版).2008,24(6):701-704.
    [29]侯方丽,张名位,苏东晓等.黑米皮花色苷的大孔树脂吸附纯化研究[J].华东师范大学学报(自然科学版).2009,(1):100-104.
    [30]吴金鋆,刘通讯,刘亮等.荔枝果皮花色苷的提取纯化及其酶促降解研究[J].现代食品科技.2008,24(7):683-686.
    [31]曹少谦,潘思轶,姚晓琳等.柱层析法分离纯化血橙花色苷[J].中国农业科学.2009,42(5):1728-1736.
    [32] Zhaoqi Zhang, Pang Xuequn, Chong Yang, et al. Purification and structural analysis ofanthocyanins from litchi pericarp[J].Food Chemistry.2004,(84):601-604.
    [33] Dietmar Kammerer, Jasenka Gajdos Kljusuric, Reinhold Carle, et al. Recovery of anthocyanins from grape pomace extracts (Vitis vinifera L. cv. Cabernet Mitos) using a polymeric adsorber resin[J].Eur Food Res Technol. 2005,(200):431-437.
    [34]唐克华,申仕康,方锤.红檵木花色素分离纯化及其光谱性质研究[J].食品科学.2009,30(13):68-72.
    [35]胡隆基,何明福.食用色素花色苷类的研究与应用动态[J].全国食品添加剂通讯.1990,(1):23-29.
    [36] Barbara Gilewicz-Lukasik, Stanislaw Koter, Jacek Kurzawa. Concentration of anthocyanins by the membrane filtration[J].Spearation and Purification Technology.2007, (57):418-424.
    [37] Andreas Degenhardt, Holger Knapp, Peter Winterhalter.Separation and purification of anthocyanins by high-speed countercurrent chromatography and screening for antioxidant activity[J]. Journal of Agricultural and Food Chemistry.2000, 48(2):338-343.
    [38] Qizhen Du, Gerold Jerz, Peter Winterhalter. Isolation of two Anthocyanins sambubiosides from Bilberry (Vaccinium myrtillus) by High-speed Countercurrent Chromatography[J]. Journal of Chromatigraphy A. 2004, (1045):59-63.
    [39]叶兴乾,陈建初,苏平.荸荠种杨梅的花色苷组分鉴定[J].浙江农业大学学报.1994,20(2):188-190.
    [40]杨朝霞.紫甘薯花色苷色素提取纯化工艺研究及组分分析[D].青岛:青岛大学.2004,34-47.
    [41]杜琪珍,姜华,徐渊金.杨梅中主要花色苷的组成与结构[J].食品与发酵工业.2008,34(8):48-51.
    [42] Maurizio Fiorini. Preparative high-performance liquid chromatography for the purification of natural anthocyanins[J]. Journal of Chromatography. 1995, (692):213-219.
    [43]孙建霞,张燕,孙志健等.花色苷的资源分布以及定性定量分析方法研究进展[J].食品科学.2009,30(5):263-268.
    [44]陈炳华,陈前飞,刘剑秋等.吕宋荚迷果红色素的提取、纯化及其性质分析[J].福建师范大学学报(自然科学版).2004,20(4):85-89.
    [45]杨兆艳.pH示差法测定桑椹红色素中花青素含量的研究[J].食品科技.2007,(4):201-203.
    [46]王贞强,韩富亮,王羽等.HPLC法测定葡萄与葡萄酒中的花色素苷[J].河北农业大学学报.2008,11(6):59-63.
    [47] Wang J, Mazza G.Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IF gammaactivated RAW 264.7 macrophage[J]. Agricultural and Food Chemistry. 2002, 50(4):850-857.
    [48]常徽,糜漫天,凌文华.黑米花色苷及联合化疗药物对不同肿瘤细胞增殖的影响[J].第三军医大学学报.2007,29(20):1943-1946.
    [49] Hou DX. Anthocyanidin inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structur-activity relationship and molecular mechanisms involved. Biochem Pharmacol[J]. 2005, 70(3):417-425.
    [50] Auger C, Caporiccio B., Landrault N. et al. Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic Gloden Syrian hamster (Mesocricetus auratus ) [J]. Nutr Metab,2001, (131):2837-2842.
    [51] Wang H., Muraleedharan G N. Anthocyanins and Antiinflammatory Activity of Anthocyanins and Their Aglycon, Cyanidin, from Tart Cherries [J]. Journal of Natural Products . 1999, 62(2):294-296.
    [52]余小平,夏效东,夏敏等.黑米皮花色苷对动脉粥样硬化斑块稳定性的影响[J].中国公共卫生.2006, 22(2):155-156.
    [53]曹发舜,王世端.洛阳牡丹[M].郑州:河南美术出版社,1986,3-4.
    [54]洛阳市地方史志编纂委员会.洛阳市志第16卷牡丹志[M].洛阳:中州古籍出版社1998,1-5.
    [55]张晶晶,王亮生,刘政安等.牡丹花色研究进展[J].园艺学报.2006,33(6):1383-1388.
    [56]白新详.菊花花色形成的表型分析[D].北京:北京林业大学.2007,29-36.
    [57] Wang L S, Shiraishi A, Hashimoto F, et al. Analysis of petal anthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) tree peony cultivars[J]. Journal of Plant Research. 2001, 114: 33-43.
    [58] Zhang J J, Wang L S, Shu Q Y, et al. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony[J]. Scientia Horticulturae. 2007, (114): 104–111.
    [59]张圆圆,齐冬梅,刘辉等.观赏向日葵的花色多样性及其与花青苷的关系[J].园艺学报, 2008, 35(6): 863-868.
    [60]汪远征,徐雅静. SAS软件与统计应用教程[M].北京:机械工业出版社, 2007, 244-248.
    [61] Takashi Hosoki, Morihiko Hamada, Takumi Kando, et al. Comparative study of anthocyanin in tree peony flowers[J]. Jap. Soc. Hort. Sci. 1991, 60: 395-403.
    [62] Wang L S, Hashimoto F, ShiraishiA, et al. Chemical taxonomy of the Xibei tree peony from China by floral pigmentation[J]. Plant Res. 2004, 117: 47-55.
    [63]樊金玲,朱文学,沈军卫等.高效液相色谱-电喷雾质谱法分析牡丹花中花色苷类化合物[J].食品科学,2007,28(08):367-371
    [64] Wang L S, Hashimoto F, Aoki N, et al. Effect of forcing culture in tree peony cultivars on flower coloration and petal pigmentation.[J]. Journal of the Japanese Society of AgriculturalTechnology Management. 2002, 9(1): 77-85.
    [65]赵昶灵,郭维明,陈俊愉.植物花色形成及其调控机理[J].植物学通报.2005,22(1):70-81.
    [66]刘志祥,曾超珍.大孔树脂法纯化苦丁茶总黄酮的研究[J].时珍国医国药.2009,20(9):2183-2184.
    [67]胡季强,王如伟,吕燊等.大孔树脂纯化延胡索总生物碱的工艺研究[J].中国现代应用药学杂志.2009,26(4):271-273.
    [68]袁英姿,曹清明,钟海雁等.大孔吸附树脂纯化油茶籽多酚的研究[J].
    [69]吴克伟,赵晓燕,李应彪.XAD-7HP大孔吸附树脂纯化紫玉米苞叶花色苷的研究[J].中国调味品.2009,34(6):103-106.
    [70] Jian Sun, Jianyan Yao, Shaoxi Huang, et al. Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kandsura coccinea (Lem.) A.C. Smith[J].Food Chemistry.2009, (117):276-281.
    [71]潘廖明,姚开,贾冬英等.大孔树脂吸附大豆异黄酮的特性研究[J].食品与发酵工业.2003,29(5):15-18.
    [72]熊春华,李大方,姚彩萍等.大孔吸附树脂吸附染料木素的研究[J].中国食品学报.2007,7(6):71-76.
    [73]陈勇,柳伟,戈宝莹等.大孔树脂对川射干异黄酮的分离纯化工艺研究[J].中国药学杂志.2007,42(1):40-43.
    [74]牛新春,张守勤,王长征等.大孔树脂对豆粕中异黄酮吸附特性的研究[J].食品研究与开发.2007,28(4):36-39.
    [75]于智峰,王敏,张家峰等.大孔树脂精制苦荞总黄酮工艺条件的优化研究[J].农业工程学报.2007,23(4):253-257.
    [76]马淑燕.光果甘草异黄酮类成分光甘草定的制备工艺[J].新疆医科大学学报. 2007 ,30(7) :395-397.
    [77]徐汉林,孙芸,陈军等.不同大孔树脂吸附虎杖白藜芦醇苷的研究[J].中国药业.2006,15(12):26-27.
    [78]李稳宏,唐璇,李新生等.黄姜黄色素在大孔树脂上的吸附动力学研究[J].离子交换与吸附.2008,24(6):526-534.
    [79]钟世安,贺国文,涂秋云等.大孔吸附树脂对酯型儿茶素吸附性能的研究[J].离子交换与吸附.2007,23(5):392-399.
    [80]樊君,高续春,郭璞等.大孔吸附树脂分离纯化枣渣中三萜酸的研究[J].离子交换与吸附.2008,24(5):426-433.
    [81]韦国锋,黄祖良,何有成等.大孔吸附树脂提取青蒿素的研究[J].离子交换与吸附.2007,23(4):373-377.
    [82]宋应华,朱家文,陈葵等.大孔吸附树脂HZ816对红霉素的固定床吸附过程研究[J].化学工程.2007,35(11): 9-12.
    [83] Yasuko Noda, Takao Kneyuki, Kiharu Igarashi, et al. Antioxidant activity of nasunin, an anthocyanin in eggplant peels[J].Toxicology.2000, (148):119-123.
    [84] Cheel J, Theoduloz C, Rodríguez J A, et al. Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. Chiloensis, F. vesca and F. x ananassa cv. Chandler[J]. Food Chemistry.2007, (102): 36-44.
    [85] Ajila C M, Naidu K A, Bhat S G,et al. Bioactive compounds and antioxidant potential of mango peel extract[J]. Food Chemistry. 2007, (105): 982-988.
    [86] Mayo J C, Tan D X, Sainz R M, et al. Protection against oxidantive protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: comparative effects of melatonin and other antioxidants[J]. Biochimica et Biophysica Acta.2003, (1620): 139-150.
    [87] Gordon M F. Food Antioxidant[M].London:Elisevier Applied Science. 1990, 1-18.
    [88] Jayaprakasha G K, Singh R P, Sakariah K K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro[J]. Food Chemistry. 2001, (73): 285-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700