用户名: 密码: 验证码:
用于碳水化合物类农产品重金属ELISA检测的样品前处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,传统的检测技术在应对频发的食品安全问题时愈发凸显其繁琐、耗时、不易现场操作等弊端。ELISA试剂盒作为一种快速、可靠的检测方法,其应用解决了传统检测技术的一些缺陷。但ELISA试剂盒只能检测游离的液态重金属,针对这一情况,研究并建立一种高效、快速并易于现场操作的与ELISA检测技术相适的样品前处理方法具有重要的现实意义。
     本文选取菜心、胡萝卜和南瓜作为蔬菜类农产品的代表,以其为研究对象,用稀HCl、HNO3及H2SO4对样品进行浸提,探索蔬菜中重金属Cu、Pb、Cd的最适浸提条件。研究表明,选取浓度为2.0M的稀HCl在40℃下反应20min可获得最佳效果,与国家标准方法中的微波消解法相比,其提取率为64~98%;选取浓度为2.0M的稀HNO3在40℃下反应10min可获得最佳效果,与国标法相比,其提取率为61~100%;选取浓度为2.0M的稀H2SO4在25℃下反应20min可获得最佳效果,与国标法相比,其提取率为57~100%。且稀HCl对菜心中的Cu、Cd,南瓜中的Cu都有很好的提取效果,提取率为87~98%;稀HNO3对菜心中的Cu、Pb、Cd,南瓜中的Cu、Cd都有非常好的提取效果,提取率为90~100%;稀H2SO4对菜心、胡萝卜、南瓜中的Cu,菜心和胡萝卜中的Cd亦有不错的提取效果,提取率为81~100%,上述重金属离子的测定均可选择相应的稀酸浸提法代替国标法来测定其含量。
     以苹果、葡萄和香蕉作为水果类农产品的代表,实验表明,使用浓度为2.0-4.0M的稀HCl在25℃下反应15min可获得最佳效果,与国标法相比,其提取率为57~96%;选取浓度为4.0M的稀HNO3在70℃下反应20min可获得最佳效果,与国标法相比,其提取率为55~99%;选取浓度为4.0M的稀H2SO4在4℃下反应20min可获得最佳效果,与国标法相比,其提取率为54~96%。并且稀HNO3对苹果中的Cu、Cd,葡萄和香蕉中的Cu都有非常好的提取效果,其提取率为84~100%,稀HCl及稀H2SO4对于上述重金属离子亦都有很好的提取效果,提取率分别为83~96%、81~96%;稀H2SO4对葡萄中的Cd和苹果中的Pb亦有不错的提取效果,其提取率分别为83%、85%,上述重金属离子的测定均可选择相应的稀酸浸提法代替国标法来测定其含量。
     以大米、小麦和糙米作为粮食类农产品的代表,研究表明,使用浓度为2.0M的稀HCl在25℃下反应20min可获得最佳效果,其提取率为37~57%;选取浓度为2.0M的稀HNO3在4℃下反应20min可获得最佳效果,其提取率为30~72%;选取浓度为4.0M的稀H2SO4在25℃下反应20min可获得最佳效果,其提取率为17~66%。对于大米、糙米中的Cu、Pb、Cd,小麦中的Cu、Pb,稀HCl的提取率>50%;对于大米、小麦及糙米中的Cu、Cd,糙米中的Pb,稀HNO3提取率都>50%;对于大米、小麦、糙米中的Cu,大米中的Pb,稀H2SO4的提取率>50%。
     加标回收实验结果表明,稀HCl对蔬菜类、水果类及粮食类中的Cu、Pb、Cd的加标回收率分别为69~104%、76~105%、78~100%,与国标法相比,略低于国标法;稀HNO3对蔬菜类、水果类及粮食类中的Cu、Pb、Cd的加标回收率分别为87~109%、87~111%,、82~113%,与国标法相比,两者相近;稀H2SO4对蔬菜类、水果类及粮食类中的Cu、Pb、Cd的加标回收率分别为80~114%、87~103%、86~121%,与国标法相比,两者较为接近,上述结果验证了稀酸浸提法的可靠性。
     以三种稀酸的最适反应条件浸提蔬菜类、水果类及粮食类农产品中的重金属Cu、Pb、Cd,分别用石墨炉原子分光光度法(GF-AAS)和ELISA试剂盒检测农产品中重金属的含量,统计分析表明,两种方法线性相关性良好(相关系数R2=0.9515)。表明所建立的稀酸提取碳水化合物类农产品中重金属的前处理方法能够满足ELISA试剂盒检测碳水化合物类农产品中重金属的要求。?
With frequent food safety problem in recent years, the traditional testing technologies of food safety become more tedious, more time-consuming and more difficult to do detection in field. Enzyme-Linked Immunosorbent Assay (ELISA) kit as a rapid, reliable detection method has been applied to solve some disadvantages of the traditional testing technology. But ELISA kit can only detect the liquid free iron of heavy metals, in view of this situation, it would be of realistic and far-reaching significance to develop an efficient, fast, easy sample pretreatment method based on ELISA .
     The optimum pretreatment conditions for Cu, Pb and Cd in vegetables such as Chinese cabbage (Brassica campestris L. sub. Chinensis var. utilis Tsen et Lee), carrot(Daucus carota var. L. sativa Hoffm.) and pumpkin(Cucurbita moschata (Duch. ex Lam.) Duch. ex Poir.) were studied with the extracting agent of three dilute acid (HCl, HNO3 and H2SO4). The results showed that the optimum pretreatment conditions were performed as follow: 40℃for 20min with 2.0M HCl, and the extraction rate was 64~98% as compared with the National standard method of microwave digestion; 40℃for 10min with 2.0M HNO3, and the extraction rate was 61~100% as compared with the National standard method; 25℃for 20min with 2.0M H2SO4, and the extraction rate was 57~100% as compared with the National standard method. And for Cu and Cd in Chinese cabbage and Cu in pumpkin, HCl has better extraction rate, the extraction rate was 87~98%; for Cu, Pb and Cd in Chinese cabbage and Cu and Cd in pumpkin, HNO3 has the best extraction rate, the extraction rate was 90~100%; for Cu in Chinese cabbage, carrot and pumpkin and Cd in Chinese cabbage and carrot, H2SO4 has better extraction rate, the extraction rate was 81~100%, all of them could substitute for the traditional pretreatment methods.
     The optimum pretreatment conditions of Cu, Pb and Cd extraction for fruit such as apple(Malus pumila Mill.), grape(Vitis vinifera L.) and banana(Musa paradisiacal L.) were investigated with the extracting agent of three dilute acid (HCl, HNO3 and H2SO4) ,too. The results showed that the optimum pretreatment conditions were performed as follow: 25℃for 15min with 2.0-4.0M HCl, and the extraction rate was 57~96% as compared with the National standard method; 70℃for 20min with 4.0M HNO3, and the extraction rate was 55~99% as compared with the National standard method; 4℃for 20min with 4.0M H2SO4, and the extraction rate was 54~96% as compared with the National standard method. And for Cu and Cd in apple and Cu in grape and banana, HNO3 has better extraction rate as well as HCl and H2SO4, the extraction rate were 84~100%, 83~96%,81~96%,respectively; for Cd in grape and Pb in apple, H2SO4 has better extraction rate, the extraction rate were 83%, 85%, respectively, all of them could substitute for the traditional pretreatment methods.
     The optimum pretreatment conditions of Cu, Pb and Cd extraction for grain such as rice(Oryza sativa L.), wheat(Triticum aestivum L.) and brown rice(Oryza sativa L.) were also investigated with the extracting agent of three dilute acid (HCl, HNO3 and H2SO4) . The results showed that the optimum pretreatment conditions were performed as follow: 25℃for 20min with 2.0M HCl, and the extraction rate compared by the National standard method was 37~57%; 4℃for 20min with 2.0M HNO3, and the extraction rate compared by the National standard method was 30~72%; 25℃for 20min with 4.0M H2SO4, and the extraction rate compared by the National standard method was 17~66%. And for Cu, Pb and Cd in rice and brown rice and Cu and Pb in wheat, HCl was of more than 50% extraction rate; for Cu and Cd of rice, wheat and brown rice and Pb in brown rice, HNO3 was of more than 50% extraction rate; for Cu in rice, wheat and brown rice and Pb in rice, H2SO4 was of more than 50% extraction rate. The standard recovery test shows that, the recovery rates of Cu, Pb and Cd in vegetables, fruits and grains extracted by dilute HCl were 69~104%, 76~105%, 78~100%, which is slightly lower than the National standard method; the recovery rates of Cu, Pb and Cd in vegetables, fruits and grains extracted by dilute HNO3 were 87~109%, 87~111%, 82~113%, which is close to the National standard method; the recovery rates of Cu, Pb and Cd in vegetables, fruits and grains extracted by dilute H2SO4 were 69~104%, 76~105%, 78~100%, which was also close to the National standard method, the above results verify the reliability of acid extraction.
     Finally, The both group data of Cu concentrations of carbohydrate produces, extracted with dilute acid pretreatment method, and determined by graphite furnace atomic absorption spectrometry(GF-AAS) method and ELISA assay respectively, were significantly correlated(R2=0.9515), this showed that dilute acid pretreatment method could meet the requirements of detecting heavy metals(Cu, Pb and Cd) of carbohydrate produces with ELISA kit.
引文
[1]于春兰,薛美琴.蔬菜基地土壤重金属污染现状调查与研究[J].蔬菜,2006,5:42-43.
    [2]郑国章,岳乐平,李智佩.关中平原黑惠灌区土壤重金属污染调查与评价[J].土壤通报, 2006,37(2):337-340.
    [3]刘玉燕,刘敏.城市土壤重金属污染特征分析[J].土壤通报,2006,37(2):184-189.
    [4]孙美侠,黄从国,郝红艳.江苏省徐州市售蔬菜和水果重金属污染调查与评价研究[J].安徽农业科学,2009,37(29):14343-14345.
    [5]王玉洁,朱维琴,金俊等.杭州市农田蔬菜中Cu、Zn和Pb污染评价及富集特性研究[J].杭州师范大学学报(自然科学版),2010,9(1):65-70.
    [6]赵丽芳,黄鹏武,张作选等.乐清市菜地土壤养分及重金属污染状况调查研究[J].浙江农业科学,2001(3):124-126.
    [7]严素定,唐丽荣.黄石市几种市售水果的重金属污染分析[J].湖北农业科学, 2011,50(2):381-382,385.
    [8]王晓波,陈海珍,刘冬英等.广州市蔬菜重金属污染状况及健康风险评估[J].中国公共卫生,2011,27(5):549-551.
    [9]李光德,朱鲁生,王玉军等.泰安市蔬菜中重金属污染调查研究[J].山东农业大学学报,1998,29(3):330-334.
    [10]路子显.粮食重金属污染对粮食安全、人体健康的影响[J].粮食科技与经济,2011,36(4):14-17.
    [11]甄燕红,成颜君,潘根兴等.中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J].安全与环境学报,2008,8(1):119-122.
    [12]成颜君,甄燕红,潘根兴等.南京部分市售稻谷和杂粮的Cd Zn Se含量及其健康意义[J].微量元素与健康研究,2008,25(4):36-39,53.
    [13]张良运,李恋卿,潘根兴.南方典型产地大米Cd、Zn、Se含量变异及其健康风险探讨[J].环境科学,2009,30(9):2792-2797.
    [14]Song Jing, Zhao Fangjie, Steve P M. Influence of soil properties and aging on arsenic phytotoxicity[J]. Environmental Toxicology and Chemistry,2006,25(6):1663-1670.
    [15]Rajesh K S, Madhoolika A, Fiona M. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi[J]. Ecotoxicology and Environmental Safety,2007,66(2):258-266.
    [16]马瑾,万洪富,杨国义,等.东莞市蔬菜重金属污染状况研究[J].生态环境,2006,15(2):319-322.
    [17]陈同斌,宋波,郑袁名等.北京市菜地土壤和蔬菜镍含量及其健康风险[J].自然资源学报,2006,21(3):349-361.
    [18]Wang Xilong, Sato T, Xing Baoshan,et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish[J]. Science of the Total Environment,2005,350:28-37.
    [19]谢正苗,李静,陈建军等.中国蔬菜地土壤重金属健康风险基准的研究[J].生态毒理学报,2006,1(2):172-179.
    [20]朱惠刚.重金属对人体的危害[J].电镀与环保,1982,4:9-13.
    [21]章海风,陆红梅,路新国.食品中重金属污染现状及防治对策[J].中国食物与营养,2008,8:17-19.
    [22]吴坤.营养与食品卫生学(第5版)[M].北京:人民卫生出版社,2003:248-249.
    [23]杜黎黎.巢湖白米虾体中重金属含量的测定及相关分析[J].安徽农学通报,2009,15(14):74-76.
    [24]游勇,鞠荣.重金属对食品的污染及其危害[J].环境,2007,2:102-103.
    [25]环境医学[M].中国大百科全书出版社,1981:38~39.
    [26]帅俊松,王琳.浅论重金属污染对人体健康的影响及对策[J].环境与开发,2001,16(4):62.
    [27]邓志瑞,余瑞云,余采薇.重金属污染与人体健康[J].环境保护,1991,12:26-27.
    [28]李万立,罗海吉.微量元素铜与人类疾病关系的研究进展[J].微量元素与健康研究,2008,25(1):62-65.
    [29]Edward D Harris. A Requirement for Copper in Angiogenesis [J].Nutrition Reviews,2004,62(2):60-64.
    [30] Harris ED.Basic and clinical aspects of copper[J].Crit Rev Clin Lab Sci,2003,40:547-586.
    [31]燕瑞,易艳萍等.微量元素抗衰老的作用[J].化学教育,2000,(9):1-2.
    [32]黄桂萍,黄承玲,胡跃华.微量元素与人体健康[J].赣南师范学院学报,2001,6:64-66.
    [33]刘立新,李静嫒,王晖.微量元素铁铜锌与胃癌关系的研究[J].临床消化病杂志,2006,18(6):360-363.
    [34]赵雪花.微量元素硒锌和铜与免疫功能关系的研究进展[J].山西医药杂志,2010,39(4):328-329.
    [35]陶晓靖.铜和锌对妊娠和胎儿的影响[J].国外医学妇产科分册, 1989, 16 (3): 129-131.
    [36]张苗章,石开泗,瞿真等.血清铜蓝蛋白与胎膜早破关系的探讨-附150例分析[J].新医学, 1998, 29 (2): 80.
    [37]常学秀,文传浩,王焕校.重金属污染与人体健康[J].云南环境科学,2003,19(1):59-61.
    [40]黄亚军,屈明.铅对健康的影响[J].现代预防医学,2004,34(1):95-98.
    [41]仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272.
    [42]周振中,王文良,吴翠景.食品中化学污染的研究[J].武警工程学院学报,2000,16(4):52-54.
    [43]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社, 1996.
    [44]谭见安.地球环境与健康[M].北京:化学工业出版社.环境科学与工业出版社中心,2004:154-155 .
    [45]梁东贤.铅污染与人体健康[J].中学化学教学参考,1994,(8-9):84-85.
    [46]白瑛,张宝莉,马春秀等.食品污染与人体健康[J].科学中国人,1997,(1-2):82-83.
    [47]C.顿利(英).食品的金属污染[M].北京:轻工业出版社,1986:99-101.
    [48]陈炳卿,孙长颢.食品污染与健康[M].北京:化学工业出版社.环境科学与工业出版社中心,2002:156-158.
    [49]张福顺,吴玉梅,刘乃新.石墨炉原子吸收光谱法测定甜菜块根中铅和镉[J].中国糖料,2008,3:53-54,61.
    [50]HASAN C,MEHMET E K.Determination of cadmium levels in agricultural areas of carsamba and Bafra plains[J].Environ Monit Assess,2007,132:165-169.
    [51]姚振兴,辛晓东,司维等.重金属检测方法的研究进展[J].分析测试技术与仪器,2011,17(1):29-35.
    [52]张娜,吴永盛,郁小朴等.微波消解原子荧光光度法测定水产品中的铅[J].化学试剂,2009,31(6),438-440.
    [53]孙丽敏.原子荧光光度法测定土壤中砷、硒方法研究[J].现代农业,2011,2:111-112.
    [54]张明英,宋娟.5-Br-PADAP-OP双波长吸光光度法测定微量锌镉[J].理化检验(化学分册),1994,30(5):292-293.
    [55]田雅琴,徐腾,张国梅.紫外分光光度法测定8种中药材中重金属的含量[J].中国药房,2008,19(33):2609-2610.
    [56]么淑珍,何莉萍,朱柏华. 2.5次微分溶出伏安法连续测定土壤中的锌、镉、铅、铜和镍[J].分析化学,1990, 28(1):65-67.
    [57]QUEIROLO F,STEGEN S,RESTOVIC M,et al.Total arsenic,lead,and cadmiumlevels in vegetables cultivated at the Andean villages of northern Chile[J].Sci Total Environ,2000,255(1-3):75-84.
    [58]BABA K,WATANABE E,EUN H,et al.Direct determination of cadmium in rice flour by laser ablation-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2003,18(12):1485-1488.
    [59]苏永祺,李佩斯,任露陆等.微波消解-电感耦合等离子体质谱法测定奶粉中的铬[J].现代食品科技,2010,26(4):415-419.
    [60]丛俏,蔡艳荣.微波消解-ICP-AES法测定蔬菜中重金属含量[J].食品科学,2010, 31(20):290-292.
    [61]李海峰,林日强,谢小玲.ICP-AES法测定土壤中的有效铜、锌、铁、锰[J].广东农业科学,2009,(4):76-79.
    [62]PANG Shuoquan,WANG Zhikun,XU Jianwei,et al. Recent advance in analytical methods of cadmium.Food Engineering,2008,2:62-65.
    [63]Bambang K.Simple optical fibre biosensor based on immobilized enzyme for monitoring of trace heavy metal ions [J]. Anal Bioanal Chem,2003,376(7):1104-1110.
    [64]Vlahogianni T H,DAssenakis M A,Scoullos M J, et al. Integrated use of biomarkers (superoxide dismutasecatalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’pollution in coastal areas from the Saronikos Gulf of Gree [J].Linear Algebra Appl,2007,427(1):1361-1371.
    [65]Ciucu A,LupuA,Pirvutoiu S, et al. Biosensors for heavy metals determination based on enzyme inhibition [J]. Chemistry and Materials Science.2001,63(4):33-44.
    [66]Malitesta C, Guascito M R.Heavy metal determination by biosensors based on enzyme immobilized by electropolymerisation [J]. Biosens Bioelectron,2005,20(8):1643-1647.
    [67]Evtugyn G A,Budnikov H C,Nikolskaya E B. Biosensors for the determination of environmental inhibitors of Enzymes [J]. USP KHIM, 1999, 68(12):1164-1167.
    [68]Shukor M Y,Masdor N,Baharom N A,et al.Determination Method for Heavy Metals Using Bromelain, A Cysteine Protease[J].Appl Biochem Biotechnol,2008,144(3):283-291.
    [69]Maria T Giardi,Miehal K,Jiri M. PhotosystemⅡ-based biosensors for the detection of poll utants [J]. Biosensors Bioelectronics, 2001,(16):1027-1033.
    [70]SOLDATKIN A P , VOLOTOVSKY V,EIAKAYA A V.Improvement of urease based biosensor characteristics using additional layers of charged polymers[J].Anal.Chim.Acta,2000,40(3):25-29.
    [71]连兰,伍林,易德莲等.葡萄糖生物传感器检测重金属离子的研究[J].传感器世界,2006,(4):6-8.
    [72]贾晓川,安奉凯,潘红青等.免疫分析在食品安全检测中的应用[J].食品研究与开发,2009,30(4):152-156.
    [73]孔涛.重金属铜、镉快速免疫检测技术研究[吉林大学博士论文].吉林大学图书馆, 2010,06.
    [74]孔涛,李小兵,刘国文等.重金属离子单克隆抗体及免疫检测研究进展[J].中国畜牧医,2009,36(9):67-70.
    [75]刘丹.抗重金属锌单克隆抗体的制备[甘肃农业大学硕士论文].甘肃农业大学图书馆,2009,05.
    [76]庞铄权,王志坤,徐建伟等.重金属镉离子检测技术研究进展[J].食品工程,2008,2:62-65.
    [77]张云显.重金属镉人工抗原的合成与抗镉单克隆抗体的制备[甘肃农业大学硕士论文].甘肃农业大学图书馆,2009,06.
    [78]高志刚.重金属Hg~(2+)单克隆抗体的制备与ELISA检测方法研究[内蒙古民族大学硕士论文].内蒙古民族大学图书馆,2009,04.
    [79]刘功良,王菊芳,李志勇等.重金属离子的免疫检测研究进展[J].生物工程学报,2006,22(6):877-881.
    [80]邓桂馨,滑静,张淑萍.北京地区重金属污染检测技术[J].中国畜牧兽医,2008,35,(3):123-125.
    [81]章建军,付有利.食品中重金属元素检测技术研究进展[J].第十届中国科协年会(河南)食品论坛论文集,2008:91-94.
    [82]JOHNSON D K.A fluorescence polarization immunoassay for cadmium(II)[J].Analytica Chimica Acta,1999,399:161-172.
    [83]DARWISH I A,BLAKE D A.One-step competitive immunoassay for cadmium ions:development and validation for enviromental water samples[J].Analytical Chemistry,2001,73:1889-1895.
    [84]ZHU X X,HU B S,LOU Y,et al.Characterization of monoclonal antibodies for lead chelate complexes:applications in antibody-based assays[J].Agric Food Chem,2007,55:4993-4998.
    [85]ZHU X X,XU L N,LOU Y,et al.Preparation of specific monoclonal antibodies(MAbs) against heavy metals:MAbs that recognize chelated cadmium ions[J].Agric Food Chem,2007,55:7648-7653.
    [86]KHOSRAVIANI M,PAVLOV A R,FLOWERS G C,et al.Detection of heavy metals by immunoassay:optimization and validation of a rapid,portable assay for ionic cadmium[J].Environ Sci Technol,1998,32:137-142.
    [87]BLAKE D A,PAVLOV A R,YU H N,et al.Antibodies and antibody based assays for hexavalent uranium[J].Analytica Chimica Acta,2001,444:3-11.
    [88]谢华林,李立波. GFAAS法测定蘑菇中的痕量铅[J].分析科学学报,2002,18(6):523.
    [89]王肇慈,袁建等.粮油食品卫生检测[M].北京:中国轻工业出版社,2001.
    [90]大连轻工业学院等八院校.食品分析[M].北京.中国轻工业出版社,1994.
    [91]黎源倩,孙长颖,叶蔚云等.食品理化检验[M].北京:人民卫生出版社,179-193.
    [92]侯方丽,徐金瑞,苏东晓等.干法灰化-石墨炉原子吸收法测定面制食品中铝含量[J].农产品加工(学刊),2011,3:71-73.
    [93]彭金云,王芳.干法灰化石墨炉原子吸收光谱法测定桄榔粉中痕量镉[J].食品科技,2009,9:287-289.
    [94]冯俊霞,付国永,戚秀菊.原子吸收光谱法测定野胡萝卜中的微量元素[J].广东微量元素科学,2009,2:57-59.
    [95]陆东晓,王晓东.火焰原子吸收法测定饲料中的钙[J].中国计量, 2009, 7:76,87.
    [96]樊正.微波消解技术在重金属检测中的应用[J].安徽预防医学杂志,2010,16(1):67-69.
    [97]张娜,吴永盛,郁小朴等.微波消解原子荧光光度法测定水产品中的铅[J].化学试剂,2009,31(6),438~440.
    [98]何佩雯,杜钢,赵海誉等.微波消解-石墨炉原子吸收光谱法测定9种中药材中微量元素含量[J].中华中医药杂志,2011,26(2):271-274.
    [99]鞠兴荣,袁建.食品中限量元素分析样品的预处理技术进展[J].食品科学,2004, 25(2):199-203.
    [100]王晓荣.面粉的营养强化[J].粮食与饲料工业,1998,10:4-5.
    [101]Biljana krbic, Svetlana Cupic. Toxic and essential elements in soft wheat grain cultivated in Serbia[J]. Eur. Food. Res.Technol,2005,221:361-366.
    [102]袁建,杨晓蓉,浮东宝等.食品中铬(Ⅲ)与铬(Ⅵ)分析方法的探讨[J].中国粮油学报,1999,14(4):59-62.
    [103]李优琴,童宇,周黎等.食用油中铅快速测定方法研究[J].江西农业学报,2009, 21(11): 99~101.
    [104]马建军.HCl浸提FAAS法测定小麦面粉中的微量营养元素[J].光谱学与光谱分析,2001,21(4):548-551.
    [105]袁建,鞠兴荣,汪海峰等.茶叶中有害金属元素的快速检测技术研究[J].食品科学,2004, 25(11):259-263.
    [106]程水清,周贯勇.蔬菜中重金属元素测定的前处理方法[J].安徽农业科学,2006,34(16):3889-3890.
    [107]王杰,庞香蕊,杨春璐等. HCl浸提-火焰原子吸收法测定土壤中Zn和Cd[J].辽宁大学学报(自然科学版), 2009, 36(3):276-277.
    [108]李大春.酸浸提-原子吸收测定茶叶中铅、铜[J].预防医学情报杂志,1999,15(3):172-173.
    [109]滕小沛,仓公敖,吉钟山.酸浸提-银盐法测定食品中的无机砷[J].江苏预防医学,2002,13(2):62-63.
    [110]郝文,曲青,宋旭岩.酸提取法测定食用植物油中砷的条件研究[J].预防医学文献信息,2000,6(1):56-57.
    [111]李海,罗建波.超声萃取GFAAS法测定油脂类食品中铅[J].中国公共卫生,2001,17(7):598.
    [112]刘东艳,张园力.直接酸提取电感耦合等离子体发射光谱法测定煤中主要成灰元素的方法研究[J].光谱学与光谱分析,2000,20(4):514-517.
    [113]赵玺宏,高天云.应用稀酸浸提测定作物中锌的初探[J].内蒙古农业科技,1991,6:20-21.
    [114]何承顺,周清,范晖.盐酸煮沸提取原子吸收法测定乳和乳制品中矿质元素[J].光谱学与光谱分析, 1999,19(6):868-870.
    [115]何承顺.盐酸煮沸提取和ICP-AES测定植株中矿质元素[J].分析测试通报,1991,10(1):67-72.
    [116]周焱,徐素君.盐酸浸提法对柑桔果实不同部位几种矿质元素测定的适用性[J].微量元素与健康研究,1994,11(3):50-51.
    [117]温永煌,涂枕梅.盐酸浸提法测定几种作物植株中八种元素的初步研究[J].江西农业科技,1981,5:27-29.
    [118]张茂林,夏河山,闫素清.盐酸浸取火焰原子吸收光谱法测定小麦和玉米中的锌、铁含量[J].郑州工程学院学报,2004,25(4):72-74.
    [119]华楚衍,崔政芳,王钢军.稀酸浸提法快速测定饲料中钙含量的研究[J].浙江农业学报,2000,12(4): 206-208.
    [120]张丽,林峥.酸浸提端视ICP-AES法测定蔬菜中多种矿物元素[J].中国卫生检验杂志,2002,12(2): 185-186.
    [121]赵人琤.大鼠饲料和粪便Ca、P、Cu、Zn的盐酸浸提与测定[J].营养学报,1989,11(2):156.
    [122]张宏绪,申红梅,郑建秋等.酸浸提头发样品检测金属的效果观察[J].中国公共卫生,1993,9(2):61-62.
    [123]刘三才,李为喜,张晓芳等.小麦强化营养粉中钙、锌含量的盐酸浸提快速测定[J].麦类作物学报,2007,27(1):63-66.
    [124]董克虞,邓小莹,潘桂琴.测定土壤全镉量的前处理法—1N盐酸浸提法[J].环境科学,1980,3:77-79.
    [125]侯芳.茶叶中重金属检测研究概述[J].洛阳理工学院学报(自然科学版),2010, 20(1):14-17.
    [126]刘建荣,董兵.化妆品中铅、汞和砷的酸浸提法同时测定[J].中国公共卫生,2005,21(8):1002-1003.
    [127]刘翠珍,陈建新.饲料中铜含量测定的前处理方法探讨[J].中国饲料,1993,7:22-23.
    [128]孟立红,万春燕,王磊.饲料中无机砷的测定初探[J].中国饲料,2006,7:31-32.
    [129]云学英,云晓霞,吴宁远等.酸浸法测定甘草、小茴香中铜、锌、铁含量[J].内蒙古医学院学报,1995,17(2):138-139.
    [130]张剑敏,孙经伦,卢永欣等.酸浸提-冷原子吸收法测定食品中总汞[J].预防医学文献信息,2004,10(1):66-67.
    [131]边疆,王爽,王萍等.酸浸提—原子荧光光谱法测定食品中的总砷[J].中国卫生检验杂志,1999,9(4)270-272.
    [132]鲁兵,潘振球,王春娥等.酸浸提-原子荧光光谱法同时测定化妆品中砷和汞[J].实用预防医学,2008,15(3):910-911.
    [133]丁宇清.酸浸提测定冷饮、冷食中铅的研究[J].彭城大学学报,1997,12(3):71-73.
    [134]何承顺.稀盐酸浸提ICP-AES测定果树叶片的营养元素[J].山东农业大学学报,1988,19(2):67-71.
    [135]GB 5009.12-2010,食品安全国家标准食品中铅的测定[S].
    [136]GB/T5009.15-2003,中华人民共和国国家标准食品中镉的测定[S].
    [137]蔡继红,陆梅,潘海燕.石墨炉原子吸收分光光度法测定粮食中的铅和镉[J].甘肃环境研究与监测,2000,13(3):151-152.
    [138]FAN Hua-jun(范华均),LI Gong-ke(李攻科),LI Wei-bo(黎蔚波).Chinese Journal of Analysis Laboratory(分析试验室)[J],2005,24(3):37.
    [139]PENG Rui-xing(彭瑞兴).Chinese Journal of Spectroscopy Laboratory(光谱实验室)[J],2003,20(5):740.
    [140]郭常伟,唐勇,向军俭等.重金属铜离子单克隆抗体的制备及其间接竞争ELISA检测方法的建立[J].中国生物制品学杂志[J],2011,24(6):720-723.
    [141]唐勇,王建华,向军俭等.镉离子单克隆抗体的鉴定及竞争ELISA的建立[J].免疫学杂志,2009,25(2):214-217.
    [142]GB /T27404-2008,实验室质量控制规范中食品理化检测[S].
    [143]中国环境监测总站《环境水质监测质量保证手册》编写组.环境水质监测质量保证手册[M].第2版.北京:化学工业出版社,1994.226~327.
    [144]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第3版.北京:中国环境科学出版社,1989.49-70.
    [145]Braude,G.L.et.al. Cadmium and lead content of soybean produets[J].J:Food Sci. 1980,45:1187.
    [146]Kabata-Pendias,A. and Pendias,H. Trace Flements in Soils and Plants[J].CRC Press ,Inc,Florida,1984,75-86,109-116,154-164.
    [147]Koeppe,D.E. Lead:Understanding the minimal toxicity of lead in Plants.In Lepp,N.W.(ed.)Effect of Heavy Metal Pollution on Plants.Applied Science Publishers,London and NewJersey. 1981,1:55-76.
    [148]罗惠明.?石墨炉直接测定口香糖中铅砷铜含量[J].?中国公共卫生,1993,9(4):176-178.
    [149]李和翠,薛丰松.原子吸收法测定茶叶中铜含量时样品处理方法的改进[J].预防医学文献信息,2001,7(3):282.
    [150]中国预防医学科学院标准处.食品卫生国家标准汇编(二、三、四)[M].北京:中国标准出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700