用户名: 密码: 验证码:
内蒙古两个绵羊品种肉质候选基因的组织表达、SNPs检测及其与肉质的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古大草原孕育了很多肉质鲜嫩的绵羊品种,巴美肉羊、苏尼特羊是其中杰出的代表。肉质是一个重要的经济指标,MyoG、Myf5、Myf6、CAST基因和MSTN基因被认为是影响肉质的重要的候选基因。实验分析了这些基因的表达量与肉质的相关性以及多态性对肉质的影响,实验结果将为巴美肉羊、苏尼特羊这些优良品种的选育、合理开发利用提供科学的理论依据。
     采用real-time PCR技术对不同月龄巴美肉羊(40只)、苏尼特羊(42只)中MyoG、 Myf5、Myf6、CAST和MSTN基因的表达规律、种间差异及基因表达量与肉质的相关性进行了研究。采用PCR-SSCP技术对101只巴美肉羊、107只苏尼特羊的钙蛋白酶抑制蛋白(calpastatin, CAST)基因进行了多态性分析,找到其突变位点,并对基因型与肉质的相关性进行了研究。测定的肉质指标包括嫩度、pH、色差、眼肌面积。
     结果发现:
     1.(1)巴美肉羊背最长肌中,Myf5基因表达量4、6月龄和12月龄的差异显著,12月龄>4月龄>6月龄;苏尼特羊背最长肌中,8月龄Myf5基因表达量显著高于5月龄;6、8月龄的苏尼特羊臂三头肌中Myf5基因的表达量显著高于背最长肌。(2)巴美肉羊臂三头肌中Myf6基因的表达量显著高于苏尼特羊。(3)苏尼特羊CAST基因在6、8、12月龄时,三个部位中的表达量均高于巴美肉羊;8月龄时,苏尼特羊臂三头肌中的CAST基因的表达量显著高于巴美肉羊。(4)①苏尼特羊6月龄背最长肌和股二头肌中的表达量显著高于巴美肉羊;苏尼特羊12月龄背最长肌中的表达量显著低于巴美肉羊。②巴美肉羊臂三头肌和股二头肌中MSTN在4月龄时表达量最高,背最长肌中MSTN基因的表达量一直升高;12月龄时,三个部位中MSTN的表达量基本相同。③苏尼特羊的三个测试部位中MSTN基因的表达规律相同,6月龄最高,12月龄降到最低,三个部位中臂三头肌的表达量最高。
     2.巴美肉羊和苏尼特羊6、8、12月龄的基因表达量与肉质相关性如下:(1)在苏尼特羊的在臂三头肌中,Myf5基因表达量与剪切力呈显著正相关。在苏尼特羊的臂三头肌中,Myf6基因表达量与pH2呈极显著负相关。在股二头肌中,Myf6基因表达量与pH2呈极显著负相关。(2)在巴美肉羊的股二头肌中,CAST基因表达量与剪切力呈显著正相关;苏尼特羊的背最长肌中CAST基因表达量与红度值呈显著负相关。(3)巴美肉羊背最长肌中的MSTN基因表达量与眼肌面积呈显著正相关与亮度值呈显著负相关。
     3.各个基因表达量的相关性如下:(1)巴美肉羊背最长肌中,MyoG与Myf6基因的表达量呈显著负相关关系。(2)在两个品种的所有测试部位中,Myf5与Myf6的表达量均为正相关关系,其中巴美肉羊臂三头肌中的Myf5和Myf6的表达量呈显著正相关。(3)Myf6与CAST基因在两个品种的三个测试部位中均表现为正相关性。(4)在苏尼特羊的三个部位中,各个基因表达量的相关性不显著。
     4.巴美肉羊、苏尼特羊基因分型发现:(1) CAST基因的第六外显子区存在三种基因型:AA、AB和AC型。巴美肉羊群体中多态信息含量为0.30;苏尼特羊群体中多态信息含量为0.28,均为中度多态。CAST基因第六外显子检测到2个突变位点,56bp处发生了A/G碱基替换,在184bp处出现了A/C碱基替换。
     5.CAST基因基因型与肉质的相关性研究中发现:6月龄巴美肉羊三各基因型的红度值存在显著性差异,AB型>AA型>AC型。
Bamei and Sunit sheep in Inner Mongolia was famous for their super meat quality. Meat quality was an import ecnomic trait. MyoG, Myf5, Myf6, CAST and MSTN gene were impoetant candidate genes for meat quality. Correlation of the expression and Polymorphism with meat quality had been investigated. It may offer genetic theory for further development and utilization for Bamei and sunit sheep.
     Real-time PCR was used to investigate the expression of cadidate genes (MyoG, Myf5, Myf6, CAST, MSTN) in longissimus dorsi, triceps and biceps femoris in40Bamei and42sunit sheep of defferenet month age. The shear force, pH, colour, loin area were investigated after slaughter. The expression of the cadidate genes was detected. The correlation between the expression and meat quality traits were analyzed.
     The results show as follows:
     1.(1) The expression of Myf5of4,6month was significant difference with the expression of12month in longissimus dorsi in Bamei sheep, the order was12month>4month>6month. The expression of Myf5of8month in longissimus dorsi in Sunit sheep was highest and it was significant difference with the expression of5month. The expression of Myf5in6and8month in triceps in Bamei sheep was significant higher than in Sunit sheep.(2) The expression in triceps in Bamei sheep of12month was significant higher than in Sunit sheep.(3) The expression of CAST in Sunit sheep was higher than in Bamei sheep in three muscles of of6,8,12month. The expression of CAST of8month in triceps in Sunit sheep was significant higher than in Bamei sheep.(4) The expression of MSTN show as follows:①The expression of MSTN in longissimus dorsi and biceps femoris of6month in Sunit sheep was significent higher than in Bamei sheep. The expression of MSTN in longissimus dorsi of12month in Sunit sheep was significent lower than in Bamei sheep.②In Bamei sheep, the expression of MSTN in triceps and biceps femoris is highest of4month age, the expression of MSTN in iongissimus dorsi was increasing with the growth of month age. In three muscles investigated, the expression of MSTN was nearly same of12month age.③In Sunit sheep, there was a similar variation trend of the expression of MSTN in three musles investigated. It was highest of6month age and lowest of12month age.It was higer in triceps than in the other two muscles.
     2. The correlation between the expression and meat quality traits show as following: ①In Sunit sheep, the expression of Myf5in triceps had significant positive correlation with shear force (r=0.985, p=0.015), In Sunit sheep, the expression of Myf6in triceps had greatly signifieant negative correlation with pH2, in biceps femoris, it had significant negative correlation with pH2.②In Bamei sheep, the expression of CAST in biceps femoris had signifieant positive correlation with shear force.In Sunit sheep, in longissimus dorsi, it had signifieant negative correlation with red/green colours.③In Bamei sheep, the expression of MSTN in longissimus dorsi had signifieant positive correlation with loin area, it had signifieant negative correlation with lightness.
     3. The correlation between the cadidate genes:(1) In Bamei sheep, the expression of MyoG in longissimus dorsi had signifieant negative correlation with the expression of Myf6.(2) The expression of Myf5had positive correlation with the expression of Myf6in three muscles investigated in two breeds and in triceps in Bamei sheep, the positive correlation was signifcent.(3) The expression of Myf6had positive correlation with the expression of MSTN in three muscles investigated in two breeds.
     Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method was used to determine the polymorphism of exon6of CAST gene in101Bamei sheep and107Sunit sheep, the correlation between CAST gene and meat quality traits were analyzed. The result show as follows:
     4.There was two mutation have been found in the exon6of CAST gene (A56G, A184C) in the research.Three genotypes were identified as AA, AB and AC. Polymorphism information content was0.30in Bamei sheep. Polymorphism information content was0.28in Sunit sheep.
     5. The correlation between genotype and meat quality:In6-month Bamei sheep, there was significant difference of red/green colours (a*) in longissimus dorsi of three genotypes, red/green colours (a*) of AB genotype was better. In12-month Bamei sheep there was significant difference of lightness (L*) of three genotypes in both triceps and biceps femoris.
引文
1 赵有璋.积极发展世纪之交的中国养羊业[J].科技导报,1998,10:46-49.
    2 张瑛,汤天彬,王庆普,等.我国肉羊业生产现状与发展战略[J].中国草食动物,2005,25(3):46-47.
    3 杨秀春,曹云刚,徐斌,等.多源遥感数据协同的我国草原积雪范围全天候实时监测[J].地理研究,2009,28(6):1704-1712.
    4 白斯日古楞.内蒙古肉羊产业化发展研究[J].内蒙古科技与经济,2011(19):3-4.
    5 郭健,杨博辉,赵有璋,等.我国肉用绵羊新品种的培育及分子辅助育种技术应用[J].家畜生态学报,2007,28(6):116-121.
    6 桑布.苏尼特羊[J].当代畜禽养殖业,1998(7):18-19.
    7 候文慧.苏尼特羊粗脂肪含量的测定[J].肉类研究,2010(006):63-65.
    8 莎丽娜,靳烨,席其乐木格,等.苏尼特羊肉食用品质的研究[J].内蒙古农业大学学报:自然科学版,2008,29(1):106-109.
    9 吉尔嘎拉,满达,姚明.苏尼特羊肉的营养和保健价值的研究[J].中国草食动物,2005,25(6):55-56.
    10 王泽文.苏尼特羊与涮羊肉[J].当代畜禽养殖业,1999,6:043.
    11 席其乐木格.苏尼特羊宰后肌肉品质及其变化规律的研究[D].内蒙古农业大学,2007.
    12 王海平.巴美肉羊培育方法的研究与应用[C]//全国养羊生产与学术研讨会议论文集.2010.
    13 郏建梅.巴美肉羊在河套地区肉羊产业中的支撑作用[J].中国草食动物,2010,1:130-132.
    14 高爱琴,李虎山,王志新,等.巴美肉羊肉用性能和肉质特性研究[J].畜牧与兽医,2008,40(2):45-49.
    15 腾克,张宏博,王贵印,等.巴美肉羊与小尾寒羊杂交羔羊生长发育及屠宰性能研究[J][J].肉类研究,2012,3:17-21.
    16 张宏博,刘树军,靳烨,等.巴美肉羊及其杂交后代生长发育和胴体等级肉产量研究[J].肉类工业,2013(4):17-20.
    17 张宏博,刘树军,靳志敏,等.巴美肉羊生长发育和胴体等级肉产量研究[J].肉类研究,2013(1):8-10.
    18 高爱琴,陶晓臣,李虎山,等.性别与年龄对巴美肉羊肉品质的影响[J].黑龙江畜牧兽医,2010(001):55-57.
    19 Lefaucheur L. A second look into fibre typing-Relation to meat quality[J]. Meat Science.2010, 84(2):257-270.
    20 Davoli R, Braglia S. Molecular approaches in pig breeding to improve meat quality[J]. Briefings in functional genomics & proteomics,2007,6(4):313-321.
    21 周光宏.肉品加工学[M].北京,中国农业出版社,2009.
    22 Weintraub H, Davis R, Tapscott S, et al. The.myoD gene family:nodal point during specification of the muscle cell lineage[J]. Science,1991,251(4995):761-766.
    23 Shklover J, Etzioni S, Weisman-Shomer P, et al. MyoD uses overlapping but distinct elements to bind E-box and tetraplex structures of regulatory sequences of muscle-specific genes[J]. Nucleic acids research,2007,35(21):7087-7095.
    24 Edmondson D G, Olson E N. Helix-loop-helix proteins as regulators of muscle-specific transcription[J]. Journal of Biological Chemistry,1993,268:755-755.
    25 Lee H, Habas R, Abate-Shen C. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis[J]. Science,2004,304(5677):1675-1678.
    26 Li L, Olson E N. Regulation of muscle cell growth and differentiation by the MyoD family of helix-loop-helix proteins[J]. Adv Cancer Res,1992,58:95-119.
    27 Weintraub H, Dwarki V J, Verma I, et al. Muscle-specific transcriptional activation by MyoD[J]. Genes & development,1991,5(8):1377-1386.
    28 Sabourin L A, Rudnicki M A. The molecular regulation of myogenesis[J]. Clinical genetics, 2000,57(1):16-25.
    29 Perry R L, Rudnick M A. Molecular mechanisms regulating myogenic determination and differentiation[J]. Front Biosci,2000,5:D750-767.
    30 Hasty P, Bradley A, Morris J H, et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J].1993.
    31 Wang Y, Jaenisch R. Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently[J]. Development,1997,124(13):2507-2513.
    32 Rawls A, Valdez M R, Zhang W, et al. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice[J]. Development,1998,125(13):2349-2358.
    33 Sabourin L A, Rudnicki M A. The molecular regulation of myogenesis[J]. Clinical genetics, 2000,57(1):16-25.
    34 Tapscott S J, Davis R L, Thayer M J, et al. MyoDl:a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts[J]. Science,1988,242(4877):405-411.
    35 Hughes S M, Taylor J M, Tapscott S J, et al. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones[J]. Development,1993,118(4):1137-1147.
    36 Voytik S L, Przyborski M, Badylak S F, et al. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles[J]. Developmental dynamics, 1993,198(3):214-224.
    37 Hughes S M, Koishi K, Rudnicki M, et al. MyoD protein is differentially accumulated in fast and slow skeletal muscle fibres and required for normal fibre type balance in rodents[J]. Mechanisms of development,1997,61(1):151-163.
    38 Muroya S, Nakajima I, Chikuni K. Related expression of MyoD and Myf5 with myosin heavy chain isoform types in bovine adult skeletal muscles[J]. Zoological science,2002,19(7): 755-761.
    39 Klosowska D, Kuryl J, Elminowska-Wenda G, et al. A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrain× (Polish Large White × Polish Landrace) crosses [J]. Czech J. Anim. Sci,2004,49:99-107.
    40 Kapelanski W, Grajewska S, Kuryl J, et al. Polymorphism in coding and non-coding regions of the MyoD gene family and meat quality in pigs[J]. Folia Biologica,2005,53(Supplement 1): 45-49.
    41 Elminowska-Wenda G, Pierzchala K, Bogucka J, et al. A relationship between the polymorphism in the coding and 5'regions of the porcine MyoD genes and microstructure traits of longissimus lumborum muscle[J]. Animal Science Papers and Reports,2007,25(4): 249-258.
    42 Urbanski P, Kapelanski J W K, Bocian M, et al. An association between the MyoD gene polymorphisms and carcass traits in two-and three-breed crossbred pigs[J]. Animal Science Papers and Reports,2006,24(4):297-303.
    43 Verner J, Humpolicek P, Knoll A. Impact of MYOD family genes on pork traits in Large White and Landrace pigs[J]. Journal of Animal Breeding and Genetics,2007,124(2):81-85.
    44 Bhuiyan M S A, Kim N K, Cho Y M, et al. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle[J]. Livestock Science,2009,126(1):292-297.
    45 Seong J, Oh J D, Cheong I C, et al. Association between polymorphisms of Myf5 and POU1FI genes with growth and carcass traits in Hanwoo (Korean cattle)[J]. Genes & Genomics,2011, 33(4):425-430.
    46 黄葫,许尚忠,昝林森,高雪,陈金宝.牛MyoD1基因遗传变异及其对胴体性状的影响[J].中国畜牧兽医,2007,vo134(9):40-43.
    47 田璐,许尚忠,岳文斌,李俊雅,高雪, 任红艳MyoD基因对肉牛胴体性状影响的分析[J].遗传,2007,vo129(3):313-318.
    48 薛梅,昝林森,王洪宝,高丽.宋付标,王洪程,焦阳.6个黄牛群体MyoG基因单核苷酸多态性及其与体尺性状的相关性[J].西北农林科技大学学报:自然科学版,2011,vol39(7):35-42.
    49 赵广珍MyoDl基因与猪肉质性状相关性分析[D].河北农业大学,2012.
    50 王琼MyoO、MyoG基因的多态性及其与鸡屠宰性状和肉质性状的相关性研究.[D].四川农业大学,2007.
    51 张海军,陈宏,房兴堂,张润锋, 鲍斌, 高雪原, 邵汝英.山羊MvoD基因家族多态性 及与体尺性状的相关性[J].遗传,2007,vo129(9):1077-1082.
    52 蔡兆伟,罗玉衡,张金枝,徐宁迎,郭晓令,沈叶兴.猪MyoG基因的多态性及其对岔路黑猪胴体和肉质的影响研究[J].家畜生态学报,2008,29(3):11-14.
    53 薛恺.南阳牛Myf5, Poulfl以及GH基因多态性及其与生长发育性状关系的研究[D].西北农林科技大学,2006.
    54 韦宏伟.山羊Myf5, MyoG基因多态性及其与生长性状的关联性分析[D].四川农业大学,2010.
    55 Dayton W R, Schollmeyer J V. Immunocytochemical localization of a calcium-activated protease in skeletal muscle cells[J]. Experimental cell research,1981,136(2):423-433.
    56 Dayton W R, Schollmeyer J V, Lepley R A, et al. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease[J]. Biochimica et Biophysica Acta (BBA)-Enzymology,1981,659(1):48-61.
    57 Guroff G. A neutral, calcium-activated proteinase from the soluble fraction of rat brain[J]. The journal of biological chemistry,1964,239(1):149-155.
    58 Busch W A, Stromer M H, Goll D E, et al. Ca2+-specific removal of Z lines from rabbit skeletal muscle[J]. The Journal of cell biology,1972,52(2):367-381.
    59 Reddy M K, Etlinger J D, Rabinowitz M, et al. Removal of Z-lines and alpha-actinin from isolated myofibrils by a calcium-activated neutral protease[J]. Journal of Biological Chemistry, 1975,250(11):4278-4284.
    60 Dayton W R, Reville W J, Goll D E, et al. A calcium (2+) ion-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme[J]. Biochemistry,1976,15(10):2159-2167.
    61 Ishiura S, MUROFUSH1 H, SUZUKI K, et al. Studies of a Calcium-Activated Neutral Protease from Chicken Skeletal Muscle I. Purification and Characterization[J]. Journal of biochemistry, 1978,84(1):225-230.
    62 Sorimachi H, Shoji H, Yasuko O N O. Calpain chronicle-an enzyme family under multidisciplinary characterization[J]. Proceedings of the Japan Academy. Series B, Physical and biological sciences,2011,87(6):287-327
    63 NISHIURA I, TANAKA K, YAMATO S, et al. The occurrence of an inhibitor of Ca2+-dependent neutral protease in rat liver[J]. Journal of biochemistry,1978,84(6): 1657-1659.
    64 Lee W J, Hatanaka M, Maki M. Multiple forms of rat calpastatin cDNA in the coding region of functionally unknown amino-terminal domain[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,1992,1129(2):251-253.
    65 Smith M A, Schnellmann R G. Calpains, mitochondria, and apoptosis[J]. Cardiovascular research,2012,96(1):32-37.
    66 Wendt A, Thompson V F, Goll D E. Interaction of calpastatin with calpain:a review[J]. Biological chemistry,2004,385(6):465-472.
    67 Yang H Q, Ma H, Takano E, et al. Analysis of calcium-dependent interaction between amino-terminal conserved region of calpastatin functional domain and calmodulin-like domain of mu-calpain large subunit[J]. Journal of Biological Chemistry,1994,269(29):18977-18984.
    68 Emori Y, Kawasaki H, Imajoh S, et al. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites[J]. Proceedings of the National Academy of Sciences,1987,84(11):3590-3594.
    69 邱大伟.西南地区本地黄牛及其杂交牛CAST, H-FABP, MyoDl基因部分编码区多态性分析[D].西南大学,2009.
    70 Ranjbari, M., Hashemi, A., Mardani, K.,& Darvishzadeh, R. (2012). Allelic Polymorphism of Makoei Sheep Calpastatin Gene Identified by Polymerase Chain Reaction and Single Strand Conformation Polymorphism. Journal of Agricultural Science and Technology,14(3),533-538
    71 Kent M P, Spencer M J, Koohmaraie M. Postmortem proteolysis is reduced in transgenic mice overexpressing calpastatin[J]. Journal of animal science,2004,82(3):794-801.
    72 Barnoy S, Maki M, Kosower N S. Overexpression of calpastatin inhibits L8 myoblast fusion[J]. Biochemical and biophysical research communications,2005,332(3):697-701.
    73 Corva P, Soria L, Schor A, et al. Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina[J]. Genetics and Molecular Biology, 2007,30(4):1064-1069.
    74 Li J, Zhang L P, Gan Q F, et al. Association of CAST gene polymorphisms with carcass and meat quality traits in Chinese commercial cattle herds[J]. Asian Australas J Anim Sci,2010, 23(11):1405-1411.
    75 Ribeca C, Bonfatti V, Cecchinato A, et al. Association of polymorphisms in calpain 1,(mu/I) large subunit, calpastatin, and cathepsin D genes with meat quality traits in double-muscled Piemontese cattle[J]. Animal Genetics,2013,44(2):193-196.
    76 王建华.牦牛钙蛋白酶抑制蛋白(CAST)基因多态性及其与肉质性状关系的研究[D].甘肃农业大学,2010.
    77 金鑫.延边黄牛肉质性状相关功能基因研究[D].延边大学,2010.
    78 Lindholm-Perry A K, Rohrer G A, Holl J W, et al. Relationships among calpastatin single nucleotide polymorphisms, calpastatin expression and tenderness in pork longissimusl[J]. Animal genetics,2009,40(5):713-721.
    79 Nonneman D, Lindholm-Perry A K, Shackelford S D, et al. Predictive markers in calpastatin for tenderness in commercial pig populations[J]. Journal of animal science,2011,89(9): 2663-2672.
    80 唐仁勇μ-Calpain, Calpastatin与猪肉嫩度的关系及其基因表达的营养调控研究[D].四川农业大学,2008.
    81 张璐,曹洪战,芦春莲,等.4个猪种CAST基因与背膘厚关系的研究[J].黑龙江畜牧兽医,2009,1:(005)8-9.
    82 Geesink G H, Koohmaraie M. Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage[J]. Journal of Animal Science,1999,77(6):1490-1501.
    83 Bickerstaffe R, Hickford J G H, Gately K, et al. Association of polymorphic variations in calpastatin with meat tenderness and yield of retail meat cuts in lambs.2010, International Congress of Meat Science and Technology(icomst),helsinki. Finland
    84 Ilian M A, Morton J D, Kent M P, et al. Intermuscular variation in tenderness:association with the ubiquitous and muscle-specific calpains[J]. Journal of Animal Science,2001,79(1): 122-132.
    85 Suleman M, Khan S U, Riaz M N, et al. Calpastatin (CAST) gene polymorphism in Kajli, Lohi and Thalli sheep breeds[J]. African Journal of Biotechnology,2012, 11(47):10655-10660.
    86 Zhou H, Hickford J G H, Gong H. Polymorphism of the ovine calpastatin gene[J]. Molecular and cellular probes,2007,21(3):242-244.
    87 Zhou H, Hickford J G H. Allelic polymorphism of the caprine calpastatin (CAST) gene identified by PCR-SSCP[J]. Meat science,2008,79(2):403-405.
    88 赵伯阳.山羊CAPN1基因和CAST基因 (?) 型转录本克隆及在不同组织中的表达[D].四川农业大学,2011.
    89 燕凤.绵羊CAPN1, CAST基因mRNA的发育性表达规律及其对肉品质的影响[D].西北农林科技大学,2008.
    90 McPherron A C, Lawler A M, Lee S J.Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member.Nature,1997,387 (6628):83-90.
    91 Schuelke M, Wagner K R, Stolz L E, et al. Myostatin mutation associated with gross muscle hypertrophy in a child[J]. New England Journal of Medicine,2004,350(26):2682-2688.
    92 Clop A, Marcq F, Takeda H, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J]. Nature genetics,2006,38(7): 813-818.
    93 Biga, Peggy Ruth Anne. The effects of recombinant bovine somatotropin on growth-related genes in rainbow trout (Oncorhynchus mykiss).[D]. University of Idaho.2003
    94 吕文发.猪肌生成抑制素(Myostatin; MSTN)表达及组织定位研究[D].中国人民解放军军需大学.2003.
    95 Lee S J. Regulation of muscle mass by myostatin[J]. Annu. Rev. Cell Dev. Biol.,2004,20: 61-86.
    96 Lin J, Arnold H B, Della-Fera M A, et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis[J]. Biochemical and biophysical research communications,2002, 291(3):701-706.
    97 Amthor H, Macharia R, Navarrete R, et al. Lack of myostatin results in excessive muscle growth but impaired force generation[J]. Proceedings of the National Academy of Sciences, 2007,104(6):1835-1840.
    98 Dunner S, Miranda M E, Amigues Y, et al. Haplotype diversity of the myostatin gene among beef cattle breeds[J]. Genetics Selection Evolution,2003,35(1):103-118.
    99 Gill J L, Bishop S C, McCorquodale C, et al. Associations between the 11-bp deletion in the myostatin gene and carcass quality in Angus-sired cattle[J]. Animal genetics,2009,40(1): 97-100.
    100 Casas E, Bennett G L, Smith T P L, et al. Association of myostatin on early calf mortality, growth, and carcass composition traits in crossbred cattle[J]. Journal of animal science,2004, 82(10):2913-2918.
    101 Boman I A, Klemetsdal G, Blichfeldt T, et al. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries)[J]. Animal genetics,2009,40(4):418-422.
    102 Hadjipavlou G, Matika O, Clop A, et al. Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep[J]. Animal genetics,2008,39(4):346-353.
    103 Marshall K, Henshall J, Banks R G, et al. Finding major gene effects in Australian meat sheep-feasibility study for a Texel dataset[J]. Proc Assoc Adv Anim Breed Genet,1999,13:86-89.
    104 Johnson P L, McEwan J C, Dodds K G, et al. A directed search in the region of GDF8 for quantitative trait loci affecting carcass traits in Texel sheep[J]. J Anim Sci,2005,83(9):1988-2000.
    105 Skipper M. A lean feat-microRNAs and muscle mass[J]. Nature Reviews Genetics,2006,7(7): 491-491.
    106 Walling G A, Visscher P M, Wilson A D, et al. Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations[J]. J Anim Sci,2004,82(8):2234-2245.
    107 McPherron A C, Lee S J. Double muscling in cattle due to mutations in the myostatin genefJ). Proceedings of the National Academy of Sciences,1997,94(23):12457-12461.
    108 Dall'Olio S, Fontanesi L, Nanni Costa L, et al. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types[J]. Journal of Biomedicine and Biotechnology,2010.
    109 Schuelke M, Wagner K R, Stolz L E, et al. Myostatin mutation associated with gross muscle hypertrophy in a child[J]. New England Journal of Medicine,2004,350(26):2682-2688.
    110 Bellinge R H S, Liberles D A, Iaschi S P A, et al. Myostatin and its implications on animal breeding:a review[J]. Animal Genetics,2005,36(1):1-6.
    111 Kijas J W, McCulloch R, Edwards J E H, et al. Evidence for multiple alleles effecting muscling and fatness at the ovine GDF8 locus[J]. BMC genetics,2007,8(1):1-11
    112 Johnson P L, Dodds K G, Bain W E, et al. Investigations into the GDF8 g+ 6723G-A polymorphism in New Zealand Texel sheep[J]. Journal of animal science,2009,87(6): 1856-1864.
    113 Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems[J]. Journal of molecular endocrinology,2002,29(1):23-39.
    114 Livak K J, Flood S J, Marmaro J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization[J]. Genome Research,1995,4(6):357-362.
    115 Ramos-Payan R, Aguilar-Medina M, Estrada-Parra S, et al. Quantification of Cytokine Gene Expression Using an Economical Real-Time Polymerase Chain Reaction Method Based on SYBR Green I[J]. Scandinavian journal of immunology,2003,57(5):439-445.
    116 Yin J L, Shackel N A, Zekry A, et al. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I[J]. Immunology and cell biology,2001,79(3):213-221.
    117 纪冬,辛绍杰.实时荧光定量PCR的发展和数据分析[J].生物技术通讯,2009,20(4):598-600.
    118 黄映萍.DNA分子标记研究进展[J].中山大学研究生学刊:自然科学与医学版,2010,31(002):27-36.
    119郑学项,冯素萍,李维国.DNA分子标记研究进展[J].安徽农业科学,2009,26:025.
    120关强,张月学,徐香玲,等.DNA分子标记的研究进展及几种新型分子标记技术[J].黑龙江农业科学,2008,1:102-104.
    121 唐棣,王志民SNPs检测方法研究进展[J].上海交通大学学报,2007,25(2):405-418
    122陈冬.吴登俊.单核苷酸多态性检测方法的研究进展[J].生物技术通报,2008,2:93-96.
    123唐立群,肖层林等.SNP分子标记的研究及其应用进展[J]. 中国农学通报,2012,28(12):154-158.
    124 田璐MyoD和DGAT1基因对牛胴体性状影响的分析[D].山西农业大学,2005.
    125杨秀芹.家猪,野猪CAPN家族4个基因的克隆,表达模式和多态性研究[D].东北农业大学,2007.
    126张慧玲.绵羊肌肉生长抑制素基因多态性研究[D][D].新疆农业大学,2007.
    127张跟喜,丁馥香,是燕萍,等.肌肉生长抑制素基因(MSTN)外显子(?)的多态性及其与边鸡生长性状的关联分析[J].农业生物技术学报,2011,19(1):122-127.
    128 朴海仙,金一,曹阳,等.松辽白鹅GH基因多态性及与屠宰性能的相关分析[J].江西农业大学学报,2010,32(6):1240-1244.
    129 French M C, Littlejohn R P, Greer G J, et al. Growth hormone and ghrelin receptor genes are differentially expressed between genetically lean and fat selection lines of sheep[J]. Journal of animal science,2006,84(2):324-331.
    130 Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method[J].Methods,2001,25(4):402-408.
    131 曹辉龙.南江黄羊MRF基因家族的分离克隆及其在肌肉组织中的表达规律研究[D].四川农业大学,2011.
    132 张小宁.Texel与乌珠穆沁绵羊妊娠中,后期胎儿骨骼肌中肌肉形成和脂肪分化相关基因表达分析的研究[D].中国农业科学院,2012.
    133 孙嘉璐.中外猪种肉质相关基因表达的发育性变化及其与肉质性.状关联性研究[D].辽宁医学院,2011.
    134张增荣.鸡CAPN1, CAPN2, CAPN3和CAST基因的克隆,表达及其在肉质中的遗传效应分析[D].四川农业大学,2009.
    135 龙定彪.猪肌肉生长抑制素基因表达规律及其调控与肌肉生长量的关系研究[D].四川农业大学,2008.
    136 Shibata M, Matsumoto K, Aikawa K, et al. Gene expression of myostatin during development and regeneration of skeletal muscle in Japanese Black Cattle[J]. Journal of animal science,2006, 84(11):2983-2989.
    137单立莉Myostatin, MyoD, Myogenin基因对金华猪和长白猪肉质影响的比较研究[D].延吉:延边大学,2009.
    138孙伟,王鹏,丁家桐,等.湖羊Myostain和Myogenin基因表达的发育性变化及与屠宰性状的关联分析[J].中国农业科学,2010,43(24):5129-5136.
    139张菊.绵羊CAST, MC4R和BTG1基因的克隆,组织表达和遗传多态性分析[D].中国农业科学院,2009.
    140 Reisz-Porszasz S, Bhasin S, Artaza J N, et al. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin[J]. American Journal of Physiology-Endocrinology and Metabolism,2003,285(4):E876-E888.
    141 孙伟.关于绵羊肌肉生长遗传调控机理的研究.中国农业科学院,2012.
    142孙立彬.猪钙蛋白酶抑制蛋白基因的克隆、多态及其与肉质性状和背膘厚间的关系研究[D].东北农业大学,2004.
    143杨又兵.猪MYOG基因和CAST基因多态性研究及部分DNA片段的测序[D].华中农业大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700