用户名: 密码: 验证码:
基于FBG光谱特性的结构损伤监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外FBG传感技术在结构监测方面的研究已取得较多的研究成果,这种利用FBG传感器反射谱中心波长的漂移进行损伤识别的方法是一种有效的结构损伤监测方法。然而,对于有些结构的部分区域,比如金属修补结构的修补区域以及复合材料接头结构的接头区域等等,所受的应变并非均匀应变,若再通过FBG反射谱中心波长的漂移进行损伤识别势必会产生误差,甚至发生错误。本文研究了FBG传感器在非均匀应变作用下的光谱特性,并将这一原理应用于航空结构的典型损伤监测中。主要研究工作包括以下几个方面:
     首先,介绍了结构健康监测技术和光纤布拉格光栅传感技术的研究背景、研究现状以及研究意义,给出了本文的研究内容。
     第二,从光纤布拉格光栅的传输原理出发,对其应变传感进行严格的理论推证;在此基础上,研究了重构非均匀应变作用下光纤布拉格光栅反射谱的数值模拟的实现过程及其优缺点;最后,对现有的方法进行改进,并设计了实验来验证改进后方法的可行性与准确性。
     第三,提出了基于FBG传感器光谱特性来监测铝合金试件疲劳裂纹的扩展情况。通过有限元分析确定FBG传感器的布置位置;基于结构应变分布从理论上重构了裂纹扩展过程中FBG的非均匀反射光谱,最后将实验所得的光谱与理论结果进行了对比,两者具有较好的一致性。
     第四,提出了利用FBG传感器对修补结构中裂纹再次扩展的监测方法。通过有限元分析方法获得修补结构中的应变场分布,建立了裂纹扩展长度与FBG传感器的非均匀反射光谱特征之间的关系,并通过实验进行了对比验证。
     第五,整体化复合材料结构可大幅降低制造装配成本和减轻结构重量,复合材料胶接接头是实现整体化复合材料结构的有效连接形式。以碳纤维π形胶接接头结构为研究对象,提出了利用FBG传感器的光谱特性监测其结构失效的方法。通过有限元方法分析了π形胶接接头结构各铺层的失效次序及其对应载荷的大小,并提取了对应情况下的应变分布,据此重构了FBG传感器的非均匀反射光谱;最后,与实验结果相比较,对应失效载荷大小和FBG反射谱变化趋势基本吻合。
     第六,提出了一种基于FBG传感器的冲击载荷实时监测系统,结合支持向量机算法对碳纤维飞行器壁板进行了冲击载荷位置及程度的识别研究,并与传统的BP神经网络识别结果进行了对比。
     最后,总结了本文的主要研究内容和创新点,并给出了今后进一步研究工作的方向。
Much progress has been made in strucrural heath mornitoring using FBG sensor technology. It is one of effective structural health mornitoring techniques by measuring the shift of central wavelength. However, for subregion of some structure, such as repaired region of repaired structure, joint region of composite joint structure and so on, is subjected non-uniform strain. In such circumstances, the spectrum shape of FBG will be not the same as before, and we cannot identify damages directly by examine the shift of central wavelength. In this paper, spectral characteristics of fiber Bragg grating under non-uniform strain is researched, which is applied to typical damages monitoring for aerospace materials.
     The main works done in this dissertation include:
     Firstly, it was summarized on research background, present situation, significance of SHM and fiber Bragg grating sensing technology. Then, the researching contents were proposed.
     Secondly, starting form the transimission theory of FBG, strain sensing mechanism is derived strictly. On this basis, using Runge-Kutta method and transfer matrix method, the numerical simulation of reflection spectrum is studied when a non-uniform strain is subjected to FBG, then the advantages and disadvantages were analyzed. At last, Methods that have existed are optimized and experiment is designed to validate the veracity and feasibility.
     Thirdly, fiber Bragg grating sensor is used to monitor the fatigue crack propagation of aluminum alloy specimen with pre-crack under cyclic loading. The reflection spectra of FBG for different crack lengths have been calculated with the aid of a finite-element model of the strain field resulting from a crack, and compared with the results of the experiment.
     Fourthly, fiber Bragg grating sensor is used to monitor the propagation of crack beneath the repaired patch under cyclic loading condition. The reflection spectra of FBG for different crack lengths have been calculated with the aid of a finite-element model of the strain field resulting from a crack. Then, comparison between the theoretical result and the experimental result was done.
     Fifthly, taking carbon fiberπ-joint structure for research subject, a kind real-time online monitoring system using fiber Bragg grating sensor was studied. Firstly, based on the general FEM software, the 3-D finite element model of compositeπ-joint is established, the failure process and every layer failure load of compositeπ-joint were investigated by maximum stress criteria. Then, strain distributions belong the length of fiber Bragg grating were extracted, the reflection spectrum of fiber Bragg grating have been calculated according the strain distribution. Finally, to verify the numerical results, a test scheme was performed and the experimental spectrums of fiber Bragg grating were recorded. The experimental results indicate that the failure sequence and the corresponding loads were consistent with numerical predictions.
     Sixthly, a real-time monitoring system based on the fiber Bragg grating sensors is set up in this paper. Support vector machine is applied to detect the impact damage for the carbon fiber composite laminated plates, and compared with the results from traditional BP neural network.
     Lastly, summarize the contents and the achievements of this paper, then pointed out the further research direction.
引文
[1]姜曙光. NASA制定下一代民用航空技术优先研究计划.国际航空, 2007, 4: 12-14.
    [2]葛森.大型客机对先进结构强度技术的挑战.第三届全球华人航空科技研讨会论文集,西安, 2005, 37-43.
    [3]袁慎芳,邱雷,吴键,孙亚杰,王强.大型飞机的发展对结构健康监测的需求与挑战航空制造技术, 2009(22): 62-67.
    [4]中国空军网http://www.plaaf.net/viewnews-924.html.
    [5]中华人民共和国国民经济和社会发展第十一个五年规划纲要.
    [6]探寻中国大型飞机发展之路——访国防科工委秘书长黄强. http://www.costind.gov.cn/n435777/n435807/n435816/n435843/425394.html.
    [7]陶宝祺.智能材料结构.北京:国防工业出版社, 1997.
    [8]袁慎芳.结构健康监控.北京:国防工业出版社, 2007.
    [9] Holger S, Henrik R.Structural health monitoring: A contribution to the intelligent aircraft structure.9th European Conference on NDT, Berlin, Germany, 2006.
    [10] Dimitry G., Grant A. G., Shawn B., et al.Design of integrated SHM system for commercial aircraft applications, 5th International Workshop on Structural Health Monitoring, Stanford, CA, 2005, 1-8.
    [11] Goggin P. Challenges for SHM transition to future aerospace systems. Structural Health Monitoring 2003: From Diagnostics & Prognostics to Structural Health Management: Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, 2003, 30-41.
    [12] A.ABaker. Repair of cracked or defective metallic aircraft components with advanced fiber composites: an overview of Australian work. Composite Structures, 1984(2): 153-181.
    [13] A.ABaker.Boonde composite repair of fatigure-cracked primary aircraft structure. Composite Structures, 1999(47): 431-443.
    [14] A.ABaker, L.R.F.Rose, K.F.Walker. Repair substantiation for a bonded composite repair to F-111 lower wing skin. Applied Composite Materials, 1999(6):251-267.
    [15]杨乃宾,章怡宁.复合材料飞机结构设计[M] .北京:航空工业出版社, 2002 : 1219.
    [16] Taylor Robert M , Owens Stephen D. Correlation of an analysis tool for 32D reinforced bonded joint s on t he F-35 joint st rike fighter , AIAA2200421562. New York : AIAA , 2004 : 1211.
    [17] Staszewski WJ, Boller C, Tomlinson GR, editors. Health monitoring of aerospace structures.Chichester: John Wiley & Sons; 2003
    [18]陈祥宝,张宝艳译.工程复合材料.北京:化学工业出版社, 2004
    [19]郭凤珍,于长泰.光纤传感技术与应用.杭州:浙江大学出版社, 1992.
    [20]王惠文,江先进.光纤传感技术与应用.北京:国防工业出版社, 2001.
    [21]巩宪锋.光纤光栅传感器及其应用的关键技术研究.博士学位论文.北京科技大学. 2004.
    [22]国家自然科学基金委员会,工程与材料科学部.学科发展战略研究报告(2006年~2010年)——机械与制造科学.北京:科学出版社. 2006.
    [23]刘文,邹健,黄尚廉.分布式光纤温度传感的拉曼散射理论分析.光电工程, 1993, 20(6): 22-26.
    [24]陈伟民,潘英俊,石文江,黄尚廉.一种新型光弹式光纤压力传感器测头.传感器技术, 1987(Z1): 39-40.
    [25]李志高,潘英俊,黄尚廉.分布式光纤压力传感器的光信号处理[J].重庆大学学报(自然科学版), 1994, 17(04): 41-44.
    [26]赵廷超,黄尚廉,陈伟民.机敏土建结构中光纤传感技术的研究综述.重庆大学学报, 1997, 20(5): 104-109.
    [27]黄尚廉,陈伟民,饶云江等.光纤应变传感器及其在结构健康监测中的应用[J].测控技术, 2004,23(5):1-8.
    [28]梁磊,姜德生,孙东亚.光纤传感器在混凝土结构中的相容性研究.武汉工业大学学报, 2000, 22(2): 11-14.
    [29]姜德生,祁耀斌,李焰.光纤传感安全监测系统软件设计与研究.武汉理工大学学报, 2001,24(12):60-63
    [30]姜德生,祁耀斌.油罐区光纤安全监测系统设计与实现.武汉理工大学学报, 2001,23(11):69-71
    [31]姚岚,余海湖,姜德生.离子自组装技术及其在光纤传感中的应用.武汉理工大学学报, 2001,23(4):58-60
    [32]黄俊,姜德生,袁润章. ER/MR液减振器件的设计及原理性研究.武汉理工大学学报, 2001,23(4):26-28.
    [33]张东生,李微,郭丹,胡军,罗裴,姜德生.基于光纤光栅振动传感器的桥梁索力实时监测.传感技术学报, 2007, 20(12): 2720-2723.
    [34]岳丽娜,黄俊,姜德生.光纤传感技术在长江二桥加固监测中的应用.武汉理工大学学报, 2009,31(2):10-12.
    [35]张在宣,余向东,郭宁,吴孝彪.分布光纤Raman光子传感系统的优化设计.《光电子.激光》,1999, 10(2): 110-112.
    [36]张在宣,冯海琪,余向东,郭宁,吴孝彪.分布光纤喇曼光子传感器系统.《半导体光电》, 1999, 20(2): 83-85.
    [37]王玮,周邦全,张在宣,吴孝彪,郭宁,余向东.王其良分布型光纤拉曼光子温度传感系统的测温精度.《光学学报》, 1999,19(1): 100-105.
    [38]张在宣,余向东,郭宁,吴孝彪.分布光纤Raman光子温度传感器(DOFRPTS)系统的空间分辨率.《光子学报》.1999, 28(.Z1): 393-396.
    [39] Wang C S, Chang F K. Built-in diagnostics for impact damage identification of composite structures Proc.3rd Int. Workshop on Struetural Health Monitoring. Stanford, USA, 1999: 612-621.
    [40] Roh YS,Chang F K. Built in diagnostics for identifying an anomaly in plates using wave scattering. [Dissertation]. California: StanfordUniversity,1999.
    [41] Wang C. H, Rose J. T, Chang F. K. A synthetic time-reversal imaging method for structural health monitoring. Smart Materials and Structures, 2004,13: 415-423.
    [42] Wang L., Yuan F. G.. Damage Identification in a Composite Plate using Prestack Reverse-time Migration Technique.Structural Health Monitoring, 2005, 4 (3): 195-211.
    [43] Lin X., Yuan F. G. Detection of Multiple Damages by Prestack Reverse-Time Migration. AIAA JOURNAL, 2001, 39 (11): 2206-2215.
    [44] Lin X., Yuan F. G. Damage Detection of a Plate Using Migration Technique. Journal of Intelligent Material Systems and Structures, 2001, 12: 469-482.
    [45] Lin X., Yuan F. G. Experimental Study Applying a Migration Technique in Structural Health Monitoring. Structural Health Monitoring, 2005, 4 (4): 341-353.
    [46] C. Boller. Next Generation Structural Health Monitoring and Its Integration into Aircraft Design. International Journal of Systems Science, 2000, 31(11): 1333-1349.
    [47] Staszewski W.J., C.Boller, Tomlinson Geof. Health Monitoring of Aerospace Structure. Wiley Inter science, Join-Wiley & Sons, Inc. 2004.
    [48] Giurgiutiu V., and Yu L.. Embedded Ultrasonic Structural Radar with Piezoelectric Wafer Active Sensors for Damage Detection in Cylindrical Shell Structures,American Institute of Aeronautics and Astronautics, 2004, 1-14.
    [49] Yu L., Giurgiutiu V.. Design, Implementation, and Comparison of Guided Wave Phased Arrays Using Embedded Piezoelectric Wafer Active Sensors for Structural Health Monitoring. Proc. of SPIE Vol. 2006, 6173(61731M):1-12.
    [50] Giurgiutiu V. and Cuc A., Embedded Non-destructive Evaluation for Structural Health Monitoring, Damage Detection, and Failure Prevention. The Shock and Vibration Digest, March 2005, 83:105.
    [51] Giurgiutiu V.. Lamb Wave Generation with Piezoelectric Wafer Active Sensors for Structural Health Monitoring. Proc. of SPIE, 2003, 5056:111-122.
    [52] P. Malinowski, T. Wandowski, I. Trendafilova, et al. A Phased Array-based Method for Damage Detection and Localization in Thin Plates. Structural Health Monitoring, 2009, 8(1): 5-15.
    [53] Sundararaman S., Adams D. E., Rigas E. J. Biologically Inspired Structural Diagnostics through Beamforming with Phased Transducer Arrays. International Journal of Engineering, 2005, 43(9):756-778
    [54] Wilcox, P.D.. Omni-Directional Guided Wave Transducer Arrays for the Rapid Inspection of Large Areas of Plate Structures. IEEE Trans. Ultrason., Ferroelect, Freq. 2003, 50(6), 699-709.
    [55] Fromme P., Wilcox P.D., Lowe M.J.S. etal. On the Development and Testing of a Guided Ultrasonic Wave Array for Structural Integrity Monitoring. IEEE Institute of Electrical and Electronics. 2006, 53(4), 777-785.
    [56] Kim, D., Philen, M.. Beamsteering of MFC Phased Arrays for Structural Health Monitoring: Analytical and Experimental Investigations. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, May 4-7, 2009.
    [57] Yan F., and. Rose J. L.. Guided Wave Phased Array Beam Steering in Composite Plates. Proc. of SPIE, 2007, Vol. 6532(65320G):1-9.
    [58] Yu L., Giurgiutiu V.. In Situ 2-D Piezoelectric Wafer Active Sensors Arrays for Guided Wave Damage Detection. Ultrasonics, 2008, 48: 117-134.
    [59] Purekar A., Pines D.J., Sundararaman S., et al. Directional Piezoelectric Phased Array Filters for Detecting Damage in Isotropic Plates. Smart Materials and Structures, 2004, 13: 838-850.
    [60] Giurgiutiu V., Bao J. Embedded-ultrasonics Structural Radar for In Situ Structural Health Monitoring of Thin-wall Structures. Structural Health Monitoring, 2004, 3 (2): 121-140.
    [61] Yu L., Giurgiutiu V. In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection. Ultrasonics, 2008, 48: 117-134.
    [62] Purekar A. S., Pines D. J. A phased sensor/actuator array for detecting damage in 2-D structures,AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,2002,2002-1547:22-25.
    [63]王强. Lamb波时间反转方法及其在结构健康监测中的应用研究[博士学位论文].南京:南京航空航天大学, 2009.
    [64]孙亚杰.基于超声相控阵原理的结构健康监测技术研究[博士学位论文].南京:南京航空航天大学, 2010.
    [65]苏永振.复合材料结构低速冲击健康监测研究[博士学位论文].南京:南京航空航天大学, 2010.
    [66] Hunt S. R., Hebden I. G..Validation of the Eurofighter Typhoon structural health and usage monitoring system.Smart Materials & Structures, 2001, 10: 497-503
    [67]胡明敏,陈杰,陶宝祺.疲劳寿命丝性能研究.航空学报. 1994, 15(3): 336-339.
    [68]胡明敏,张明,罗艳丽,方义庆.应变倍增器研制及应用.实验力学. 2007, 22(1): 57-62.
    [69] Akl W., Poh S., Baz A. Wireless and distributed sensing of the shape of morphing structures[J], Sensors and Actuators A-Physical, 2007, 140(1): 94-102.
    [70]吴键.面向结构监测的智能无线传感网络关键技术研究[博士学位论文].南京:南京航空航天大学, 2010.
    [71] Jian Wu, Shenfang Yuan, Xia Zhao, Yue Yin, Weisong Ye, A wireless sensor network node designed for exploring a structural health monitoring application, Smart Materials and Structures, 2007, 16(5): 1898-1906.
    [72]吴键,袁慎芳.无线传感器网络节点的设计和实现,仪器仪表学报,2006,127(19):1120~1124.
    [73] Jian Wu, Shenfang Yuan et al., Strain Distribution Monitoring Wireless Sensor Network Design and Its Evaluation Research on Aircraft Wingbox. International Journal of Applied Electromagnetics and Mechanics, 2009, 31, 17~28.
    [74] Jian Wu, Shenfang Yuan et al., Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring. Expert Systems with Applications, 2009, 37(3): 2028~2036。
    [75] Jian Wu, Shenfang Yuan et al., Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System. Sensors, 2009, 4195-4210.
    [76] Berdugo, Albert, Grossman, et al. Wireless sensor system for airborne applications[J]. International Telemetering Conference, San Diego, CA, 2006.
    [77] Musteric S. A., Berdugo A. The advanced subminiature telemetry system (ASMT):A wireless, network based, miniaturized instrumentation system[R]. AIAA 2007-1641
    [78] http://www.mwee.com/showArticle.jhtml?articleID=219400406
    [79]李健,王颖.智能涂层及其研究现状.表明工程资讯, 2006, 6(26): 5-6.
    [80]李健,王颖,高新蕾.智能涂层——类生物表面活性智能涂层.材料保护, 2006(1): 36-40.
    [81]蔡佳昆,王智,刘马宝.智能涂层技术在飞机结构裂纹监控中的应用研究.第十五届全国疲劳与断裂学术会议, 2010年,中国广东佛山.
    [82]吕志刚,戚燕杰,刘马宝,李立人.提高飞机结构安全性与新对策.维修. 2009, 103(7): 55-58.
    [83] http://www.smsystems.com.au/content/products/cvma.asp
    [84] http://www.wabusinessnews.com.au/story/1/62064/Structural-trials-health-monitoring-technology-on-Boeing
    [85]张颖.布拉格光纤光栅传感技术研究.南开大学博士论文, 2001.
    [86] K.O. Hill, Y.Fujii, D.C.Johnson et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32(10): 647-649.
    [87] Meltz G, Morey W W, Glenn W H. Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method. Opt. Lett., 1989, 14(15): 823-825.
    [88] K.O.Hill, B.Malo, F.Bilodeau et al., Bragg gratings fabricated in monomode photosensitive optical fiber by exposure through a phase mask. Appl. Phys. Lett., 1993, 62(10): 1035-1037.
    [89] P.J.Lemaire, R.M.Atkins, V.Mizrahi et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers. Electron. Lett., 1993, 29(10): 1991-1992.
    [90] W.W.Morey, G.Meltz, W.H.Glenn. Fiber Bragg grating sensors. Proc. SPIE., 1989, vol. 2507:98-107.
    [91] A.D.Kersey, M.A.Davis, H.J.Partrik et al. Fiber grating sensors. J. Lightware Technol. 1997, 15(8): 1442-1463.
    [92] Y.J.Rao. Recent progress in in-fiber Bragg grating sensors: Applications. Proc. SPIE., 1992,vol. 3555:429-441.
    [93] K.O. Hill, G.Meltz. Fiber Bragg Grating Technology Fundamentals and Overviews. Journal of Lightwave Technology, 1997, 15(8): 1263~1276.
    [94]王庆亚,张健.紫外写入光纤光栅的进展.吉林大学学报, 1996, 1(1): 69-72.
    [95]方祖捷,陈高庭.光纤Bragg光栅的特性及应用研究.高技术通讯, 2000, 10(1): 56-61.
    [96]陈根详,葛璜.光纤的光敏性及光纤光栅紫外写入技术.电子学报, 1997, 25(8): 73-77.
    [97]刘云启,郭.转运.光纤光栅传感测量中的交叉敏感机制及其解决方案.光电子·激光, 1999, 10(2): 179-182.
    [98]关柏鸥,董孝义.用一根光纤光栅实现温度与应变的同时测量.光学学报, 2000, 20(6):821-826.
    [99]周国鹏.光纤布拉格光栅传感器封装与应变/温度分离技术[硕士学位论文].南京:南京航空航天大学, 2006.
    [100]谢芳,李相培.光纤光栅传感器的波长检测系统及其理论分析.光学学报, 2002, 22(6): 726-730.
    [101]张书练,李相培.用于测量页面高度的光纤光栅传感器.激光技术, 2001, 25(1): 7-10.
    [102]郭团,乔学光,贾振安等.基于带宽展宽的光纤光栅压力传感研究.光子学报, 2004, 33(3): 288-290.
    [103]欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术.土木工程学报. 2004, 37(1): 45-50.
    [104]饶云江,王义平,朱涛著.光纤光栅原理及应用.北京:科学出版社, 2006.
    [105]李川,张以谟,赵永贵等.光纤光栅:原理、技术与传感应用.北京:科学出版社, 2005.
    [106] Raymond M, Measures. Fiber Optic Strain Sensing. 1995, 171-247.
    [107] I. McKenzie, R. Jones, I. H. Marshall, and S. Galea. Optical fibre sensors for health monitoring of bonded repair systems[J]. Composite Structures, 2000(50):405~416.
    [108] Daniel Betz, Lothar Staudigel et al. Test of a Fiber Bragg Grating Sensor Network for Commercial Aircraft Structures[J]. Proc. OFS-16, 2002: 55-58.
    [109] Jung-Ryul Lee, Chi-Young Ryu, Bon-Yong Koo et al. In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system[J]. Smart Mater. Struct, 2003:147-155.
    [110] Toshimichi Ogisu, Masakazu Shimanuki et al. Development of Damage Monitoring System for Aircraft Structure Using a PZT Actuator/FBG Sensor Hybrid System[J]. SPIE, 2004:425~436.
    [111] Takeda S, Okabe Y, Yamamoto T, Takeda N. Detection of edge delamination in CFRP laminates under cyclic loading using small diameter FBG sensors[J]. Compo Sci Technol 2003,63(13):1885–1894.
    [112] Takeda S, Minakuchi S, Okabe Y and Takeda N. Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter FBG sensors. Composites A, 2005(36):903~908.
    [113] Okabe Y, Tsuji R, Takeda N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites. Compos. Part A: Appl. Sci. and Manuf. 2004, 35 (1):59~65.
    [114] S Takeda, T Yamamoto, Y Okabe and N Takeda. Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors, Smart Mater. Struct. 2007(16):763~770.
    [115] Takeda S, Aoki Y, Ishikawa, Takeda N, Kikukawa. Structural health monitoring of composite wing structure during durability test, Compos. Struct. 2007(79):133~139.
    [116] P.Gasior, J.Kaleta, et al. Fiber Bragg Gratings application for strain measurements of Terfenol-D based composites. Conference of SMART’2009.
    [117] A.Guemes. Distributed sensing of strain and temperature under complex conditions. Conference of SMART’2009.
    [118] V.Antonucci, M.Giordano, et al. Ballistic impact monitoring of glass fibers composites by Fiber Bragg Grating Sensors. Conference of SMART’2009.
    [119] O.Frazao, I.Dias and L.Amaral. Novel sensing head geometry based on smart composite with embedded FBGs for strain and temperature discrimination. Conference of SMART’2009.
    [120] Erdogan T. Fiber grating spectra. J Lightwave Technol, 1997, 15 (8) :1277-1294.
    [121] Kara Peters, Philip Pattis. Experimental verification of response of embedded optical fiber Bragg grating sensors in non2homogeneous strain fields[J]. Optics and lasers in engineering, 2000, 33 :107-119.
    [122] Okabe Y, Tsuji R, Takeda N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites. Compos. Part A: Appl. Sci. and Manuf. 2004, 35 (1): 59-65.
    [123] J.A. Güemes, et al. Embedded fiber Bragg grating as local damage sensors for composite materials. Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems[C], Proceedings of SPIE 2002 (4694):118-128.
    [124]孙圣和,王廷云,徐影.光纤测量与传感技术.哈尔滨:哈尔滨工业大学出版社, 2002.
    [125]周智.土木工程结构光纤光栅智能传感元件及其监测系统(博士学位论文).哈尔滨:哈尔滨工业大学, 2003.
    [126]廖延彪.光纤光学.北京:清华大学出版社, 2000.
    [127]南秋明.光纤光栅应变传感器的研制及应用(硕士学位论文).武汉:武汉理工大学, 2003.
    [128]贾宏志.光纤光栅传感器的理论和技术研究(中国科学院西安光学精密机械研究所博士学位论文),西安,西安光学精密机械研究所, 2000, 17-25.
    [129]饶云江,王义平,朱涛著.光纤光栅原理及应用.北京:北京科学出版社, 2006.
    [130] WU Fei, LI Li-xin, LI Zhi-quan, Theoretical Analysis of Fiber Bragg Grating Characterization by Applying Transverse Force, Chinese Journal of Lasers, 2006(33): 472-476.
    [131] Cai Lu-Lu Yin Wen-Wen Wu Fei, Study of fiber Bragg grating characteristics under local transverse force, Acta Physica Sinica, 2008(57): 7737-7746.
    [132] YANG Guo-fu, Spectral Characteristic Analysis of FBG under the Transverse Inhomogeneous Strain Field, Chinese Journal of Sensors and Actuators, 2007(20): 1021-1024
    [133] Yiping Wang, Na Chen, Binfeng Yun, Zhuyuan Wang, Changgui Lu, Yiping Cui. Effects of distributed birefringence on fiber Bragg grating under non-uniform transverse load. Optics & Laser Technology. 2008 (40): 1037-1040.
    [134] Hang-Yin Ling, Kin-Tak Lau, Wei Jin and Kok-Cheung Chan. Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating. Optics Communications 2007 (270) : 25–30.
    [135] Giaccari P, Dunkel GR, Humbert L, Botsis J, Limberger HG, Salathe RP. On a direct determination of non-uniform internal strain fields using fibre Bragg gratings. Smart Mater. Struct. 2005 (14) 127–136.
    [136] ZHAO Hai-tao, ZHANG Bo-ming, WU Zhan-jun, et al. A Novel fiber optic sensor for health monitoring of large dimension structure . J of Optoelectronics·Laser, 2008,19(9):1177-1180.
    [137] LI Dong-sheng, DENG Nian-chun, ZHOU Zhi, et al. Fiber Bragg Grating Sensor Monitoring Techniques and Health Diagnosis of Arch Bridge Suspenders.J of Optoelectronics·Laser, 2007,18(1):81-84.
    [138] Hideki Sekine, Shin-Etsu Fujimoto, Tomonaga Okabe, et al. Structural Health Monitoring of Cracked Aircraft Panels Repaired with Bonded Patches Using Fiber Bragg Grating Sensors. Appl Compos Mater, 2006(13): 87- 98.
    [139] M cclintock F A.On the plasticity of the fatigue cracks. Fracture of Solids.1963, 20(01): 65-102.
    [140] Paris P C,Bucci R,Wessel E,et al.Extensive study of low fatigue crack growth rates in A533 and A508 steels: Proceedings of the 1971 National Symposium on Fracture Mechanics.University of Illinois,Urbana-Champaign:ASTM-Special Technical Publication1972(513): 141-176.
    [141] Schmidt R A, Paris P C.Threshold for fatigue crack propagation and the effects of load ratio and frequency. Philadelphia: ASTM-Special Technical Publication, 1973(536): 79-94
    [142] Forman R G, Kearney V E,Engle R M.Numerical analysis of crack propagation in a cyclic-loaded structure[J]. Journal of Basic Engineering.1967, 89(03): 459-464.
    [143]陈篪.论裂纹扩展的判据.金属学报.1977, 13(1): 57-72.
    [144] Shin-etsu Fujimoto, Hideki Sekine. Identification of crack and disbond fronts in repaired aircraft structural panels with bonded FRP composite patches. Composite Structures 2007 (77): 533-545.
    [145] S Takeda, T Yamamoto, YOkabe and N Takeda. Debonding monitoring of composite repairpatches using embedded small-diameter FBG sensors. Smart Mater. Struct. 2007 (16): 763–770.
    [146] Hideki Sekine, Shin-Etsu Fujimoto, Tomonaga Okabe, Nobuo Takeda, Toshimitsu Yokobori, Jr. Structural Health Monitoring of Cracked Aircraft Panels Repaired with Bonded Patches Using Fiber Bragg Grating Sensors[J]. Appl Compos Mater, 2006(13):87- 98.
    [147]陈明安,张新明,蒋志军等.铝及铝合金表面处理后的表面特征和粘接特性.化学与粘合, 2001(6): 262-264.
    [148]向海.铝合金粘接表面的处理技术.航空与航天, 2002(3): 13-16.
    [149] M.A.Villegas. Chemical and microstructural characterization of sol-gel coatings in the ZrO2-SiO2 system. Thin Solid Films, 2001(382): 124-132.
    [150] N.N.Voevodin, N.T.Grebasch,W.S.Soto, et al. An organically modified zirconate film as a corrosion-resistant treatment for aluminum 2024-T3. Progress in Organic Coatings, 2001(41): 287-293.
    [151] B.Astrid, L.Fabrice, W.John, et al. Anodising as pre-treatment for structural bonding. International Journal of Adhesion and Adhesives, 2003(23): 401-412.
    [152] ANSYS User’s Manual, Version 6, Swanson Analysis Systems, Inc., 2002.
    [153] Lou Y C, Schapery R A. Viscoelastic characterization of a non-liner fiber-reinforced plastic. J. Cmp. Mater, 1971(5): 208-234.
    [154] Habib M, Aaivazzadch S, Verchery G. Edge effect analysis in adbesively booded tubes unsing axisymmetric interface finite element. CAD in ComposMater Technol., 1988, 8: 415-428.
    [155]徐建新.复合材料补片胶接修理技术研究进展.航空学报,1999,20(4): 381-383.
    [156]杨乃宾,章怡宁.复合材料飞机结构设计.北京:航空出版社, 2002.
    [157] Taylor R M, Owens S D. Correlation of an analysis tool for 3-D reinforced bonded joints on the F-35 joint strike fighter. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, California, 2004.
    [158] Sheahen P, Schmidt R. Primary sandwich structure: A unitized approach. 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, Atlanta, 2000.
    [159] Sih GH, Skudra A M. Failure mechanics of composites. New York: Elsevier Science; 1985.
    [160] Staszewski WJ, Boller C, Tomlinson GR, editors. Health monitoring of aerospace structures. Chichester: John Wiley & Sons; 2003
    [161] Mickens T, Schulz M, Sundaresan M, Ghoshal A. Structural health monitoring of an aircraft joint. Mech Syst Signal Proc 2003;17(2): 285–303.
    [162] Johnson TJ, Brown RL, Adams DE, Schiefer M. Distributed structural health monitoring with a smart sensor array. Mech Syst Sig Proc 2004, 18(3): 555-572.
    [163] Ruzek R, Lohonka R, Jironc J. Ultrasonic C-scan and shearography NDI techniques of impact defects identification. NDT and E International 2005:1–11.
    [164]陈建桥.复合材料力学概论.北京:科学出版社, 2006.
    [165]赵丽滨,彭雷,张建宇等.复合材料π接头拉伸力学性能的试验和计算研究.复合材料学报, 2009, 26(2): 181-186.
    [166]赵丽滨,董沛,李嘉玺等.复合材料接头试验件破坏过程模拟.航空制造技术, 2007年增刊: 61-64.
    [167]赵丽滨,秦田亮,黄海等.某复合材料π接头的强度估算.材料工程, 2007年增刊:90-93.
    [168] Zhao Libin, Qin Tianliang, Huanghai, et al. Model Investigation on Composite Failure Prediction ofπ-Joint Structures. RARE METAL MATERIALS AND ENGINEERING, 2009, 38(3): 105-108.
    [169] Walz M. The dream of composites, R&D, Features-Advantage Business Media, 2006
    [170] Staszewski WJ, Boller C, Tomlinson GR, editors. Health monitoring of aerospace structures. Chichester: John Wiley & Sons; 2003
    [171]陈祥宝,张宝艳,译.工程复合材料.北京:化学工业出版社, 2004
    [172] ZHAO Hai-tao, ZHANG Bo-ming, WU Zhan-jun, et al. A Novel fiber optic sensor for health monitoring of large dimension structure . J of Optoelectronics·Laser, 2008,19(9): 1177-1180.(in Chinese)
    [173] LI Dong-sheng, DENG Nian-chun, ZHOU Zhi, et al. Fiber Bragg Grating Sensor Monitoring Techniques and Health Diagnosis of Arch Bridge Suspenders.J of Optoelectronics·Laser, 2007,18(1): 81-84.(in Chinese)
    [174] Alex J.Smole, Bemhard Schoelkopf. Tutorial on Support Vector Regression, Neuro COLT2 Technical Report Series NC2-TR-1998030, October, 1998.
    [175] Burge. CJC. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 1998: 121-167.
    [176] John C.Platt. Sequential Minimal Optimization: A Fast Algorithm for training Support Vector Machines, Technical Report MSR-TR-98-14, April, 21,1998.
    [177] Shevade S K, Keerthi S S, Bhattacharyya C, Murthy K R K. Improvements to the SMO algorithm for SVM regression IEEE Transactions on Neural Networks, 2000, 11(5): 1188-1193.
    [178] Joachims T. Making large-scale SVM Learning Practical, LS8-Report, 24, University Dortmund,LS VIII-Report, 1998.
    [179] Amari S., Wu S. Improving support vector machine classifiers by modifying kernel functions [J]. Neural Networks, 1999, 12(6): 783-789.
    [180] Mikhail Kanevki, Patrick Wong and Stephane Canu. Environmental data mapping with support vector regression and geo-statistics[R]. IDIAP-RR-00-10, June, 2000.
    [181]三田彰.结构健康检测动力学.薛松涛,陈镕译.西安:西安交通大学出版社, 2004.
    [182]樊可清,倪一清,高赞明.基于频域系统识别和支持向量机的桥梁状态监测方法.北京:工程力学, 2004, 21(5): 25-30.
    [183] Vapnik VN. Estimation of dependences based on empirical data. Berlin [M]. Berlin. Springer Verlag, 1982.
    [184]张学工.关于统计学习理论与支持向量机.自动化学报,2000 ,26 (1) :32-42.
    [185] Vapnik V.统计学习理论的本质.张学工译.北京:清华大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700