用户名: 密码: 验证码:
大屏幕超薄投影显示技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着显示技术的高速迅猛发展,大屏幕显示技术日臻成熟和完善,液晶电视、等离子电视以及投影显示已成为大屏幕显示的主流。其中,投影显示在成本和技术上都占据着绝对的优势,它在大屏幕显示领域中有着举足轻重的地位。显示技术的市场发展促使投影显示产品的需求向个性化、专门化、多样化等方向转变,传统的投影显示产品已经无法彻底满足人们提出的大屏幕、低成本、便携式、超短焦距、大视场角、薄型化、大相对孔径、高清晰度等一系列的苛刻要求,非常有必要设计一种新型的大屏幕超薄投影显示光学系统,拓宽几近饱和的投影机应用市场,开启投影显示应用方式的新篇章。
     大屏幕超薄投影显示技术的难点:传统的投影显示设备要想实现100吋左右大小的投射画面,投影镜头往往需要3米以上的距离。在保证大屏幕显示画面的同时,若要进一步缩短投影距离,在客观上是难以实现的。本文提出的一种新型的仅用一片非球面反射镜的折反射式设计方案能够有效地解决投射比较大的难题,使投影机的应用突破了任何空间的限制,具有无限的商机和发展潜力。
     论文采用TI公司的数字微镜阵列(DMD)作为空间光调制器,利用激光与LED混合的方式作为高亮度投影光源,通过照明光学系统将光源耦合并均匀投射在空间光调制器上,然后通过特殊的成像光学系统将图像放大、投影。基于本方案,需要充分了解投影显示系统中的各个组件,以及讨论投影物镜设计的几何光学理论基础和用于评价投影画面成像质量的技术指标。
     在成像光学系统设计中,为了解决超短投影距离时实现大屏幕高亮度投影显示的问题,分别讨论了透射式系统、全反射式系统、折反射式系统在像差校正的难易程度、加工和检测检测等方面存在的困难以及应用前景。最后本文采用折反射式结构进行投影成像光学系统超薄化设计,采用同轴设计而离轴成像的方式并利用非球面反射镜大大简化系统结构的同时提高成像系统的性能。利用Light Tools光学仿真软件对成像光学系统进行光线追迹和像面照度均匀性分析,模拟效果显示在焦平面上的照度均匀性非常好。
     为了进一步验证折反射式超薄投影镜头的性能,论文还兼顾制造成本和非球面加工测试水平完成投影成像镜头的加工和装调,并搭配现有的DLP照明光源搭建一台原理样机,在102mm的投影距离处显示画面尺寸为65.2″。同时利用测试设备对畸变、亮度对比度、照度均匀性等主要指标进行了测试,实际测量结果与仿真结果非常接近,均满足设计指标要求,为实现“零距离”大屏幕投影产品批量化发展奠定了基础。
With the rapid development of display technology, large-screen displaytechnology is becoming more maturity and perfect,LCD TV, PDP TV and projectiondisplay has become a mainstream. Among them,the projection display occupies theabsolute superiority in terms of cost and technology,it has a pivotal position in thefield of large-screen display. The requirement of projection display productstransforms to personalization, specialization and diversification due to the marketdevelopments of display technology, conventional projection display products havebeen unable to fully meet a series of requirements proposed by consumers, such asbig-screen, low-cost, portability, short-focal length, large field of view, ultra-thin,large relative aperture and high-resolution, it is very necessary to design a newlarge-screen and ultra-thin projection optical system, broaden the application marketof the projector which has been almost saturated, open a new chapter in theapplication of projection display.
     The specific technical difficulties of large-screen and ultra-thin projectiondisplay is: in order to achieve the size of about100inch projection screen, projectionlens of conventional display device is placed above a distance of3meters. It isdifficult to keep a large screen meanwhile to further shorten the projection distanceobjectively. In this paper, a novel catadioptric design only with a piece of asphericmirrors is proposed to solve the problem of a relatively large throw ration, breaking through the limitations of any space in use of the projector with unlimited businessopportunities and development potential.
     In this program, using a digital micromirror device (DMD) produced by TI Inc.as spatial light modulator, employing hybrid light with laser and LED as a highbrightness projector light, the light source is coupled and projected uniformly in thespatial light modulator through the illumination optical system, and an image isenlarged via a special imaging optical system. Based on this program, it needs tofully understand the various components of projection display system, as well asdiscussing the theoretical basis of geometrical optics on projection lens design andtechnical indicators used to evaluate the image quality of the projected image.
     In the design of the imaging optical system, to solve the problem of shortprojection distance to achieve a large-screen and high-brightness image, we discussthree kinds of structure respectively, such as transmissive projection lens, reflectiveoptical system and catadioptric system in the aspect of aberration correction, thedifficulty of processing and testing and application prospects. Finally, using acatadioptric imaging optical system for designing the ultra-thin structure, the systemis rotational symmetry but off-axis imaging, an aspheric mirror is employed not onlysimplifying the system configuration greatly, but also improving the performance ofimaging system. Software of Light Tools is used for tracing rays and analyzing theuniformity on the imaging plane, simulation results show that illuminationuniformity is very good on the focal plane.
     In order to further verify the performance of catadioptric projection lens withultra-short projection distance, the processing and alignment of projection imaginglens were completed taking into account the manufacturing costs and the test level ofaspheric surface in this paper, and a experimental prototype was set up matching theexisting DLP light source, the size of the image is65.2" on the screen at the distanceof102mm. At the same time, the main indicators such as the distortion, brightnesscontrast, illumination uniformity, etc. were tested with the test instrument, the actualmeasurements were very close to the simulation results, both meeting the design requirements, the prototype made contributions on the development of "zerodistance" and large-screen projection production on a large scale.
引文
[1] Dash S, Kahn F J, Slobodin D E, et al. Projection Displays2000: Sixth in a Series[J].2000
    [2]赵星.数字光处理器(DLP)投影显示系统光学引擎的研究[D]:[博士学位论文].天津:南开大学,2007
    [3]黄锡珉.液晶显示技术发展轨迹[J].液晶与显示,2003,18(1):1-6
    [4]田志仁.投影显示发展近况(下)[J].光电子技术,1996,16(1):1-12
    [5]田志仁.投影显示发展近况(上)[J].光电子技术,1995,15(4):251-257
    [6]孙旭涛.应用自由曲面的超薄投影显示系统理论和实验研究[D]:[博士学位论文].浙江:浙江大学,2008
    [7]陈旭,冯玉涛,刘伟奇等.大屏背投激光显示广角镜头的设计[J].光学精密工程,2011,19(5):945-950
    [8]赵星,方志良,母国光.LED投影光源的色度学特性研究[J].物理学报,2007,56(5):2537-2540
    [9] Rao L,He S,Wu S T. Blue-phase liquid crystal for reflective projection displays[J]. Journal of Display Technology,2012,8(10):555-558
    [10]康玉思,田志辉,刘伟奇等.超薄前投激光显示系统研制[J].应用光学,2012,33(5):832-836
    [11]MacAulay C E,Dlugan A L P,Lane P M. Digital micromirror devices (DMDs) inmicroscopic and macroscopic imaging[C].Biomedical topical meetings. VolumeSUG4-1. Washington,DC: Optical Society of America.2000:117-119.
    [12]Shinsuke Shikama,Hiroshi Suzuki. Optical system of ultra-thin rear projectorequipped with refractive-reflective projection optics[J].SID,2002,46(2):1250-1253
    [13]姚爱云,侯玮,林学春.全固态三基色激光大屏幕投影显示实验[J].物理,2004,33(2):133-136
    [14]勾志勇,王江,王楚等.非球面光学设计技术综述[J].激光杂志,2006,27(3):1-2
    [15]李荣彬,杜雪,张志辉.自由曲面光学设计与先进制造技术[J].香港:香港理工大学先进光学制造中心,2005
    [16]田志辉,刘伟奇,冯睿等.激光投影显示系统薄型化设计[J].液晶与显示,2009,24(6):88-95
    [17]Robinson M G,Chen J,Sharp G D. Color in projection displays [J].Journal ofDisplay Technology,2005,1(1):118-124
    [18]Yurlov V,Lapchuk A,Yun S,et al. Speckle suppression in scanning laser displays:aberration and defocusing of the projection system [J]. Applied optics,2009,48(1):80-90
    [19]Chang C M,Shieh,Han-Ping D. Design of illumination and projection optics forprojectors with single digital micromirror devices [J]. Applied optics,2000,39(19):3202-3208
    [20]Chellappan K V,Erden E,Urey H. Laser-based displays: a review [J]. Appliedoptics,2010,49(25):79-98
    [21]赵星,方志良,崔继承等.微型投影机光学引擎的研究[J].光学学报,2007,27(5):913-918
    [22]苏锋.感受“零距离”——Vivitek丽讯D795WT投影机品鉴会[J].微电脑世界,2011,5:69
    [23]张博.0.9米投射60英寸,NEC短焦投影机NP600S+闪亮登场[J].电脑爱好者,2009(11):112-112.
    [24]苏锋.超短焦大视界实力更强劲——日立HCP-A81超短焦投影机震撼上市[J].微电脑世界,2011,5:072
    [25]赵慧芳,刘向东,李海峰.投影机光学性能自动测试系统的研究[J].光学仪器,2007,29(1):62-66
    [26]Erismann F. Design of a plastic aspheric Fresnel lens with a spherical shape [J].Optical Engineering,1997,36(4):988-991
    [27]卢海平,刘伟奇,康玉思等.全景三维立体头盔显示光学系统设计[J].光学学报,2012,32(5):197-202
    [28]胡海旺.大屏幕投影DLP与LCD的优势分析[J].山西科技,2008(5):143-144
    [29]周平,陆巍,林宇翔等.复眼透镜提高液晶投影照明系统的能量利用率[J].光学学报,2004,24(5):587-591
    [30]周杰,林宇翔,周平等.改进宽银幕投影显示照明系统的设计方法[J].光学学报,2005,25(2):224-227
    [31]王蓉,刘玉玲,余飞鸿. LED光源照明微投影仪系统的设计[J].光学仪器,2006,28(2):22-26
    [32]张蔚东.液晶投影光源技术分析[J].现代显示,2008(9):32-38
    [33]陈忠,陆军民.飞利浦UHP投影光源的新发展[J].现代显示,2003,3:007
    [34]田志辉,刘伟奇,冯睿等.基于DLP投影方式的激光显示系统[J].液晶与显示,2007,22(3):315-319
    [35]吕伟振,刘伟奇,田志辉等.大屏幕投影显示光学系统超薄化设计[J].光学精密工程,2014,22(8)
    [36]骆东淼.短焦/超短焦投影镜头将推动投影产业创新和发展[J].电视技术,2013,04(6):9-12
    [37]许维中.国外投影电视技术发展近况[J].电视技术,1986,7:004
    [38]Korsch D. Closed form solution for three-mirror telescopes, corrected forspherical aberration, coma, astigmatism, and field curvature [J]. Applied optics,1972,11(12):2986-2987
    [39]Erismann F. Design of a plastic aspheric Fresnel lens with a spherical shape [J].Optical Engineering,1997,36(4):988-991
    [40]Leutz R, Suzuki A, Akisawa A, et al. Shaped nonimaging Fresnel lenses [J].Journal of Optics A: Pure and Applied Optics,2000,2(2):112
    [41]巩岩,胡宜宁,赵阳.基于数字光处理技术的小型星模拟器设计[J].光学精密工程,2007,15(11):1698-1703
    [42]罗毅,张贤鹏,王霖等.半导体照明中的非成像光学及其应用[J],中国激光,2008,35(7):963-971
    [43]姚启钧.光学教程.第一版.北京:人民教育出版社.1981,128-157
    [44]R Winston,J C Minano,P Benitez.Nonimaging Optics[M].Amsterdam: Elsevier.48-82
    [45]吕伟振,刘伟奇,魏忠伦等.基于DMD的高动态范围成像光学系统设计[J].红外与激光工程,2014,43(4):1167-1171
    [46]李晓彤,岑兆丰.几何光学·像差·光学设计[M].浙江:浙江大学出版社,2003.142-148
    [47]胡建人,秦会斌,王卉等.我国LED照明工程技术与发展策略研究[J].仪器仪表学报,2007,28(4):196-199
    [48]缪莹莹.基于LED照明的DLP投影显示系统研究[D]:[硕士学位论文].杭州:浙江大学光学工程,2007
    [49]屈碧香.基于RGB三色LED光源照明的DLP投影系统光路设计[D].浙江大学,2013.
    [50]薛楠,乔维.投影显示产业发展现状及趋势研究[J].电视技术,2013,04:13-14.
    [51]刘全恩.大屏幕投影机技术发展趋势[J].电视技术,2013,04:1-5.
    [52]孙星.基于532nm半导体激光器的投影显示系统设计[J].电源技术应用,2013,02:21-23
    [53]贾琼瑶,贺锋涛.激光投影显示中散斑均化问题的研究[J].激光技术,2013,03:400-403.
    [54]张以谟.应用光学[M].北京:电子工业出版社,2008.461-469
    [55]王永仲.鱼眼镜头光学[M].北京:科学出版社,2006.46-64
    [56]侯佳.基于畸变校正的成像自由曲面光学设计[D].浙江大学,2013.
    [57]应根裕,胡文波,邱勇等.平板显示技术[M]:北京:人民邮电出版社,2002.487-502
    [58]Fang Y C,Lin W T,Tsai H L. High-definition DLP zoom projector lens designwith TIR prism for high-definition television (HDTV)[C]. Contract Proceedings2006.International Society for Optics and Photonics,2006:63-66
    [59]王之江主编.现代光学应用技术手册[M]:下册.北京:机械工业出版社,2009.285-302
    [60]潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2004.1-9
    [61]李海峰,刘旭.现代投影显示技术[M]:浙江:浙江大学出版社,2009.3-23
    [62]Matthew S. Brennesholtz,Edward H. Stupp. Projection displays [M].Wiltshire:Wiley,2008.131-168
    [63]李庆祥,王东生,李玉和.现代精密仪器设计[M]北京:清华大学出版社,2004.15-59
    [64]Smith W J. Modern optical engineering [M]. New York: McGraw-Hill,2005.35-54
    [65]马科斯·玻恩,埃米尔·沃耳夫.光学原理[M].北京:电子工业出版社,2006
    [66]Wolfe W L. Handbook of optics [M]. New York: McGraw-Hill,2001.400-460
    [67]Smith W J. Modern lens design [M]. New York: McGraw-Hill,2005.128-148
    [68]荆其诚,焦书兰,喻柏林.色度学[M].北京:科学出版社,1979,35-54
    [69]诸昌钤. LED显示屏系统原理及工程技术[M].电子科技大学出版社,2000,25-54
    [70]张增宝.投影显示系统光学引擎研究[D].[博士学位论文].中国科学院研究生院(长春光学精密机械与物理研究所),2004
    [71]陆颖隽.虚拟现实技术在数字图书馆的应用研究[D].武汉大学,2013.
    [72]Korsch D. Reflective optics [M]. Academic Press,1991,5-17
    [73]王之江,顾培森.实用光学技术手册[M].北京:机械工业出版社,2007.225-250
    [74]Younse J M. Projection display systems based on the digital micromirror device(DMD)[C].Micromachining and Microfabrication. International Society for Opticsand Photonics,1995.64-75
    [75]汪巍.基于透射型自由曲面理论的均匀照明设计方法研究[D].[硕士学位论文].浙江:浙江大学,2006
    [76]杨力.先进光学制造技术[M].北京:科学出版社,2001,35-78
    [77]Ogawa J,Agata K,Sakamoto M,et al. Super‐short Focus Front Projector withAspheric Mirror Projection Optical System[C].SID Symposium Digest of TechnicalPapers. Blackwell Publishing Ltd,2004,35(1):170-173
    [78]Shikama S,Suzuki H,Teramoto K. Optical System of Ultra-Thin Rear ProjectorEquipped with Refractive-Reflective Projection Optics[C].SID Symposium Digest ofTechnical Papers. Blackwell Publishing Ltd,2002,33(1):1250-1253
    [79]Kennedy K W, Martinsen R J, Radl A J, et al. Laser-based SXGA reflective lightvalve projector with E-cinema quality contrast and color space[C]//Electronic Imaging.International Society for Optics and Photonics,2000:168-174.
    [80]周杰.反射式投影显示光学系统的理论分析和应用研究[D]:[博士学位论文]浙江:浙江大学,2005
    [81]徐佳.基于LED的DLP投影显示光学引擎研究[D].[硕士学位论文].上海:华东师范大学,2008
    [82]侯佳.基于畸变校正的成像自由曲面光学设计[D].[博士学位论文].浙江:浙江大学,2013
    [83]本哈德·布朗尼克,吕迪哥·亨沙.非球面光学元件的先进制造和应用技术[M].浙江:浙江大学出版社,2011,45-80
    [84]刘红.激光显示消散斑技术与三片式LCOS激光投影系统的研究与实现[D].[博士学位论文].上海:华东师范大学,2012
    [85]贵体翔.彩色显示技术面面观(12)[J].实用影音技术,2013,10:74-81.
    [86]Doherty D B,Gove R J,Marshall S W,et al. Color phase control for projectiondisplay using spatial light modulator [P]. U.S. Patent.5365283.1994-11-15
    [87]Dewald D S. SLM-base color projection display having multiple SLM's andmultiple projection lenses [P]. U.S. Patent.6643069.2003-11-4
    [88]Kruschwitz B E, Kurtz A F. Laser projection display system [P]. U.S.Patent.6594090.2003-7-15
    [89]阙红梅.大屏幕电视机显示方式的发展[J].通信与广播电视,2000,02:34-38.
    [90]赵俊梅.大屏幕激光显示系统扫描技术研究[D].中北大学,2007.
    [91]Yoneyama K. Wide-angle projection lens and a projection-type image displaydevice [P]. U.S. Patent.6542316.2003-4-1
    [92]Destain P R. Optical system for a thin,low-chin,projection television [P].U.S.Patent.7857463.2010-12-28
    [93]朱昌昌.数字式微镜器件(DMD)投影显示简介[J].光电子技术,1995,03:169-175
    [94]陈恭华.微机电系统在HDTV上的应用[J].电子科技,2000,14:30-31.
    [95]刘树杞,J.M.Younse,D.W.Monk.数字微镜器件(DMD)及其向高清晰度电视(HDTV)的过渡[J].现代显示,1995,01:42-48
    [96]金友.投影显示用数字微反射镜器件[J].光机电信息,1998,03:14-16
    [97]蔡国良.评述大屏幕投影机的进展[J].电声技术,1998,01:23-28
    [98]徐正平,王德江,黄厚田,姚园,李军.数字微镜器件视频显示性能分析[J].液晶与显示,2013,02:255-260
    [99]姜兆华,吴宾初,潘涌,安博言,骆公序,张伟. DMD数字微镜驱动控制系统分析及其应用[J].应用激光,2012,03:212-216
    [100]陈建华,朱明,黄德天.数字微镜器件动态红外场景投影技术[J].中国光学与应用光学,2010,04:325-336
    [101]邵立群.大屏幕投影拼接墙系统中投影机的选择[J].警察技术,1999,04:11-12.
    [102]宋菲君.空间光调制器物理和大屏幕投影电视产业[J].物理,2000,01:33-38+44.
    [103]张铁群.投影系统中的光学薄膜[J].光学仪器,2001,Z1:186-192.
    [104]邱崧.基于LED光源的DLP投影系统的研究[D].华东师范大学,2007.
    [105]王明刚. DLP光机特性的分析与测量研究[D].浙江大学,2005.
    [106]卢俊国.激光显示研究[D].长春理工大学,2006.
    [107]黄丹丹. DLP光机投影屏特性测量系统的研究[D].浙江大学,2006.
    [108]徐佳.基于LED的DLP投影显示光学引擎研究[D].华东师范大学,2008.
    [109]杨凤和,蓝东辉. DLP投影显示中的特殊技术[J].电视技术,2005,04:39-42.
    [110] Robert R. Shannon. The art and science of optical design [M]. CambridgeUniversity Press,1997.164-260
    [111]莫志君.基于TI DLP技术实现的投影和显示系统[D].上海交通大学,2009.杨旸.多投影拼接的颜色校正技术与系统[D].浙江大学,2011.
    [112] Claytor R N. Fresnel lens with aspheric grooves [P]. U.S. Patent RE35,534.1997-6-17
    [113]卢海平.空间目标视景模拟器技术的研究[D].[博士学位论文].北京:中国科学院研究生院,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700