用户名: 密码: 验证码:
不同地区气候环境事件演变的研究方法探索与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
历史上发生的气候环境事件是全球气候变化研究的重点和热点之一,也是深入理解全球变化驱动机制的重要方面。自20世纪以来,由自然和人为原因所导致的环境气候事件日益增多,其影响因素复杂,影响范围广泛,因而也引起了人们对自然环境气候变化越来越多的关注。有甄别地选择合适的研究载体和研究方法,对不同地区受自然和人为因素影响所导致的不同类型的气候环境事件进行深入研究,是理解事件发生机制的有效途径。而对历史时期和现代条件下不同类型气候环境事件的研究,也是为了能够更好地“以古论今”,并为分析和预测未来气候环境条件的变化特征提供必要的科学依据。
     本文分别选择位于中国浙江舟山朱家尖岛观音湾海滩上的泥裂构造,位于中国北黄海西部泥质区的沉积柱,位于北极新奥尔松地区的现代苔藓和表层土壤样品,和位于北极Juttahomen岛地区的泥炭剖面等为主要研究对象,综合年代学(210Pb、137Cs、光释光定年、AMS14C定年等)、粘土矿物矿相学(定性和半定量分析方法)、孢粉学、元素地球化学和粒度等多种指标的研究和分析方法,集中讨论了各研究载体所反映的不同时间尺度和区域背景下的气候环境事件。并尝试为千年尺度古气候事件和近现代受人为和自然因素共同影响的短时间尺度气候环境变化研究提供更多的研究载体和研究思路,为更好地预测未来提供科学基础。同时也考虑到不同环境和时间尺度下所采用的研究方法和取样之间的差别。
     本文所涉及的主要内容和结果如下:
     1.浙江舟山朱家尖岛泥裂中记录的千年尺度古气候事件研究
     泥裂是一种常见的地层构造,一般常常被应用于地质层序的判断方面,但过去很少有研究者对其所蕴含的气候环境特征进行深入研究。特别是对于泥裂构造的年代学特征大都停留在其所在地层的地质年代,很少有对泥裂开裂时间进行的详细研究见诸报道。
     本文对位于浙江舟山朱家尖岛海滩泥上的泥裂构造进行了包括年代学、孢粉学、粘土矿物矿相学和元素地球化学等多指标的分析,对泥裂不同层位(泥裂边泥、裂缝填充泥和泥裂盖层)充填样品的不同环境指标特征进行了对比分析。
     研究结果表明,朱家尖岛所发育的泥裂构造并非是多次沉积环境干湿交替的结果,而很可能是一次大规模沉积环境变化的产物,其裂缝开裂时间发生于31.2-30.4cal ka B.P.期间。不同环境替代性指标的研究结果表明,裂缝开裂期间,研究地区植被衰落,整体气候类型相对其它时期表现出明显的寒冷干燥的特征。显然朱家尖岛的泥裂构造对应于一次大规模的气候快速变冷事件,反映了当地生态系统发生的重大变化。对比邻近区域其它研究载体的结果发现,浙江朱家尖岛的泥裂构造是Heinrich3事件在研究区域的反映和直接的景观证据。
     泥裂构造为研究第四纪时期的气候快速变化事件提供了一种新的研究材料和研究方法。
     2.中国北黄海泥质沉积物记录的气候环境事件研究
     对过去由自然和人为因素所引起的气候环境事件的重建能够为探讨事件促发机制和发生规律提供科学依据,但环境载体的不同指标特征对不同事件的敏感程度也不相同,因此需要针对不同事件类型选择合适的指标。
     本文对位于中国北黄海西部泥质沉积中的沉积柱38002进行了年代学(210Pb、137Cs(?)旨标)、粒度和元素地球化学指标(包括Pb、Hg等)的测定和分析,并综合前人的研究结果和历史文献记录,对沉积柱不同指标特征所指示的气候环境事件进行了分析和集中讨论。
     年代学测试结果表明,38002沉积柱中样品的平均沉积速率为0.13cm/yr,据此得到38002沉积柱的沉积时间为1755-2009AD,沉积柱反映了过去254年来研究地区的气候环境变化信息。对北黄海泥质沉积38002沉积柱中不同指标的分析结果表明,北黄海泥质区受陆源河流输入影响显著,特别是在近150年来,明显受到了黄河输沙的影响。
     沉积柱中粒度的分选系数、有机指标(TOC、TN和TOC/TN)和其它部分元素指标(Ni/Al、Mn/Al、Cr/Al、Co/Al和Se/Al)在21cm深处的变化都明确指示了1855AD所发生的黄河改道事件的发生;特别是分选系数,对发生于1938AD和1978AD的两次相对小规模的黄河改道事件也都有敏感指示。沉积柱中受人类活动影响较大的元素指标(Pb/Al、Zn/Al、Se/Al和TOC、TC、TN等)在表层10cm样品中出现的增长趋势,明显受到了中国大陆地区工农业以及水产养殖业等快速发展的影响,是中国经济快速发展过程的明确指示。
     北黄海泥质沉积中粒度和元素地球化学指标的变化分别在不同程度上指示了中国大陆地区的气候环境历史事件。这类事件拥有明确的时间特征和标志性的指标变化特征,可以作为中国浅海陆架沉积中有效的时间节点,对于建立沉积柱的年代学标尺有潜在的应用价值。
     3.北极环境样品中记录的气候环境事件
     北极新奥尔松地区远离人类主要活动区,本地人类污染排放源罕见,相对其它同纬度地区而言,拥有更为丰富的生物群落,因而能够对气候环境的波动作出敏感反映,是研究环境变化,特别是全球背景下环境污染物分布和传播的良好场所。
     1)本文对位于北极新奥尔松地区煤矿开采区、机场周边等人类活动区以及少人类干扰区共81个采样点的苔藓(Dicranum angustum)和下覆土壤样品,以及区域内采集的煤和煤矸石样品,进行了锑(Sb)元素含量的测定。并综合前人的研究结果,对比了不同地区地表系统中Sb的分布特征,对本地区Sb在不同环境材料中的分布进行了集中讨论。
     结果表明,新奥尔松地区煤和煤矸石样品中的Sb含量很低(约为0.1mg/kg),本地煤层的暴露风化过程不会引起表层土壤和苔藓中Sb含量的升高。
     新奥尔松地区表层土壤中Sb含量的分布显示,本地区表层土壤中Sb含量的参考值为0.313mg/kg,其结果远低于土壤中Sb的环境容量,不会对当地生态系统产生毒害作用。影响土壤中Sb分布特征的主要因素包括过去的煤矿开采活动和现代道路交通的作用,同时海浪冲刷等自然作用过程也会在一定程度上对其分布产生影响。
     新奥尔松地区苔藓植被中Sb含量的分布显示,当地苔藓中Sb含量的参考值为0.108mg/kg。与表层土壤相比,地形和风向等自然因素对于Sb在苔藓植被中的表达影响更显著。此外,苔藓对Sb的吸收表现出一定程度上的生物累积作用,因而对于历时更久的Sb污染源反映更为敏感,对低污染区域Sb的监测有很大的应用前景。
     2)本文对采自北极Juttahomen岛的泥炭剖面BI开展了210Pb、137Cs以及包括LOI550℃c在内的元素地球化学指标的综合测试,并对比本文和其他研究者对不同沉积端元的指标分析结果,集中讨论了污染元素在该泥炭剖面中的表达过程。
     分析结果表明,泥炭剖面的主要沉积端元包括研究地区的沉积风化产物,当地的苔藓植被沉积,以及一定量的鸟粪输入。由于放射性核素(210Pb、137Cs)受到了沉积端元,特别是苔藓植被的富集和积累作用的影响,且BI剖面中不同层位的苔藓所占比例差异很大,因此在用于年代学判断时,需要先对相应指标进行校正。
     元素指标的统计学分析结果表明,沉积剖面中Hg、Pb、Sb等元素在BI沉积中的表达源自不同的途径。其中Hg、Pb的含量变化受到了主要反映当地海鸟等种群数量变化的因子控制,因此认为,Hg、Pb等元素受海鸟类动物的活动影响程度较大,其主要输入可能来自于研究地区的海鸟粪(通过生物富集);而Sb的含量受到了主要反映当地苔藓等植被沉积端元比例的因子控制,表明Sb等元素受当地苔藓植被沉积影响较大,其输入的主要来源可能源自于苔藓植被的大气吸收过程。
Abrupt paleo-climate and-environment events occurred in the history, one of the key points in the paleoclimate research, are strongly important for further understanding of the mechanisms for the global climate change. As the time goes by, the climate and environment condition becomes much more complex. Since the mid-20th century, climate and environment events related to both nature and human reasons have occurred much frequently. Researchers paid much more attentions to these events. More proper materials and suitable indicators are needed to distinguish the nature and anthropogenic reasons for these events in different study areas and would be useful for better understanding the impact process.
     In the present study, the desiccation cracks discovered in Zhoushan Archipelago, East China Sea, the sediment core named38002, collected from Northern Yellow Sea Mud, as well as moss, topsoils, and a peat bog named BI, collected from Ny-Alesund, Arctic, were studied. Combining with the chronological, mineralogical, palynological, and geochemical results, the climate and environment change events could be reconstructed from these materials. In this paper, we tried to find more reliable materials and proxies for the further understanding of the thousand-year time-scale paleoclimate shift event and the climate and environment change events caused by nature and anthropogenic reasons during these centuries. It might be helpful for the climate prediction in the future. At the same time, different kinds of proxies and sampling methods were considered according to the environment and time-scales.
     The main contents are summarized as follows:
     1. Climate shift event recorded in the desiccation cracks discovered in Zhujiajian Island, Zhoushan Archipelago, Zhejiang Province
     Desiccation crack, a kind of common and clear structures of ancient strata, has mainly been used as an evidence for sedimentary sequences. Few works have been done on the applications in paleoclimate and paleoenvironment research. Furthermore, the chronology character of desiccation cracks has been limited reported.
     Large desiccation cracks, discovered in the intertidal zone of Zhujiajian Island, Zhejiang Province, were performed with chronological, palynological, mineralogical, and elemental geochemical analyses. By contrasting with the different proxies'results of the host sediment, the overlying sediment and filling sediment, we reconstructed the formation of the desiccation cracks.
     Results showed that, the desiccation crack found in Zhujiajian Island, formed around31.2-30.4cal ka B.P., was very likely the production of an abrupt climate shift event. During the cracks period, the climate condition seemed to be much colder and more arid, with a decline in vegetation. The desiccation crack reflected a sudden climate change of the local ecosystem. Compared with different results indicated from other proxies, the climate event, inferred from the desiccation cracks in Zhujiajian Island, is quite likely linked to Heinrich event3via the East Asian Monsoon.
     Desiccation cracks may provide a new proxy material for study paleoclimate and paleoenvironment in the Quaternary.
     2. Climate and environment events recorded in the sediment core from Northern Yellow Sea Mud The reconstruction of the climate and environment events related to natural and anthropogenic reasons could provide useful scientific formation to discuss the principles and mechanisms. However, different proxies from the environment materials might be with different sensitivities to different events.
     In the present study, a sediment core, named38002, was collected from the Northern Yellow Sea Mud. The sedimentary analyses, including the chronology information, grain size, as well as the elements contents, were performed. Combining with the former researches, the climate and environment events suggested in the sediment core were discussed.
     The chronology result showed that, the average sedimentation rate was0.13cm/yr, therefore, the time span of the core is1755-2009AD. The sediment might provide the climate and environment change information during the past250years in the study area. The sedimentary characteristics showed that the study area was strongly influenced by the rivers surrounding Bohai Sea, and especially by Yellow River during the past150years.
     The variation of different proxies from the sediment core might provide some information of the climate and environment change event occurred in the Chinese Mainland. The characters of sort coefficient of grain size, the organic proxies (TOC, TN and TOC/TN), and kinds of elements ratios (Ni/Al, Mn/Al, Cr/Al, Co/Al, and Se/Al) showed great variation in the depth of21cm, indicating the relocation of the Yellow River in1855AD. The relocations of the Yellow River entrance in1938AD and1978AD were also found in the sediment core according to the sort coefficient. The increasing trends of the elements (Pb, Zn, Se, TOC, TC, TN, and so on) changed a lot in the surface10cm (1950AD), suggesting the development of China.
     The sedimentary characteristics of sediment core collected from Northern Yellow Sea Mud were considered as the implication for several major historical events occurred in China. Furthermore, these events might provide an accurate dating method in the study area.
     3. Climate and environment records achieved in moss, topsoils, and peat bogs from Ny-Alesund, Arctic
     Ny-Alesund, Arctic was far from the human society, with no obvious local pollution source. Contracting with other places at the same latitude, there were much more plants and animals in Ny-Alesund. Therefore, it was considered as one of the most important areas for the study of global climate change and the distribution and spread of pollutions.1) The moss(Dicranum angustum) and topsoil samples were collected in both disturbed and undisturbed areas in Ny-Alesund. Sb concentrations in all the samples as well as coal and gangue were examined. We discuss the biogeochemical process of Sb in different materials, and try to explain the Sb distribution in the study area.
     Results show that the average Sb concentration of coal and gangue from Ny-Alesund is only0.1mg/kg (mean value). Therefore, the weathering process of local coal bed could not contribute to the increase of Sb concentrations in topsoil and moss in the study area.
     The reference value of Sb in the topsoils from Ny-Alesund is0.313mg/kg, which is much lower than the predicted baseline Sb concentration for soil, suggesting that the Sb level in soil is unlikely to be hazardous. The distribution of Sb in topsoil samples was partially associated with traffic and historical mining activities. In addition, the decrease of Sb content in topsoil may be caused by the washing of snow water and seawater.
     The reference value of Sb in moss from Ny-Alesund is0.108mg/kg. The appearance of the peak value of Sb concentration in moss was related with the location of sampling sites and wind field in the study area. Compared with topsoils, Sb in moss could reflect its accumulation on a larger and longer scale. Therefore,
     moss could be used to estimate Sb pollution level in both highly and lightly polluted areas.
     2) The peat bog named BI was collected in Juttahomen Island, Arctic. The analysis of210Pb,137Cs, and elements were performed to the subsamples. The expression process of major pollution element in the peat bog was discussed.
     The peat bog sediments were composed of the vegetations, sedentary product of local bedrock, and droppings of seabirds. Since the210Pb and137Cs results were strongly influenced by the vegetations, and the contents of the vegetations changed a lot in the profile, the results of these radio isotopes should be calibrated before the establishment of sediment chronology.
     The concentrations of the elements, as well as the Factor analysis results showed that Hg, Pb, and Sb accumulated in the samples were mainly transported via atmosphere. The contents of Hg and Pb might be influenced by the activities of seabirds via the droppings. However, the variation of Sb content is mainly correlated with local vegetations, and influenced by the absorption of moss.
引文
Huang J, Sun L G, Huang W, et al.2010. The ecosystem evolution of penguin colonies in the past 8500 years on Vestfold Hills, East Antarctica [J]. Polar Biology,33:1399-1406.
    Huang T, Sun L G, Wang Y H, et al.2008. The identification and comparison of the bio-elements of the penguin ornithogenic sediments sample from Davis Station and Great Wall Station [J]. Chinese Journal of Polar Science,19:36-44.
    Huang T, Sun L G, Wang Y H, et al.2009a. Penguin occupation in the Vestfold Hills [J]. Antarctic Science,21:131-134.
    Huang T, Sun L G, Wang Y H, et al.2009b. Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills [J]. Antarctic Science,21:571-578.
    Liu XD, Sun LG, Cheng ZQ, et al.2008a. Paleoenvironmental implications of the guano phosphatic cementation on Dongdao Island in the South China Sea [J]. Marine Geology,247: 1-16.
    Liu XD, Sun LG, Wei GJ, et al.2008b. A 1100-year palaeoenvironmental record inferred from stable isotope and trace element compositions of ostracode and plant caryopses in sediments of Cattle Pond, Dongdao Island, South China Sea [J].Journal of Paleolimnology,40:987-1002.
    Liu XD, Zhao SP, Sun LG, et al.2006a. Geochemical evidence for the variation of historical seabird population on the Dongdao Island of South China Sea [J]. Journal of Paleolimnology, 36:259-279.
    Liu XD, Zhao SP, Sun LG, et al.2006b. P and trace metal contents in biomaterials, soils, sediments and plants in colony of red-footed booby (Sula sula) in the Dongdao Island of South China Sea [J]. Chemosphere,65:707-715.
    Sun LG, Liu XD, Yin XB, et al.2004a. A 1500-year record of Antarctic seal populations in response to climate change [J]. Polar Biology,27:495-501.
    Sun LG, Liu XD, Yin XB, et al.2005a. Sediments in palaeo-notches:potential proxy records for palaeoclimatic changes in Antarctica [J]. Palaeogeography Palaeoclimatology Palaeoecology, 218:175-193.
    Sun LG, Xie ZQ, Zhao JL.2000. A 3,000-year record of penguin populations [J]. Nature,407:858
    Sun LG, Zhu RB, Liu XD, et al.2005b. HCl-soluble 87Sr/86Sr ratio in the sediments impacted by penguin or seal excreta as proxy for the size of historical population in the maritime Antarctic [J]. Marine Ecology-Progress Series,303:43-50.
    Sun LG, Zhu RB, Yin XB, et al.2004b. A geochemical method for reconstruction of the occupation history of penguin colony in the maritime Antarctic [J]. Polar Biology,27:670-678.
    Yuan L X, Sun L G, Fortin D, et al.2009. Characterization of Fe-S minerals influenced by buried ancient woods in the intertidal zone, East China Sea [J]. Chinese Science Bulletin,54:1931-1940.
    Yuan L X, Sun L G, Long N Y, et al.2010. Seabirds colonized Ny-Alesund, Svalbard, Arctic-9400 years ago [J]. Polar Biology,33:683-691.
    丁仲礼,孙继敏,余至伟,等.1998.黄土高原过去130 ka来古气候事件年表[J].科学通报, 43:567-574.
    郭正堂,姜文英,吕厚远,等.2002.东亚季风区的极端气候事件及其原因[J].地学前缘,9:113-120.
    孙立广,刘晓东.2006.南极无冰区生态与环境变化在粪土层中的记录[J].气候变化研究进展,2:57-62.
    孙立广,谢周清,刘晓东,等.2006.南极无冰区生态地质学[M].北京:科学出版社.
    孙立广.2006.南极无冰区生态地质学及其形成与发展[J].自然杂志,28:150-154.
    徐立斌.2009.文明的兴衰:蒙城尉迟寺遗址古文化层生态地质学研究[D]:[博士].合肥:中国科学技术大学.
    徐利斌,孙立广,张志辉,等.2007.蒙城尉迟寺文化层的地质地球化学研究[J].中国科学技术大学学报,37:1022-1030.
    Allen J R L.1982. Shrinkage cracks. In:Sedimentary structures; their character and physical basis. Developments in sedimentology series no 30 [M]. Amsterdam:Elsevier.
    Andrews J T.1998. Abrupt changes (Heinrich events) in late Quaternary North Atlantic marine environments [J]. Journal of Quaternary Science,13:3-16.
    Baker R.1981. Tensile strength, tension cracks, and stability of slope [J]. Soils and Foundations, 21:1-17.
    Bennett K D, Haberls S G, Lumley S H.2000. The last glacial-Holocene transition in southern Chile [J]. Science,290:325-326.
    Birks H J B, Vivienne J J, Rose N L.2004. Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments-an introduction [J]. Journal of Paleolimnology,31:403-410.
    Blais J M, Kimpe L E, McMahon D, et al.2005. Arctic Seabirds Transport Marine-Derived Contaminants [J]. Science,309:445-445.
    Bond G C, Lotti A R.1995. Iceberg Discharge into the North Atlantic on millennial Time Scales during the Last Glaciation [J]. Science,294:2130-2136.
    Bond G, Broecker W, Johnsen S, et al.1993. Correlations between climate records from North Atlantic sediment and Greenland Ice [J]. Nature,365:143-147.
    Bond G, Showers W, Cheseby M, et al.1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates [J]. Science,278:1257-1266.
    Boyle J F, Nose N L, Appleby P G, et al.2004. Recent environmental change and human impact on Svalbard:The lake-sediment geochemical record [J]. Journal of Paleolimnology,31:515-530.
    Brimble S K, Foster K L, Mallory M L, et al.2009. High arctic Ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loading of Arsenic, Cadmium, and Zinc [J]. Environmental Toxicology and Chemistry,28:2426-2433.
    Cai D, Shi X, Zhou W, et al.2003. Sources and transportation of suspended matter and sediment in the southern Yellow Sea:Evidence from stable carbon isotopes [J]. Chinese Science Bulletin,48:21-29.
    Choy E S, Gauthier M, Mallory M L, et al.2010. An isotopic investigation of mercury accumulation in terrestrial food webs adjacent to an Arctic seabird colony [J]. Science of the Total Environment,408:1858-1867.
    Covert D S, Heintzenberg J.1993. Size distributions and chemical properties of aerosol at Ny-Alesund, Svalbard [J]. Arctic air, snow and ice chemistry,27:2989-2997.
    Dansgaard W S J, Johnson H B, Clausen D, et al.1993. Evidence for general instability of past climate from a 250-kyr ice-core record [J]. Nature,364:218-220.
    Dansgaard W, Clausen H B, Gundestrup N, et al.1982. A new Greenland deep ice core [J]. Science,218:1273-1277.
    Dwyer J L.1995. Mapping tide-water glacier dynamics in east Greenland using Landsat data [J]. Journal of Glaciology,41:584-595.
    El Maarry M R, Markiewicz W J, Mellon M T, et al.2010. Crater floor polygons:Desiccation patterns of ancient lakes on Mars? [J]. Journal of Geophysical Research,115:E10006.
    Eleftheriadis K, Vratolis S, Nyeki S.2009. Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Alesund, Svalbard from 1998-2007 [J]. Geophysical Research Letters,36:L02809.
    Evenset A, Carroll J, Christensen G N, et al.2007. Seabird guano is an efficient conveyer of Persistent Organic Pollutants (POPs) to Arctic lake ecosystems [J]. Environment Science and Technology,41:1173-1179.
    Ganachaud A, Wunsch C.2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data [J]. Nature,408:453-457.
    Gebrenegus T, Ghezzehei T A, Tuller M.2011. Physicochemical controls on initiation and evolution of desiccation cracks in sand-bentonite mixtures:X-ray CT imaging and stochastic modeling [J]. Journal of Contaminant Hydrology,126:100-112.
    Goehring L, Conroy R, Akhter A, et al.2010. Evolution of mud-crack patterns during repeated drying cycles [J]. Soft Matter,6:3562-3567.
    Grimm E C, Grorge L, Jacobson, et al.1993. A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events [J]. Science,261:198-200.
    Guo Z, Liu T, Guiot J, et al.1996. High frequency pulses of East Asian monsoon climate in the last two glaciations:link with the North Atlantic [J]. Climate Dynamics,12,701-709.
    Haeberli W, Cihlar J, Barry R G.2000. Glacier monitoring within the Global Climate Observing System [J]. Annals of Glaciology,31:241-246.
    Heinrich H.1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years [J]. Quaternary Research,29:142-152.
    Jiang S, Liu X D, Chen Q Q.2011. Distribution of total mercury and methylmercury in lake sediment in Arctic, Ny-Alesund [J]. Chemosphere 83:1108-1116.
    Johnsen S, Dahl-Jensen D, Gundestrup N, et al.2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations:Camp Century, Dye-3, GRIP, GISP2, Renland and North GRIP [J]. Journal of Quaternary Science,16:299-307.
    Johnson K S, Chavez F P, Friederich G E.1999. Continental-shelf sediment as a primary source of iron for coastal phytoplankton [J]. Nature,398:697-700.
    Kazanci N, Emre O, Alcicek M C.2001. Animal burrowing and associated formation of large desiccation cracks as factors of a rapid restoration of soil cover in flooded farmlands [J]. Environmental Geology,40:964-967.
    Lang C, Leuenberger M, Schwander J, et al.1999. Rapic temperature variation in central Greenland 70000 years ago [J]. Science,286:934-937.
    Law K S, Stohl A.2007. Arctic Air Pollution:Origins and Impacts [J]. Science,315:1537-1540.
    Lee F H, Lo K W, Lee S L.1988. Tension crack development in soils [J]. Journal of Geotechnical Engineering,114:915-929.
    Li J H, Zhang L M.2011. Study of desiccation crack initiation and development at ground surface [J]. Engineering Geology,123:347-358.
    Li T, Liu Z, Hall M A, et al.2001. Heinrich event imprints in the Okinawa Trough:Evidence from oxygen isotope and planktonic foraminifera [J]. Palaeogeography, Palaeoclimatology, Palaeoecolology,176:133-146.
    Liu J P, Milliman J D, Gao S, et al.2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology,209:45-67.
    Liu X D, Jiang S, Zhang P F, et al.2012. Effect of recent climate change on Arctic Pb pollution:A comparative study of historical records in lake and peat sediments [J]. Environmental Pollution,160:161-168.
    Lorius C, Jouzel J, Ritz C, et al.1985. A 150 000-year climatic record from Antarctic ice [J]. Nature,316:591-596.
    Mal D, Sinha S, Dutta T, et al.2006. Formation of Crack Patterns in Clay Films:Desiccation and Relaxation [J]. Journal of the Physical Society of Japan,014801.
    Mayewski P A, Meeker L D, Whitlow S, et al.1994. Changes in atmospheric circulation and ocean ice cover the north Atlantic during the last 41,000a [J]. Science,263:1741-1751.
    Mayewski P A, Meeker L D, Twickler M S, et al.1997. Major feature and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 11000 year glacio-chemical series [J]. Journal of Geophysical Research,102:26345-26365.
    Members.1993. Climate instability during the last interglacial period recorded in the GRIP ice core [J]. Nature,364:203-207.
    Michelutti N, Blais J M, Mallory M L, et al.2010. Trophic position influences the efficacy of seabirds as metal biovectors [J].107:10543-10548.
    Miller C J, Mi H, Yesiller N.1998. Experimental analysis of desiccation crack propagation in clay liners [J]. Journal of the American Water Resources Association,34:677-686.
    Milly P C D, Dunnel K A, Vecchia A V.2005. Global pattern of trends in streamflow and water availability in a changing climate [J]. Nature,438:347-350.
    Nilsson C, Reidy C A, Dynesius M, et al.2005. Fragmentation and Flow Regulation of the World's Large River Systems [J]. Science,308:405-408.
    North Greenland Ice Core Project members (NGICP).2004. High-resolution record of Northern Hemisphere extending into the last interglacial period [J]. Nature,431:147-151.
    Overpeck J, Hughen K, Hardy D, et al.1997. Arctic environmental change of the last four centuries [J]. Science,278:1251-1256.
    Paatero J, Hatakka J, Holmen K, et al.2003. Lead-210 concentration in the air at Mt. Zeppelin, Ny-Alesund, Svalbard [J].28:1175-1180.
    Pacyna J M, Vitols V, Hanssen J E.1984. Size-differentiated Composition of the Arctic Aerosol at Ny-Alesund, Spitsbergen [J]. Atmospheric Environment,18:2447-2459.
    Paik I S, Lee Y I.1998. Desiccation cracks in vertic palaeosols of the Cretaceous Hasandong Formation, Korea:Genesis and palaeoenvironmental implications [J]. Sedimentary Geology, 119,161-179.
    Peng M, Zhang L M.2011. Breaching parameters of landslide dams [J]. Landslides,9:13-31.
    Philip L K, Shimell H, Hewitt P J, et al.2002. A field-based test cell examining clay desiccation in landfill liners [J]. Quarterly Journal of Engineering Geology and Hydrogeology,35:345- 354.
    Plummer P S, Gostin V A.1981. Shrinkage Cracks:desiccation or synaeresis? [J] Journal of Sedimentary Petrology,51:1147-1156.
    Porter S C, An Z S.1995. Correlation between climate events in the North Atlantic and China during the last glaciations [J]. Nature,375:305-308.
    Ren M E, Shi Y L.1991. Sediment discharge of the Huanghe River and its effect on sedimentation of the Bohai Sea and the Yellow Sea [J]. Chinese Geographical Science,1:1-18.
    Sarnthein M, Kennett J P, Allen J, et al.2002. Decadal-to-millennialscale climate variability chronology and mechanisms:Summary and recommendations:Summary and recommendations [J]. Quaternary Science Reviews,21:1121-1128.
    Shi X, Chen C, Liu Y, et al.2002. Trend analysis of sediment grain size and sedimentary process in the central South Yellow Sea [J]. Chinese Science Bulletin,47:1202-1207.
    Sommar J, Wangberg I, Berg T, et al.2007. Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-Alesund (79°N), Svalbard, spring 2002 [J]. Atmospheric Chemistry and Physics,7:151-166.
    Stuiver M, Grootes P M.2000. GISP2 Oxygen Isotope Ratios [J]. Quaternary Research,53:277-284.
    Sun Q, Chu G Q, Liu J Q, et al.2006. A 150-year record of heavy metals in the varved sediments of Lake Bolterskardet Svalbard [J]. Arctic, Antarctic, and Alpine Research,38:436-445.
    Sun Y B, Clemens S C, Morril, C, et al.2011. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon [J]. Nature Geoscience, doi:10.1038/ngeo 1326.
    Taylor K C, Lamorey G W, Doyle G A, et al.1993. The flickering switch of late Pleistocene climate change [J]. Nature,361:432-436.
    Wang L B, Yang Z S, Zhang R P, et al.2011. Sea surface temperature records of core ZY2 from the central mud area in the South Yellow Sea during last 6200 years and related effect of the Yellow Sea Warm Current [J]. Chinese Science Bulletin,56:1588-1595.
    Wang X F, Yuan L X, Luo H H, et al.2007. Source of and potential bio-indicator for the heavy metal pollution in Ny-Alesund, Arctic [J]. Chinese Journal of Polar Research,18:110-112.
    Wang Y J, Cheng H, Edwards R L, et al.2001. A High-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science,294:2345-2348.
    Wang Z, Ma X D, Na G S, et al.2009. Correlations between physicochemical properties of PAHs and their distribution in soil, moss and reindeer dung at Ny-Alesund of the Arctic [J]. Environmental Pollution,157:3132-3136.
    Watanabe O, Motoyama H, Igarashi M, et al.2001. Studies on climatic and environmental changes during the last hundred years using ice cores from various sites in Nordaustlandet, Svalbard [J]. Memoirs National Institute Polar Research Special Issue Japan,54:227-242.
    Weinbruch S, Wiesemann D, Ebert M, et al.2012. Chemical composition and sources of aerosol particles at Zeppelin Mountain (Ny-Alesund, Svalbard):An electron microscopy study [J]. Atmospheric Environment,49:142-150.
    Willerroider M.2003. Roaming polar bears reveal Arctic role of pollutants [J]. Nature,426:5-5.
    Xiang R, Yang Z, Saito Y, et al.2008. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea:Benthic foraminiferal and stable isotopic evidence [J]. Marine Micropaleontology,67:104-119.
    Xu Y, Zhang L M.2009. Breaching parameters of earth and rockfill dams [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 135:1957-1970.
    Yamagata S, Kobayashi D, Ohta S, et al.2009. Properties of aerosols and their wet deposition in the arctic spring during ASTAR2004 at Ny-Alesund, Svalbard [J]. Atmospheric Chemistry and Physics,9:261-270.
    Yang S, Youn J S.2007. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments [J]. Marine Geology,243:229-241.
    Yang W F, Chen M, Li G X, et al.2009. Relocation of the yellow river as revealed by sedimentary isotopic and elemental signals in the East China Sea [J]. Marine Pollution Bulletin,58:923-927.
    Zhao M, Beveridge N A S, Skackleton N J, et al.1995. Molecular Stratigraphy of cores off northwest Africa:sea surface temperature history over the last 80 ka [J]. Paleoceanography, 10:661-675.
    陈志清.2001.历史时期黄河下游的淤积、决口改道及其与人类活动的关系[J].地理科学进展,20:44-50.
    程军,Liu Z Y, He F, et al.2010.温盐环流在百年尺度上影响中国气候的一个数值模拟证据[J].科学通报,55:2406-2412.
    郭正堂,刘东生,吴乃琴,等.1996.最后两个冰期黄土中记录的Heinrich型气候节拍[J].第四纪研究,(1):21-28.
    黄胜.1986.长河口演变特征[J].泥沙研究,4:1-12.
    翦知盡,黄维.2003.快速气候变化与高分辨率的深海沉积记录[J].地球科学进展,18:673-680.
    江波,李铁刚,孙荣涛,等.2007.末次冰期Heinrich事件研究进展[J].海洋科学,31:73-77.
    姜珊,刘晓东,刘楠,等.2010.北极新奥尔松地区过去200年Hg污染记录及来源[J].环境科学,31:2220-2227.
    蓝先洪,申顺喜.2000.南黄海中部沉积岩心的地球化学特征[J].海洋地质与第四纪地质,20:34-38.
    李凤业,高抒,贾建军,等.2002.黄、渤海泥质沉积区现代沉积速率[J].海洋与湖沼,33:364-369.
    李铁刚,常凤鸣.2009.冲绳海槽古海洋学[M].北京:海洋出版社.
    李震,孙文新,曾群柱.1999.综合RS与GIS方法提取青藏高原冰川变化信息[J].地理学报,54:263-268.
    梁广林,陈浩,蔡强国,等.2004.黄土高原现代地貌侵蚀演化研究进展[J].水土保持研究,11:131-137.
    刘锡清.1996.中国边缘海的沉积物分区[J].海洋地质与第四纪地质,16:1-11.
    鲁安新,姚檀栋,刘时银,等.2002.青藏高原各拉丹东地区冰川变化的遥感监测[J].冰川冻土,24:559-562.
    鹿化煜,周杰.1996Heinrich事件和末次冰期气候的不稳定性[J].地球科学进展,11:40-43.
    吕厚远,郭正堂,吴乃琴.1996.黄土高原和南海陆架古季风演变的生物记录与Heinrich事件[J].第四纪研究,(1):12-18.
    齐君,李凤业,宋金明,等.2004.北黄海沉积速率与沉积通量[J].海洋地质与第四纪地质,24:9-14.
    秦蕴珊,李凡.1986.黄河入海泥沙对渤海和黄海沉积作用的影响[J].海洋科学集刊,27:124-134.
    秦蕴珊,赵一阳,陈丽蓉,等.1989.黄海地质[M].北京:科学出版社.
    秦蕴珊.1963.中国陆棚海的地形及沉积类型的初步研究[J].海洋与湖沼,5:71-85.
    任美锷.2006.黄河的输沙量:过去、现在和将来——距今15万年以来的黄河泥沙收支表[J].地球科学进展,21:551-563.
    申顺喜,李安春,袁巍.1996.南黄海中部的低能沉积环境[J].海洋与湖沼,27:518-523.
    宋波,何元庆,庞洪喜,等.2007.基于遥感和GIS的我国季风海洋型冰川区冰碛物覆盖型冰川边界的自动识别[J].冰川冻土,29:456-462.
    孙立广,谢周清,刘晓东,等.2006.南极无冰区生态地质学[M].北京:科学出版社.
    于雷,郜永祺,王会军,等.2010.北大西洋淡水扰动试验中东亚夏季风气候的响应及其机制[J].科学通报,55:798-807.
    汪永进,吴江滢,刘殿兵,等.2002.石笋记录的东亚季风气候H1事件突变性特征[J].中国科学(D辑),32:227-223
    王桂芝,高抒,李凤业.2003.北黄海西部的全新世泥质沉积[J].海洋学报,25:125-134.
    吴泰然,何国琦,韩宝福.1998.一种罕见的泥裂现象[J].科学通报,43:1903-1904.
    刑磊,赵美训,张海龙,等.2009.二百年来黄海浮游植物群落结构变化的生物标志物记录[J].中国海洋大学学报,39:317-322.
    熊应乾,杨作升,刘振夏.2003.长江、黄河沉积物物源研究综述[J].海洋科学进展,21:355-362.
    杨小强,李华梅,周永章.2002.南海南部NS93-5孔沉积物磁化率特征及其对全球气候变化的记录[J].海洋地质与第四纪地质,22:31-36.
    袁林喜,龙楠烨,谢周清,等.2006.北极新奥尔松地区现代污染源及其指示植物研究[J].极地研究,18:9-20.
    张会平,扬农,张岳桥,等.2006.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,26:126-135.
    张强,张生,朱诚,等.2002.长江三峡大宁河流域三千年来沉积环境与河床演变初步研究[J].水利学报,9:66-73.
    张宗祜,邵时雄,陈云,等.1999.中国北方晚更新世以来地质环境演化与未来生存环境变化趋势预测[M].北京:地质出版社.
    赵一阳,李凤业,秦朝阳,等.1991.试论南黄海中部泥的物源及成因[J].地球化学,2:112-117.
    周成虎,程维明,钱金凯,等.2009.中国陆地1:100万数字地貌分类体系研究[J].地球信息科学学报,11:707-724.
    周天军,Drange H.2005.卑尔根气候模式中大西洋热盐环流年代际与年际变率的气候影响[J].大气科学,29:167-177.
    Andrews J T.1998. Abrupt changes (Heinrich events) in late Quaternary North Atlantic marine environments [J]. Journal of Quaternary Science,13:3-16.
    Biscaye P E, Grousset F E, Revel M, et al.1997. Asian provenance of Last Glacial Maximum dust in the GISP-2 ice core, Summit, Greenland [J]. Journal of Geophysical Research,102:26765-26781.
    Biscaye P E.1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans [J]. Geological Society of America Bulletin,76:803-832.
    Bond G C, Showers W, Cheseby M, et al.1997. A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climate [J]. Science,278:1257-1266.
    Bond G, Broecker W, Johnsen S, et al.1993. Correlations between climate records from North Atlantic sediment and Greenland Ice [J]. Nature,365:143-147.
    Cox R, Lowe D R, Cullers R L.1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States [J]. Geochimica et Cosmochimica Acta,59,2919-2940.
    Danzeglocke U, Joris O,Weninger B. CalPal-2007online.2008, http://www.calpal-online.de.
    Deconinck J F, Blanc-Valleron M M, Rouchy J M, et al.2000. Palaeoenvironmental and diagenetic control of the mineralogy of Upper Cretaceous-Lower Tertiary deposits of the Central Palaeo-Andean basin of Bolivia (Potosi area) [J]. Sedimentary Geology,132:263-278.
    Ducloux J, Meunier A, Velde B.1976. Smectite, chlorite and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body, Massif Central, France [J]. Clay Minerals,11:121-135.
    Feagri K, Iversen J.1989. Textbook of Pollen Analysis (3rd ed.) [M]. Oxford:Blackwell.
    Goehring L, Conroy R, Akhter A, et al.2010. Evolution of mud-crack patterns during repeated drying cycles [J]. Soft Matter,6:3562-3567.
    Grimm E C, Grorge L, Jacobson, et al.1993. A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events [J]. Science,261:198-200.
    Guo Z, Liu T, Guiot J, et al.1996. High frequency pulses of East Asian monsoon climate in the last two glaciations:link with the North Atlantic [J]. Climate Dynamics,12,701-709.
    Heinrich H.1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years [J]. Quaternary Research,29:142-152.
    Holtzapffel T.1985. Les mineraux argileux, preparation, analyse diffractometrique et determination [J].12. Societal Geologique du Nord.136 pp.
    Kazanci N, Emre O, Alcicek M C.2001. Animal burrowing and associated formation of large desiccation cracks as factors of a rapid restoration of soil cover in flooded farmlands [J]. Environmental Geology,40:964-967.
    Li T, Liu Z, Hall M A, et al.2001. Heinrich event imprints in the Okinawa Trough:Evidence from oxygen isotope and planktonic foraminifera [J]. Palaeogeography, Palaeoclimatology, Palaeoecolology,176:133-146.
    Mack G H, James W C, Monger H C.1993. Classification of paleosols [J]. Bulletin of the Geological Society of America,105:129-136.
    Marriott S B, Wright V P.1993. Paleosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites [J]. Journal of the Geological Society,150:1109-1120.
    Mayewsk P A, Meeker L D, Whitlow S, et al.1994. Changes in atmospheric circulation and ocean ice cover the north Atlantic during the last 41,000a [J]. Science,263:1741-1751.
    MDI Jade Software.1990. Materials Data Inc., Livermore, CA.
    Moore and Reynolds.1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals [M]. New York:Oxford University Press.
    Paik I S, Lee Y I.1998. Desiccation cracks in vertic palaeosols of the Cretaceous Hasandong Formation, Korea:Genesis and palaeoenvironmental implications [J]. Sedimentary Geology, 119,161-179.
    Porter S C, An Z S.1995. Correlation between climate events in the North Atlantic and China during the last glaciations [J]. Nature,375:305-308.
    Sun Y B, Clemens S C, Morril, C, et al.2011. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon [J]. Nature Geoscience, doi:10.1038/ngeo 1326.
    Thiry M.2000. Palaeoclimatic interpretation of clay minerals in marine deposits:an outlook from the continental origin [J]. Earth-Science Reviews,49:201-221.
    Wang Y J, Cheng H, Edwards R L, et al.2001. A High-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science,294:2345-2348.
    Wintle A G.2008a. Luminescence dating of Quaternary sediments-Introduction [J]. Boreas,37: 469-470.
    Wintle A G.2008b. Luminescence dating:Where it has been and where it is going [J]. Boreas,37: 471-482.
    Wu Z J, Jia N, Yuan L X, et al.2008. Biomineralization process occurring in iron mud of coastal seepage area of Zhoushan Island, Zhejiang Province [J]. Chinese Science Bulletin,53:1894-1904.
    Wu Z J, Yuan L X, Jia N, et al.2009. Microbial Biomineralization of iron seepage water: implication for the iron ores formation in intertidal zone of Zhoushan Archipelago, East China Sea [J]. Geochemical Journal,143:167-177.
    Yuan L X, Sun L G, Fortin D, et al.2009. Characterization of Fe-S minerals influenced by buried ancient woods in the intertidal zone, East China Sea [J]. Chinese Science Bulletin,54:1931-1940.
    Zhao M, Beveridge N A S, Skackleton N J, et al.1995. Molecular Stratigraphy of cores off northwest Africa:sea surface temperature history over the last 80 ka [J]. Paleoceanography, 10:661-675.
    陈荣华.1992.浙江沿海地区第四纪海侵[J].海洋学报,14:76-85.
    陈涛,王欢,张祖青,等.2003.粘土矿物对古气候指示作用浅析[J].岩石矿物学杂志,22:416-420.
    郭正堂,刘东生,吴乃琴,等.1996.最后两个冰期黄土中记录的Heinrich型气候节拍[J].第四纪研究,(1):21-28.
    金佩聿,陈翔虎,张晓华,等.1991.舟山群岛植物区系的研究[J].浙江林业科技,11:1-30.
    蓝先洪.1990.粘土矿物作为古气候指示矿物的探讨[J].地质科技情报,9:31-35.
    蓝先洪.2000Heinrich事件的全球性意义[J].海洋地质动态,16:5-7.
    李双建,张然,王清晨.2006.沉积物颜色和粘土矿物对库车坳陷第三纪气候变化的指示[J].沉积学报,24:521-530.
    李铁刚,常凤鸣.2009.冲绳海槽古海洋学[M].北京:海洋出版社.
    李植斌.1997.浙江省海岛区资源特征与开发研究——以舟山群岛为例[J].自然资源学报,12:139-145.
    廖立兵.1995.粘土矿物X射线定量分析计算方法探讨[J].现代地质,9:423-425.
    鹿化煜,周杰.1996Heinrich事件和末次冰期气候的不稳定性[J].地球科学进展,11:40-43.
    吕厚远,郭正堂,吴乃琴.1996.黄土高原和南海陆架古季风演变的生物记录与Heinrich事件[J].第四纪研究,(1):12-18.
    沈显生,谢周清,孙立广.2002.浙江朱家尖观音湾古木层中果实与种子的分类学研究[J].广西植物,22:9-13.
    沈毅.1995.东海舟山QZ504孔古生物组合特征及地层划分[J].上海地质,53:45-54.
    宋长青,孙湘君.1997.花粉—气候因子转换函数建立及其对古气候因子定量重建[J].植物学报,39:554-560.
    宋长青,孙湘君.1999.中国第四纪孢粉学研究进展[J].地球科学进展,14:401-406.
    宋亚民.2001.舟山群岛水温特征[J].水文,21:39-40.
    孙立广,谢周清,沈显生,等.2000.浙江朱家尖观音湾古木层的发现及其意义[J].自然杂 志,22:354-358.
    汤艳杰,贾建业,谢先德.2002.粘土矿物的环境意义[J].地学前缘,9:337-344.
    汪永进,吴江滢,刘殿兵,等.2002.石笋记录的东亚季风气候H1事件突变性特征[J].中国科学(D辑),32:227-223
    王和平,陈金生.1983.舟山群岛发现新石器时代遗址[J].考古,3:4-7.
    吴泰然,何国琦,韩宝福.1998.一种罕见的泥裂现象[J].科学通报,43:1903-1904.
    吴自军,贾楠,袁林喜,等.2008a.浙江舟山海岸带渗漏水沉淀铁泥中的微生物矿化作用[J].科学通报,53:703-712.
    吴自军,贾楠,袁林喜,等.2008b.浙江舟山海岸带古木埋藏区铁的微生物成矿作用[J].地球科学-中国地质大学学报,33:465-473.
    杨小强,李华梅,周永章.2002.南海南部NS93-5孔沉积物磁化率特征及其对全球气候变化的记录[J].海洋地质与第四纪地质,22:31-36.
    叶兴永.2000.舟山岛中更新世以来孢粉组合特征及古气候变迁[J].海洋地质与第四纪地质,20:9-13.
    袁林喜,孙立广,吴自军,等.2008.5600年形成的石化木[J].中国科学技术大学学报,38:26-32.
    袁林喜.2010.北极新奥尔松和浙江舟山群岛的典型岛屿生态地质学问题研究[D]:[博士].合肥:中国科学技术大学.
    张家富,莫多闻,夏正楷,等.2009.沉积物的光释光测年和对沉积过程的指示意义[J].第四纪研究,29:23-33.
    张乃娴,李幼琴,赵惠敏,等.1990.粘土矿物研究方法[M].北京:科学出版社.
    张荣科,范光.2003.粘土矿物X射线衍射相定量分析方法与实验[J].铀矿地质,19:180-185.
    周亚利,鹿化煜,张家富,等.2005.高精度光释光测年揭示的晚第四纪毛乌素和浑善达克沙地沙丘的固定与活化过程[J].中国沙漠,25:342-350.
    Appleby P G.2001. Chronostratigraphic techniques in recent sediments [M]. In:Last W, Smol JP (Eds.), Tracking Environmental Changes using Lake Sediments, Basin Analysis, Coring, and Chronological Techniques, vol.1, Kluwer Academic Press, Dordrecht.
    Bokhorst M P, Beets C J, Markovic S B, et al.2009. Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences [J]. Quaternary International,198:113-123.
    Bordowsky O K.1965a. Sources of organic matter in marine sediments [J]. Marine Geology,3:5-31.
    Bordowsky O K.1965b. Accumulation of organic matter in bottom sediments [J]. Marine Geology, 3:33-82.
    Buggle B, Glaser B, Zoller L, et al.2008. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine) [J]. Quaternary Science Reviews,27:1058-1075.
    Chough S K, Lee H J, Chun S S, et al.2004. Depositional processes of late Quaternary sediments in the Yellow Sea:a review [J]. Geosciences Journal,8:211-264.
    Gallet S, Jahn B, Van Vliet Lanoe B, et al.1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust [J]. Earth and Planetary Science Letters,156:157-172.
    Guan B X.1994. Patterns and structures of the currents in Bohai Huanghai and East China Seas [M]. In:Zhou D, Liang Y, Tseng C K (eds), Oceanology of China Seas, vol.1. Kluwer Academic Publishers, Dordrecht.
    Huang D J, Fan X P, Xu D F, et al.2005. Westward shift of the Yellow Sea warm salty tongue [J]. Geophysical Research Letters,32:L24613.
    Johnson K S, Chavez F P, Friederich G E.1999. Continental-shelf sediment as a primary source of iron for coastal phytoplankton [J]. Nature,398:697-700.
    Leung G.1996. Reclamation and sediment control in the middle Yellow River valley [J]. Water International,21:11-19.
    Liu J P, Milliman J D, Gao S, et al.2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology,209:45-67.
    Meyers PA.1997. Organic geochemical proxies of paleoceanographic, paleolimnlogic, and palaeoclimatic processes [J]. Organic Geochemistry,27:213-250.
    Milly P C D, Dunnel K A, Vecchia A V.2005. Global pattern of trends in streamflow and water availability in a changing climate [J]. Nature,438:347-350.
    Nilsson C, Reidy C A, Dynesius M, et al.2005. Fragmentation and Flow Regulation of the World's Large River Systems [J]. Science,308:405-408.
    Redfield A C, Ketchum B H, Richards F A.1963. The influence of organisms on the compostion of sea water. In:Hill MN (ed). The Sea [M]. New York:Wiley,26-77.
    Ren M E, Shi Y L.1986. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea [J]. Continental Shelf Research,6:785-810.
    Ren M E, Shi Y L.1991. Sediment discharge of the Huanghe River and its effect on sedimentation of the Bohai Sea and the Yellow Sea [J]. Chinese Geographical Science,1:1-18.
    Trask P D.1932. Origin and Environment of Source Sediments of Petroleum [M]. Texas: Houston.
    Xu L L, Wu D X, Lin X P, et al.2009. The study of the yellow sea warm current and its seasonal variability [J]. Journal of Hydrodynamics,21:159-165.
    Yang W F, Chen M, Li G X, et al.2009. Relocation of the Yellow River as revealed by sedimentary isotopic and elemental signals in the East China Sea [J]. Marine Pollution Bulletin,58:923-927.
    Yang Z S, Liu J P.2007. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology,240:169-176.
    Zhang J, Huang W W, Letolle R, et al.1990. Major element chemistry of the Huanghe (Yellow River), China-weathering processes and chemical fluxes [J]. Journal of Hydrology,168: 173-203.
    Zhang J, Huang W W, Shi M C.1990. Huanghe (Yellow River) and its estuary:sediment origin, transport and deposition [J]. Journal of Hydrology,120:203-223.
    操应长,王艳忠,徐涛玉,等.2007.特征元素比值在沉积物物源分析中的应用——以东营凹陷王58井区沙四上亚段研究为例[J].沉积学报,25:230-238.
    陈敬安,万国江,陈振楼,等.1999.洱海沉积物化学元素与古气候演化[J].地球化学,28:562-570.
    陈志清.2001.历史时期黄河下游的淤积、决口改道及其与人类活动的关系[J].地理科学进展,20:44-50.
    范德江,杨作升,郭志刚.2000.中国陆架210Pb测年应用现状与思考[J].地球科学进展,15:297-302.
    耿秀山.1981.黄渤海地貌特征及形成因素探讨[J].地理学报,36:423-434.
    管秉贤.1985.黄、东海浅海水文学的主要特点[J].黄渤海海洋,3:1-10.
    何志平,邵龙义,刘永福,等.2005.河北南部石炭—二叠纪古气候演化特征[J].沉积学报,23:454-460.
    贾国东,彭平安,傅家谟.2002.珠江口近百年来富营养化加剧的沉积记录[J].第四纪研究,22:158-165.
    蒋信忠.1985.砂的中值粒径与分选系数的经验关系及其对沉积环境的反映[J].沉积学报,3:128-137.
    李凤业,高抒,贾建军,等.2002.黄、渤海泥质沉积区现代沉积速率[J].海洋与湖沼,33:364-369.
    李玉中,陈沈良.2003.系统聚类分析在现代沉积环境划分中的应用——以崎岖列岛海区为例[J].沉积学报,21:487-494.
    林葵,汤毓祥.2002.黄海、东海表、上层实测流分析[J].海洋学报,24:9-19.
    刘锋,陈沈良,彭俊,等.近60年黄河入海水沙多尺度变化及其对河口的影响[J].地理学报,66:313-323.
    刘耕年.1991.南极乔治王岛菲尔德斯半岛土壤的化学风化作用[J].南极研究,3:22-29.
    刘建国.2007.全新世渤海泥质区的沉积物物质组成特征及其环境意义[D]:[博士].青岛:中国科学院海洋研究所.
    刘锡清.1996.中国边缘海的沉积物分区[J].海洋地质与第四纪地质,16:1-11.
    齐君,李凤业,宋金明,等.2004.北黄海沉积速率与沉积通量[J].海洋地质与第四纪地质,24:9-14.
    秦蕴珊,李凡.1986.黄河入海泥沙对渤海和黄海沉积作用的影响[J].海洋科学集刊,27:124-134.
    秦蕴珊.1963.中国陆棚海的地形及沉积类型的初步研究[J].海洋与湖沼,5:71-85.
    任美锷.2006.黄河的输沙量:过去、现在和将来——距今15万年以来的黄河泥沙收支表[J].地球科学进展,21:551-563.
    孙立广,谢周清,刘晓东,等.2006.南极无冰区生态地质学[M].北京:科学出版社.
    孙立广,谢周清,赵俊林,等.2001.南极阿德雷岛湖泊沉积210Pb、137Cs定年及其环境意义[J].湖泊科学,13:93-96.
    田均良,李雅琦,陈代中.1991.中国黄土元素背景值分异规律研究[J].环境科学学报,11:253-262.
    万国江.1997.现代沉积的210Pb计年[J].第四纪研究,17:230-239.
    王建,刘泽纯,姜文英,等.1996.磁化率与粒度、矿物的关系及其古环境意义[J].地理学报,51:155-163.
    王祖伟,徐利淼,张文具.2002.土壤微量元素与人类活动强度的对应关系[J].土壤通报,33:303-305.
    熊应乾,杨作升,刘振夏.2003.长江、黄河沉积物物源研究综述[J].海洋科学进展,21:355-362.
    薛斌,潘建明,张海生,等.2006.北极楚科奇海地区沉积物生源物质的来源和分布[J].极地研究,18:265-272.
    岳维忠,黄小平.2005.珠江口柱状沉积物中氮的形态分布特征及来源探讨[J].环境科学,26:195-199.
    张龙军,夏斌,桂祖胜,等.2007.2005年夏季环渤海16条主要入海河流的污染状况[J].环境科学,28:2409-2415.
    张普,刘卫国.2008.黄土高原中部黄土沉积有机质记录特征及C/N指示意义[J].海洋地质与第四纪地质,28:119-124.
    张宗祜,邵时雄,陈云,等.1999.中国北方晚更新世以来地质环境演化与未来生存环境变化趋势预测[M].北京:地质出版社.
    赵一阳,鄢明才.1993.中国浅海沉积物地球化学[M].北京:科学出版社.
    赵一阳,鄢明才.1994.中国浅海沉积物化学元素丰度[J].中国科学(B辑),23:1084-1090.
    中国汽车技术研究中心.2006.中国汽车工业年鉴[Z].北京:《中国汽车工业年鉴》编辑部.
    中华人民共和国国家标准.2000.GB17930-1999.车用无铅汽油[S].
    Adriano D C.1986. Trace elements in the terrestrial environment [M]. New York:Springer-Verlag.
    Barkay T, Poulain A J.2007. Mercury (micro)biogeochemistry in polar environments [J]. FEMS Microbiol Ecol,59:232-241.
    Berg T, R(?)yset O, Steinnes E.1995. Moss (Hylocomium Splendens) used as biomonitor of atmospheric trace element deposition:estimation of uptake efficiencies [J]. Atmospheric Environment,29:353-360.
    Bieks H J B.2001. Spitsbergen plants [J]. The Alpine Gardener 69,388-399.
    Blais J M, Kimpe L K, McMahon D, et al.2005. Arctic Seabirds Transport Marine-Derived Contaminants [J]. Science,309:445-445.
    Bukowiecki N, Lienemann P, Hill M, et al.2009. Real-world emission factors for Antimony and other brake wear related trace elements:size-segregated values for light and heavy duty vehicles [J]. Environmental Science and Technology,43:8072-8078.
    Chen J, Blume H P.1999. Behaviours of main elements in soil-forming processes of Fildes Peninsula, the maritime Antarctic [J]. Pedosphere,2:113-222.
    Choy E S, Kimpe L E, Mallory M L, et al.2010. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds [J]. Environmental Pollution,158:3431-3438.
    Council of the European Communities.1976. Coucil Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community. Official Journal L 129:23-29.
    Durnford D, Dastoor A, Figueras-Nieto D, et al.2010. Long range transport of mercury to the Arctic and across Canada [J]. Atmospheric Chemistry and Physics Discussions,10:4673-4717.
    Elvebakk A, Prestrud P.1996. A catalogue of Svalbard plants, fungi, algae and cyanobacteria [M]. Norsk Polarinstitutt Skrifter.
    Elvebakk A.1997. Tundra diversity and ecological characteristics of Svalbard [M]. Elsevier, Amsterdam.
    Elven R, Elvebakk A.1996. Vascular plants [M]. Norsk Polarinstitutt Skrifter.
    EU.2008. European Union Risk Assessment Report Diantimony Trioxide, CAS No:1309-64-4, Einecs No:215-175-0 [R]. Rapporteur:Sweden. Office for official publications of the European Communities, Luxembourg.
    Evenset A, Carroll J, Christensen G N, et al.2007. Seabird Guano is an Efficient Conveyer of Persistent Organic Pollutants (POPs) to Arctic Lake Ecosystems [J]. Environment Science and Technology,41:1173-1179.
    Fiella M, William P A, Belzile N.2009. Antimony in the environment:knows and unknows [J]. Environmental Chemistry,6:95-105.
    Filella M, Belzile N, Chen Y W.2002. Antimony in the environment:a review focused on natural waters I. Occurrence [J]. Earth-Science Reviews,57:125-176.
    Gebel T, Christensen S, Dunkelberg H.1997. Comparative and environmental genotoxicity of antimony and arsenic [J]. Anticancer Research,17:2603-2608.
    Gebel T.1997. Arsenic and antimony:comparative approach on mechanistic toxicology [J]. Chemico-Biological Interactions,107:131-144.
    Gurnani N, Sharma A, Tulukder G.1994. Effects of antimony on cellular systems in animals:a review [J]. Nucleus,37:71-96.
    Hammel W, Debus R, Steubing L.2000. Mobility of antimony in soil and its availability to plants [J]. Chemosphere,41:1791-1798.
    Hargreaves A L, Whiteside D P, Gilchrist G.2011. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds [J]. Science of the Total Environment,409:3757-3770.
    He M C.2007. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China [J]. Environmental Geochemistry and Health,29:209-219.
    Hisdal V.1998. Svalbard nature and history [M]. Oslo:Norsk Polarinstitutt, pp.98-100.
    Hjelle A.1993. Geology of Svalbard [M]. Norsk Polarinstitutt Oslo.
    Iijima A, Sato K, Yano K, et al.2008. Emission factor for Antimony in brake abrasion dusts as one of the major atmospheric Antimony sources [J]. Environmental Science and Technology,42: 2937-2942.
    Kleppin L, Pesch R, Schroder W.2008. CHAID Models on boundary conditions of metal accumulation in mosses collected in Germany in 1990,1995 and 2000 [J]. Atmospheric Environment,42:5220-5231.
    Koljonen T.1992. Geochemical atlas of Finland, Part 2:Till [M]. Geological Survey of Finland, Espoo.
    Lantzy R J, Mackenzie F F.1979. Atmospheric trace metals:global cycle and assessment of man's impact [J]. Geochimica et Cosmochimica Acta,43:511-520.
    Liu X D, Jiang S, Zhang P F, et al.2012. Effect of recent climate change on Arctic Pb Pollution:A comparative study of historical records in lake and peat sediments [J]. Environmental Pollution,160:161-168.
    Markert B.1992. Establishing of "reference plant" for inorganic characterization of different plant species by chemical fingerprinting [J]. Water Air Soil Pollution,64:533-538.
    Michelutti N, Blais J M, Liu H, et al.2008. A test of the possible influence of seabird activity on the 210Pb flux in high Arctic ponds at Cape Vera, Devon Island, Nunavut:implications for radiochronology [J]. Journal of Paleolimnology,40:783-791.
    Michelutti N, Keatley B E, Brimble S, et al.2009. Seabird-driven shifts in Arctic pond ecosystems [J]. Proceedings of the Royal Society B,276:591-596.
    Nriagu J O.1989. A global assessment of natural sources of atmospheric trace metals [J]. Nature, 338:47-49.
    Okkenhaug G, Zhu Y G, Luo L, et al.2011. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area [J]. Environmental Pollution, 159:2427-2434.
    Paatero J, Hatakka J, Holmen K, et al.2003. Lead-210 concentration in the air at Mt. Zeppelin, Ny-Alesund, Svalbard [J]. Physics and Chemistry of the Earth,28:1175-1180.
    Peng K J, Luo C L, Lou L Q, et al.2008. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment [J]. Science of the Total Environment, 392:22-29.
    Qi C C, Liu G J, Chou C L, et al.2008. Environmental geochemistry of antimony in Chinese coals [J]. Science of the Total Environment,389:225-234.
    Reimann C, Arnoldussen A, Boyd R, et al.2006. The influence of a city on element contents of a terrestrial moss(Hylocomium splendens) [J]. Science of the Total Environment,369:419-432.
    Reimann C, Englmaier P, Gough L, et al.2009. Geochemical gradients in soil O-horizon samples from southern Norway:Natural or anthropogenic? [J] Applied Geochemistry,24:62-76.
    Reimann C, Matschullat J, Birke M, et al.2010. Antimony in the environment:lessons from geochemical mapping [J]. Applied Geochemistry,25:175-198.
    Reimann C, Niskavaara H, Kashulina G, et al.2001. Critical remarks on the use of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution [J]. Environmental Pollution,113:41-57.
    Ren D, Zhao F, Dai S, et al.2006. Geochemistry of trace elements in coals [M]. Beijing:Science Press, pp.261-266.
    R(?)nning O.1996. The flora of Svalbard [M]. Oslo:Norsk Polarinstitutt, pp.7-16.
    Ruhling A, Tyler G.1968. An ecological approach to the lead problem [J]. Botaniska Notiser 121, 321-342.
    Salminen R, Batista M J, Bidovec M. et al.2005. Geochemical Atlas of Europe. Part 1-Background Information, Methodology and Maps [M]. Geological Survey of Finland, Espoo.
    Shotyk W, Krachlcr M, Chen B.2005. Antimony:Global environmental contaminant [J]. Journal of Environmental Monitoring,7:1135-1136.
    Steffensen E L.1982. The climate at Norwegian Arctic stations [J]. Klima,5:1-44.
    Steinnes E.1995. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals [J]. The Science of the Total Environment,160/161:243-249.
    Sternbeck J, Sjodin A, Andreasson K.2002. Metal emissions from road traffic and the influence of resuspension-results from two tunnel studies [J]. Atmospheric Environment,36:4735-4744.
    Sucharova J, Suchara I.2004. Current multi-element distribution in forest epigeic moss in the Czeth Republic-a survey of the Czech national biomonitoring programme 2000 [J]. Chemosphere 57:1389-1398.
    Sun L G, Xie Z Q, Zhao J L.2000. A 3000-year record of penguin populations [J]. Nature,407: 858-858.
    Sun L G, Xie Z Q.2001. Relics:penguin population programs [J]. Science Progress,84:31-44.
    Sun Q, Chu G Q, Liu J Q, et al.2006. A 150-year record of heavy metals in the varved sediments of Lake Bolterskardet Svalbard [J]. Arctic, Antarctic, and Alpine Research,38:436-445.
    Swaine DJ.1990. Trace elements in coal [M]. London:Butterworths, pp.1-278.
    Szczepaniak K, Biziuk M.2003. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution [J]. Environmental Research,93:221-230.
    Umbreit A.1997. Guide to Spitsbergen-Svalbard, Franz Josef Land, Jan Mayen [M]. Bradt Pbulications, Chalfont St. Peter.
    USEPA.1979. Water Related Fate of the 129 Priority Pollutants, vol.1 [M]. USEPA. Washington DC. USA.
    Valkovic V.1983. Trace elements in coal, vol.1,2 [M]. Florida:CrC Press, Inc., Boca Raton, pp. 133-138.
    Wedepohl K H.1995. The composition of the continental crust [J]. Geochimica et Cosmochimica Acta,59:1217-1232.
    WE.SLAWSKI J M, KWASNIEWSKI S, STEMPNIEWICZ L, et al.2006. Biodiversity and energy transfer to top trophic levels in two contrasting Arctic fjords [J]. Polish Polar Research, 27:259-278.
    Yuan L X, Sun L G, Long N Y, et al.2010. Seabirds colonized Ny-Alesund, Svalbard, Arctic-9400 years ago [J]. Polar Biology,33:683-691.
    邓海滨,陆龙骅,卞林根.2005.北极苔原Ny-Alesund地区短期气候特征[J].极地研究,17:32-44.
    邓海滨.2005.新奥尔松短期气候特征及再分析资料在该地区的适用性分析[D]:[硕士].北京:中国气象科学研究院.
    龚子同,陈志诚,史学正.1999.中国土壤系统分类——理论·方法·实践[M].北京:科学出版社.
    何孟常,万红艳.2004.环境中锑的分布、存在形态及毒性和生物有效性[J].化学进展,16:131-135.
    廖国礼.2005.典型有色金属矿山重金属迁移规律与污染评价[D]:[博士].长沙:中南大学.
    刘晓东,孙立广,谢周清,等.2004.海鸟活动在东南极中山站区莫愁湖沉积物中的记录[J].极地研究,16:295-309.
    姜珊,刘晓东,刘楠,等.2010.北极新奥尔松地区过去200年Hg污染记录及来源[J].环境科学,31:2220-2227.
    齐翠翠.2010.锑在中国煤及典型矿区中的环境地球化学研究[D]:[博士].合肥:中国科学技术大学.
    孙立广,谢周清,刘晓东,等.2006.南极无冰区生态地质学[M].北京:科学出版社.
    吴丰昌,郑建,潘响亮,等.2008.锑的环境生物地球化学循环与效应研究展望[J].23:350-356.
    吴虹玥,包维楷,王安.2005.苔藓植物的化学元素含量及其特点[J].生态学杂志,24:58-64.
    袁林喜,龙楠烨,谢周清,等.2006.北极新奥尔松地区现代污染源及其指示植物研究[J].极地研究,18:9-20.
    袁林喜,罗鸿灏,孙立广.2007.北极新奥尔松古海鸟粪土层的识别[J].极地研究,19:181-192.
    袁林喜.2010.北极新奥尔松和浙江舟山群岛的典型岛屿生态地质学问题研究[D]:[博士].合肥:中国科学技术大学.
    朱静,郭建阳,王立英,等.2010.锑的环境地球化学研究进展概述[J].地球与环境,38:109-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700