网衣波浪水动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网渔具和网箱是海洋渔业生产(海洋捕捞和海水养殖)的重要工具和设施,网衣是它们的主要构件。与其他海洋结构物一样,网衣及其构成的渔具和渔业设施在海洋中要承受风、浪、流等水文环境因子的作用,其生产效能和安全性能与所承受的水动力相关。水流作用的水动力研究可借鉴传统的渔具力学理论,而与波浪作用的研究未受到足够重视,引起波浪对水表层网渔具和海水网箱养殖设施等的作用超出了承受限度,带来了一系列的生产损失,削弱了海洋渔业向纵深发展的动力,也制约了渔具力学的进一步发展。
     本研究是在依据波浪理论和渔具力学理论的分析基础上,利用现代设备与技术,设计了网衣波浪水动力的水槽试验,研究了网衣在波浪中的水动力特性和波浪响应,计算得到了网衣波浪力的计算公式和处理方法,同时与实际渔用网衣的波浪试验进行对比分析,提出传统的渔具力学在网衣波浪力计算中的修正方法,并在小尺度网箱波浪力学中计算应用和实验论证,由此可推广到实际网箱及网渔具的波浪水动力计算应用,为远洋渔业和设施渔业可持续发展提供技术依据,为渔具力学的发展提供基础理论。
     在理论上,本文结合传统的渔具力学和海洋工程波浪力学理论,提出了网衣波浪力学的概念、成因和组成。按因次和谐方法,导出了网衣波浪力的一般公式,分析了与网衣波浪力的相关物理量,它们分别为网衣的主体尺寸(宽度和高度)、特征参数(网线粗度、网目大小和缩结装配),波浪参数(波高、波长和周期)及海域条件(水深、网衣与波向的冲角及系泊方法)。各种物理量在波浪中共同作用,形成网衣在波浪中的一些相似现象。同时网衣在波浪中有六种运动趋势:沿波向、侧向和垂向的振荡移动及绕这三个方向的振荡转动,形成复杂的迭加运动。
     在网衣水槽的波浪试验中,根据波浪运动的复杂性,采用了自制的传感器与应变采集仪、应变放大器、波高仪和计算机联机,组成网衣波浪水槽试验的采集系统,开发了数据采集处理软件,波浪力的测试精度达到99.91%。设计10种网衣,与HDPE框架装配成系列网衣构件,首先应用预加张力放射法来约束构件在波浪中的运动,分别按不同的波浪工况、网衣尺度和冲角分别进行波浪试验,同
The netted-fishing gears are important produced tools and facilities in marine fisheries (marine catching and marine aquaculture mainly), which the main structure is the net. The netted-fishing gears with the structures are withstood by the storm events like as the other ocean engineering structures responded by the wave and current conditions, and then the perspective of durability, security and productiveness of the netted-fishing gears are correlated with the mechanics of ones under the ocean field conditions. Although current factor’s mechanics which could be used for reference of the classical fishing gear hydrodynamics have been well documented, the knowledge of wave force on the fishing gears has not received much attention in the literature. The developing motive and creative advancement of the fisheries industry has become weaken because that the potential security hidden trouble caused the wave events of the fishing gears and sea-cages have hampered the fisheries, and then fisheries economic loss have become more and more, so the insufficient knowledge of the wave force is also a hindrance of development about fishing gear hydrodynamics.
     In the present study, the experiment methods of the netting structures in the wave flume were designed based on the theories of the wave machines and fishing gear hydrodynamic by using the modern facilities and developing technique. The experiments were carried out under regular wave; the wave force and response on the netting structures and the wave parameter were recorded synchronously. The force on the netting panel was examined under different wave conditions, the relationships between the wave force and the parameters of the wave conditions and the net panels dimension were analyzed. The experimental formula of calculating the wave force on the netting panel was derived and the simulated result was then compared with actual
引文
1. Aarsnes, J.V., Rudi, H., Loland, G. Current forces on cage, net deflection. Engineering for Offshore Fish Farming. Thomas Telford, London, pp, 1990, 137-152.
    2. Baldwin, K., Celikkol, B., Steen, R., et al. Open aquaculture engineering: mooring and net pen deployment. Mar. Technol. Soc. J, 2000, 34: 53-67.
    3. Baranow, F.I. Theory and assessment of fishing gear. Fish Industry Press, Moscow. 1948.
    4. Bessonneau, J.S., Marichal, D. Study of the dynamics of submerged supple nets (applications to trawls). Ocean Engineering, 1998, 25: 563–583.
    5. Chan, A.T., Lee, S.W.C. Wave characteristics past a flexible fishnet, Ocean Engineering, 2001, 28:1517-1529.
    6. Charkrabarti, S.K. Offshore Structure Modeling. World Scientific Publishing, Singapore, 1994.
    7. Christensen, B.A. Hydrodynamic Modeling of Fishing Nets. IEEE Ocean75, 1975, 484-490.
    8. Colbourne, D.B., Allen, J.H. Observations on motions and loads in aquaculture cages from full scale and model scale measurements. Aquacultural Engineering, 2001, 24: 129-148.
    9. Dean, R.G., Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists. World Scientific Publishing, Singapore, 1991.
    10. Dickson, W. The use of model nets as a method of developing trawling gear. Modern fishing gear of the world (1), 1957, 166-174.
    11. Dickson, W. Trawl performance. A study relating model to commercial trawls. DAFS Marine Research 1. HMSO, Edinburgh, 48pp, 1961.
    12. Ferro, R.S.T., Van, M.B, Hansen, K.E. An empirical velocity scale relation for modeling a design of large pelagic trawl. Fisheries Research, 1996, 28:197-230.
    13. Ferro, R.S.T., Xu, L. An investigation of three methods of mesh size measurement. Fisheries Research, 1996, 25:171-190.
    14. Fredriksson, D.W. Open ocean fish cage and mooring system dynamics. Ph.D. Dissertation. The University of New Hampshire, Durham, NH, 2001.
    15. Fredriksson, DW., Swift, M.R., Irish, J.D., et al. Fish cage and mooring system dynamicsusing physical and numerical models with field measurements. Aquacultural Engineering, 2003, 27:117-146.
    16. Fredriksson, D.W., Swift, M.R., Irish, J.D., et al. The heave response of a central spar fish cage. J. Off. Mech. Arct. Eng, 2004, 28:321-346.
    17. Fridman, A.L. Theory and design of commercial fishing gear. Israel program for scientific translations. 1973, Natl. Mar. Fish. Serv. 489pp.
    18. Fujita, S., Fukahori, K., Nishinokubi, H. Tension of the mooring ropes on the net cage model of raft type in regular waves. Nippon Suisan Gakkaishi, 1991, 57: 2229-2235.
    19. Gignoux, H., Messier, R.H. Computational modeling for fin-fish aquaculture net pens. Ocean Engineering. Int, 1999, 3: 12-22.
    20. Gosz, M., Kestler, K., Swift, M.R., et al. Finite element modeling of submerged aquaculture net-pen systems. In: Polk, M. (Ed.), Open Ocean Aquaculture. Proceedings of an International Conference, Portland, Maine, May 8 -10, 1996. New Hampshire Maine Sea Grant College Program Rpt. No. UNHMP-CP-SG-96-9, pp, 1996, 523-554.
    21. Helmut Kobus, 1975. 水力模拟.清华大学水利系泥沙研究室译.北京:清华大学出版社,1987,45-78.
    22. Honner, S.F. Fluid Dynamic Drag. New York, 1965.
    23. Hou, E.H. A selected revive of hydrodynamic force coefficient date on stranded with used in fishing gear. Scottish Fisheries Research Report, NO.31, 1984.
    24. Hou, E.H., Robertson J. H. B. Drag formulae for two type of two panel Demersal Trawls. Scottish Fisheries Research Report, 1983.
    25. Hou, E.H. Fishing Gear Engineering. Lecture Report, 1980.
    26. Jothi, S.N., Cheong, H.F., Subbian. Root mean square force coefficients for submarine pipelines. Ocean Engineering. 1988, 15:55-69.
    27. Kawakami, T. The theory of designing and testing fishing nets in model. In: Modern Fishing Gear of the World, vol. 2, FishingNews (Books), London, 1964.
    28. Kimura, H. Numerical calculation of horizontally fully immersed and two points moored cylindrical buoy in wave. Fisheries Engineering, 1998, 35:167-176.
    29. Lader, P., Fredheim, A. Modeling of Net Structures Exposed to 3D Waves and Current. OpenOcean Aquaculture IV, St. Andrews, Canada, 2001.
    30. Lader, P., Fredheim, A., Lien, E. Dynamic behavior of 3D nets exposed to waves and current. In: Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, 2001.
    31. Le Bris, F., Marichal, D. Numerical and experimental study of submerged flexible nets. In: Proceedings of the Ninth International offshore and Polar Engineering Conference, Brest, France, 1999,May 30–June 4, pp. 749–755.
    32. Lee, H.H., Wen, W.P. Dynamic behavior of tension-leg platform with net-cage system subjected to wave force. Ocean Engineering. 2000; 28:179-200.
    33. Leonard, P. Tables for computing the equilibrium configuration of a flexible cable in a uniform stream. Report of the David W. Taylor Model Basin, 687, 1951.
    34. Linfoot, B.T., Hall, M.S. Analysis of the motions of scale-model sea-cage systems. In: IFAC Symposium: Aquaculture’86. Automation and Data Processing in Aquaculture, Trondheim, Norway, August 18-21, 1986.
    35. Li, X.Y., Hou, E.H. Study of mesh Stress and Shape of an ax symmetrical net using the membrane theory. Fisheries Research, 1990, 9:269-282.
    36. Li, Y.C. Wave action on maritime structures. The Press of Dalian University of Technology, 1990.
    37. Morison, J.R., Johnson, J.W., O’Brien, M.P., et al. The forces exerted by surface waves on piles. Petroleum Transactions. American Institute of Mining Engineering, 1950.
    38. Ochi, M.K. Ocean Waves: the Stochastic Approach. Cambridge University Press, New York., 1998.
    39. Palczynski, M.J. Fish cage physical modeling. Master’s Degree Thesis. University of New Hampshire, Durham, NH, 2000.
    40. Shimizu, T., Takagi, T., Korte, H., et al. Application of NaLA, a fishing net configuration and loading analysis system, to drift gill nets. Fisheries Research, 2005, 76:67–80.
    41. Slaattelid, O.H. Model tests with flexible, circular floats for fish farming. Engineering for offshore fish farming, Thomas Telford, London, 1990, 93-106.
    42. Suzuki, K., Takagi, T., Shimizu, T., et al. Validity and visualization of a numerical modelused to determine dynamic configurations of fishing nets. Fisheries Science, 2003, 69: 695–705.
    43. Swift, M.R., Palczynski, M., Kestler, K., et al. Fish cage physical modeling for software development and design applications. In: Nutrition and Technical Development of Aquaculture. Proceedings of the 26th US-Japan Aquaculture Symposium. UJNR Technical Report No. 26. UNHUM Sea Grant, Kingman Farm, University of New Hampshire, Durham, NH. Rpt UNHMP-CP-SG-98-19, pp, 1998: 199-206.
    44. Takagi, T., Shimizu, T., Suzuki, K., b, et al. Validity and layout of “NaLA”: a net configuration and loading analysis system. Fisheries Research, 2004, 66: 235–243.
    45. Tauti, M. A relation between experiments on model and full scale of fishing net. Nippon Suisan Gakkaishi, 1934; 3:171-177.
    46. Tauti, M. The force acting on the plane net in motion through the water. Nippon Suisan Gakkaishi, 1934; 3:1-4.
    47. Tsukrov, I., Eroshkin, O., Fredriksson, D.W., et al. Finite element modeling of net panels using consistent net element. Ocean Engineering, 2003, 30: 251-270.
    48. Tsukrov, I., Ozbay, M., Fredriksson, D.W., et al. Open ocean aquaculture engineering: numerical modeling. Mar. Technol. Soc. J, 2000, 34:29 -40.
    49. Turner, R. Offshore mariculture: Mooring system design. Scotland: CIHEAM-Options Mediterraneennes, 1997, 168-169.
    50. Wan, R., Hu, F.X., Tadashi, T. A static analysis of the tension and configuration of submerged plane net. Fisheries Science, 2002, 68:815-823.
    51. Wan, R., Hu, F.X., Tadashi, T., et al. A method for analyzing the static response of submerged rope systems based on a finite element method. Fisheries Science, 2002, 68:65-70.
    52. Ward, J.N., Ferro, R.S.T. A comparison of one-tenth and full-scale measurements of the drag and geometry of a pelagic trawl. Fisheries Research, 1993, 17:311-331.
    53. Wei, G., Panchang, V.G., Pearce, B.R. Some numerical models for predicting wave conditions around aquaculture sites. Engineering for offshore fish farming, Thomas Telford, London ,1990, 119-133.
    54. Yu, C.D. An initial mechanical study on the trawl net. Fisheries Science. 2002, 68:1861-1864.
    55. Zhan, J.M., Jia, X.P., Li, Y.S., et al. Analytical and experimental investigation of drag on nets of fish cages. Aquacultural engineering, 2006:1-11 (in Press).
    56. 长崎作治.海洋浮遊构造物の係留设计.日本:山海堂,1990:158-167.
    57. 陈连源,陈志海,王兴国.294kW 渔轮疏目双拖网性能的研究.浙江海洋学院学报,1999,6:133-137.
    58. 陈小红,黄祥鹿.单点系泊海洋资料浮标的动力分析.中国造船,1995,130(3):1-8.
    59. 戴天元.中国海洋捕捞学科发展的研究.福建水产,2005,3:5-9.
    60. 杜守恩.浮控型拖网模型试验.海洋渔业,1991,6.
    61. 樊伟,周甦芳,崔雪林等.拖网捕捞对东海渔业资源种群结构的影响.应用生态学报,2003,10:1697-1700.
    62. 冯博琴,姚全珠,傅长龙.FORTRAN 语言学习指南.北京:机械工业出版社,1996.
    63. 冯士筰.海洋科学导论.北京:高等教育出版社,1999:182-189.
    64. 冯铁成,刘应中.单点系泊油轮随机纵荡的工程计算方法.海洋工程,1987,5(2):12-19.
    65. 弗里德曼 А Л .渔具理论与设计.1981.侯恩淮,高清廉译.北京:海洋出版社,1988,36-47,57-63.
    66. 宫崎芳夫,高橋正.網地の流体抵抗に关する基础的研究--Ⅳ. Journal of the Tokyo University of Fisheries, 1964,50(2):105-110.
    67. 古文贤.临界锚泊力与储备锚泊力.世界海运,1996,3:54-56.
    68. 古毅杰,于晓力.锚泊力及其变化的估计.世界海运,1996,4:17-20.
    69. 桂福坤,李玉成,张怀慧.网衣受力试验的模型相似条件.中国海洋平台,2002:22-25.
    70. 国家水产总局.渔具模型试验.北京:中国农业出版社,1980.
    71. 郭健,桂福坤,张怀慧.沉子重量与单片网衣水阻力及变形的试验研究.大连水产学院学报,2004,19:313-316.
    72. 合田良實.港湾構造物の耐波設計.鹿島出版会,1977.
    73. 侯恩淮.水流中柔性线的静力分析.山东海洋学院学报,1986,16:102-116.
    74. 侯恩淮.拖网模型试验与实船测试结果的比较.山东海洋学院学报,1986,16:187-197.
    75. 侯恩淮.曳纲水动力系数实测验证与分析.山东海洋学院学报,1987.
    76. 侯恩淮.渔具的力学研究现状及趋势.水产科技动态,1988,352.
    77. 胡夫祥.中層トロールシスラムの制御特性に関する研究.博士论文.日本:东京水产大学,1992.
    78. 胡良剑,丁晓东,孙晓君.数学试验使用 MATLAB.上海:上海科学技术出版社,2001.
    79. 华中工学院.算法语言·计算方法.北京:高等教育出版社,1987.
    80. 黄六一,梁振林,赵芬芳等.小尺度方形网箱浮框在波浪中应变的研究.中国水产科学,2004,11(Suppl):55-62.
    81. 黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应.上海:上海交通大学出版社,1992:39-41;54-55.
    82. 黄锡昌.实用拖网渔具渔法.北京:中国农业出版社,1984.
    83. 黄锡昌.海洋捕捞手册.北京:中国农业出版社,1990.
    84. 黄锡昌,苗振清,虞聪达.中国远洋捕捞手册.上海:上海科学技术出版社,2003.
    85. 乐美龙.渔具理论与计算一般原理.北京:农业出版社,1959.
    86. 李天匀,周崇庆,刘土光等.风浪冲击下锚泊渔船的锚链动力负荷.中国水产科学,1999,6(3):78~80.
    87. 李玉成,滕斌.波浪对海上建筑物的作用.北京:海洋出版社,2002:9-20.
    88. 李玉成,桂福坤,张怀慧等.深水养殖网箱试验中网衣相似准则的应用.中国水产科学,2005,,12:179-187.
    89. 林德芳,黄文强,关长涛.我国海水网箱养殖的现状、存在的问题及今后的课题.齐鲁渔业,2002,19:21-23.
    90. 林德芳.远洋大型单船中层拖网测试报告.全国水产捕捞学术交流会论文报告(第七集),1993,45-52.
    91. 林东年.变水层大网目拖网试验与推广.湛江海洋大学学报,2004,24(3):36-41.
    92. 刘世禄.我国海洋捕捞业发展趋向与结构调整分析研究.浙江海洋学院学报,2004,23(2):144-148.
    93. 南京水利科学研究所,水利水电科学研究院.水工模型试验.北京:水利电力出版社,1959:22-108.
    94. 慕永通.我国海洋捕捞业的困境与出路.中国海洋大学学报(社会科学版),2005(2):1-5.
    95. 邱大洪.波浪理论及其在工程上的应用.北京:高等教育出版社,1985:140-146;274-290.
    96. 佘显炜,虞聪达,胡夫祥.钢丝索纲的水动力学性能.浙江水产学院学报,1983,2(1):51-57.
    97. 佘显炜.网衣形状和张力差分算法及其在刺网设计计算中的应用.浙江水产学院学报.1987,6(2):83-95.
    98. 佘显炜.拖网形状和张力计算(英文).第四次亚洲水产学术报告会论文集,1997:194-197.
    99. 佘显炜.计算渔具力学导论.上海:上海科学技术文献出版社,2001:218-247.
    100. 佘显炜.渔具力学.浙江:浙江科学技术文献出版社,2004:1-3;5-12;130-180.
    101. 佘显炜.论渔具模型试验准则中的若干问题.浙江海洋学院学报,2004,23:328-333.
    102. 盛祖荫,孙龙.掩护海水养殖网箱的浮式防波堤的消浪特性,中国水产科学,2001,8(4):61,70-72.
    103. 史杰平,劳国升.单锚系泊浮体运动及系泊力分析.大连海运学院学报. 1989,15(4):7-13.
    104. 孙满昌.方形网目的网片与水流平行时的流体阻力系数研究.上海水产大学学报,1996(2):125-129.
    105. 松田皎. 渔具物理学. 东京:成山堂書店,2001.
    106. 宋伟华,梁振林,关长涛等.方形网箱水平波浪力的迭加计算和实验验证.海洋与湖沼,2004,35(3):202-208.
    107. 宋伟华,梁振林,关长涛等.应用两种不同的波浪理论计算方形网箱水平波浪力.中国水产科学,2005,12(1):91-98.
    108. 宋伟华,梁振林,赵芬芳等.方形网箱波浪水动力学的近似计算.浙江海洋学院学报,2003,23(2):211-220.
    109. 宋伟华,梁振林,赵芬芳等.单点系泊网衣构件波浪试验研究.海洋与湖沼,2005,36(3):201-207.
    110. 宋协法,万荣,黄文强.深海抗风浪网箱锚泊系统的设计.中国海洋大学,2003(6):881-885.
    111. 孙意卿.海洋工程环境条件及其载荷.上海:上海交通大学出版社,1989:141-192.
    112. 唐宏结.网箱容积变形改善研究. 硕士论文.台北:中山大学,2001,4.1-4.16.
    113. 田内森三朗.水産物理学.东京:朝倉書店,1949.成山堂書店,1993 复印版.
    114. 王尔光.渔具力学.大连水产学院,1995.
    115. 王尔光.关于与流平行的平面网片水动力的研究.大连水产学院学报,1987,2.
    116. 王尔光.网片水阻力的后流解析计算法.大连水产学院学报,1988,2.
    117. 王培良等.疏目表层拖网试验报告.齐鲁渔业,1993,2.
    118. 文舟.单点系泊的介绍.航海技术,1991,(5):11-14.
    119. 谢荣华.波浪作用下垂直与水平柱体受力行为及减力设施之试验研究.硕士论文.台北:中山大学,2001,12-21.
    120. 徐建国.400KW 渔船大网目拖网试验和推广研究.福建水产,2003(2):22-25.
    121. 徐兴平.单点系泊油轮动力响应试验研究.石油大学学报,2002,26(4):53-55.
    122. 徐君卓.深水网箱养鱼产业化的特点与技术关键.现代渔业信息,2005(1):12-15.
    123. 徐君卓.深水网箱养鱼业的现状与发展趋势.海洋渔业,2004(3):225-230.
    124. 徐君卓.我国深水网箱养鱼产业化发展前瞻.现代渔业信息,2002(4):9-12.
    125. 虞聪达,熊鹏飞.拖网网袖力学的初步研究.浙江水产学院学报,1994(3):162-167.
    126. 虞聪达,朱江忠,何千军.聚乙烯平面网片水动力特性的研究.浙江水产学院学报,1991(1):40-45.
    127. 詹杰民,胡由展,赵陶等.渔网水动力试验研究及分析.海洋工程,2002(2):49-53.
    128. 章守宇,刘洪生.飞碟型网箱的水动力学数值计算法.水产学报,2002,26(6):519-527.
    129. 赵芬芳,梁振林,黄六一等.小尺度网箱缆绳张力在波浪中的变化特性.中国水产科学,2004,11(Suppl):49-54.
    130. 郑国富,黄桂芳,戴天元.柔性结构养殖网箱的抗风浪性能试验报告.海洋湖沼通报,2001,(1):26-30.
    131. 中国渔业年鉴,2004.北京:中国农业出版社,2004.
    132. 周光坰,严宗毅,许世雄等.流体力学(上下册).北京:高等教育出版社,2001.
    133. 周应祺,许柳雄,何其渝.渔具力学.北京:中国农业出版社,2001:51-68,119-133.
    134. 朱立新,梁振林,赵芬芳等.网箱的概念简化与力学计算.中国水产科学, 2004,11(Suppl):19-25.
    135. 竺艳蓉.海洋工程波浪力学.天津:天津大学出版社,1991:9-19;63-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700