用户名: 密码: 验证码:
“新吉富”尼罗罗非鱼N-乙酰-β-D-氨基葡萄糖苷酶的性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尼罗罗非鱼是我国最重要的养殖鱼类之一。“新吉富”尼罗罗非鱼是在吉富罗非鱼的基础上研发的具有自主知识产权的新品种,因具有卓越的生长优势被农业部在全国范围内推广。本论文对该鱼N-乙酰-β-D-氨基葡萄糖苷酶(NAGase)的性质进行了描述,并研究了外界环境条件对该酶性质的影响。
     经40%~55%的硫酸铵分级沉淀、DEAE纤维素(DE-32)离子交换层析、Sephadex G-200凝胶过滤层析、DEAE-Sephadex(A-50)层析柱从“新吉富”尼罗罗非鱼精巢组织分离纯化得到比活力为4100U·mg-1的NAGase,经电泳检测为单一纯。该酶的分子量为118.0kD,水解底物对-硝基苯-N-乙酰-β-D-氨基葡萄糖苷(pNP-NAG)的最适pH和最适温度分别为pH5.7和55℃。37℃条件下该酶的pH稳定范围为3.3-8.1,当温度高于45℃时该酶开始失活。该酶水解底物pNP-NAG遵循米氏方程,米氏常数(Km)和最大反应速度(Vm)分别为0.67mm01·L-1和23.26μm01-L-1·min-1。
     金属离子对“新吉富”尼罗罗非鱼NAGase的活力影响实验表明:Li+,Na+,K+,Mg2+和Ca2+等金属离子对该酶活力基本没有影响,重金属离子对该酶的抑制强弱顺序为Hg2+>Zn2+>Cu2+>Pb2+>Mn2+.Cu2+和Zn2+对该酶抑制的IC50分别为1.23和0.28mm01·L-1,其抑制机理均为可逆抑制,其中Cu2+的抑制类型为非竞争型,Zn2+的抑制类型为竞争型。这两种金属离子均能明显影响该酶的pH稳定性和热稳定性,也都能改变酶的构象从而影响到其内源荧光的发射。
     Hg2+对该酶呈强烈的不可逆抑制作用,IC50值仅为2.70μm01·L-1,而且Hg2+也能明显缩短该酶的热稳定和pH稳定范围。进一步通过底物反应的动力学方法研究了Hg2+对该酶的抑制动力学,建立了相应的动力学模型,经测定Hg2+对自由酶和酶与底物复合物的微观抑制速度常数k1和k’2分别为4.42×10-4mmol·L-1.s.-1and7.06×10-5mm01·L-1·s-1.说明在Hg2+的抑制作用下,底物的存在对于该酶有明显的保护作用。
     本文还测定了罗非鱼养殖过程中的一些常用药物对该酶活力的影响,在测定浓度范围内内服药物对罗非鱼NAGase的活力影响不大,盐酸强力霉素却对该酶有强烈的激活作用。而常用消毒剂强氯精和甲醛则对酶活力有明显的抑制作用,其IC50值分别为0.25mg.mL-1和3.2%。强氯精对该酶呈反竞争性可逆抑制作用,而甲醛呈竞争性可逆抑制。两种消毒剂均能明显缩短该酶的热稳定和pH稳定性。进一步建立了该酶在这两种消毒剂中的失活动力学模型,测定了其抑制速度常数。
     用嗜水气单胞菌322A腹腔感染健康“新吉富”尼罗罗非鱼,测定其内脏和血清NAGase比活力的变化规律,发现感染后第1,3,5,9,13,17,21d注射组的肝脏NAGase比活力明显高于对照组,呈极显著性差异(P<0.01);肾脏NAGase比活力只在第1d和第3d极显著性高于对照组(P<0.01);脾脏NAGase比活力与对照组没有显著性差异;血清中没有检测到NAGase活力。
Nile tilapia(Oreochromis niloticus) is one of the most important farmed fish in China. New GIFT Nile tilapia is a new strain selected from GIFT (Genetically Improved Farmed Tilapia) by Shanghai Fishery University (China). It has been certified as a desirable strain by the National Certification Committee of Wild and Bred Varieties in January2006, and announced by the Ministry of Agriculture to expand in China because of its good growth performance. In this dissertation, we describe the enzymatic characterization and effects of environmental condition on its activity of NAGase from New GIFT Nile tilapia.
     N-acety1-/β-D-glucosaminidase (NAGase) from spermary of New GIFT Nile tilapia was purified to be PAGE homogeneous by the following techniques:(NH4)2SO4fractionation (40%-55%), DEAE-cellulose (DE-32) ion exchange chromatography, Sephadex G-200gel filtration and DEAE-Sephadex (A-50). The specific activity of the purified enzyme was4100U·mg-1. The enzyme molecular weight was estimated as118.0kD. The optimum pH and optimum temperature of the enzyme for hydrolysis ofpNP-NAG was to be at pH5.7and55℃, respectively. The enzyme was stable in a pH range from3.3to8.1at37℃, and inactive at temperature above45℃. Kinetic studies showed that the hydrolysis of p-Nitrophenyl-N-acetyl-β-D-glucosaminide (pNP-NAG) by the enzyme followed Michaelis-Menten kinetics. The Michaelis-Menten constant (Km) and maximum velocity (Vm) were determined to be0.67mmol-L"1and23.26μmol·L-1min-1, respectively. The enzymatic characterizations of NAGase from tilapia were special to the other animals, which were correlated with its living habit.
     Effects of metal ions on tilapia NAGase had been testied. The enzyme activity was inhibited by the following heavy metal ions in decreasing order: Hg2+>Zn2+>Cu2+>Pb2+>Mn2+. However, the ions Li+, Na+5K+, Mg2+and Ca2+had almost no influence on enzyme activity. TheIC50of Cu2+and Zn2+were1.23and0.28mmol-L"1, respectively. They both inhibited the enzyme reversibly, while the inhibition type of Cu2+was noncompetitive and Zn2+was competitive. Both of the two metal ions had significant influence on the thermal and pH stability of the enzyme. Besides, Cu+and Zn+could both change the conformation of tilapia NAGase. Based on the results we got, CuSO4and ZnSO4should be used very carefully as insecticides in tilapia cultivation since they both had significant effects on the enzyme.
     In this paper, we determined the kinetics of HgCl2-mediated inhibition of NAGase, and our results showed that it was irreversible inhibition with an IC50value at2.70μM. Moreover, Hg2+reduced the thermal and pH stability of the enzyme. We determined the inhibition kinetics of Hg2+by using the kinetic method of substrate reaction. With this inhibition model, the microscopic rate constants for the reaction of Hg2+with free enzyme (k1) and the enzyme-substrate complex (K1) were determined to be4.42×10-4mM-1·s-1and7.06×10-5mM-1·s-1, respectively, indicating that the presence of substrate can protect NAGase from Hg2+inhibition.
     Effects of some medicines commonly used in tilapia cultivation were also studied. Some antibiotics tested had almost no influence on tilapia NAGase, except Doxycycline hydrochloride had activation. However, disinfectant such as Trichloroisocyanuric acid (TCCA) and formaldehyde could inhibit the enzyme. The IC50value of TCCA and formaldehyde were estimated to be0.25mg·mL-1and3.2%. Appropriate concentration of TCCA leaded to uncompetitive reversible inhibition on tilapia NAGase, while formaldehyde leaded to competitive reversible inhibition. Moreover, TCCA and formaldehyde could both reduce the thermal and pH stability of the enzyme. The inactivation models were both set up, and the rate constants were determined. The results might give some basis to TCCA and formaldehyde used in tilapia culture.
     Aeromonas hydrophila322A were intraperitoneal injected into healthy New GIFT Nile tilapia, specific activities of NAGase in entrails and serum were then tested. We found that specific activities of NAGase in livers of injected group were apparently higher than control group at1,3,5,9,13,17an21d post-injection (P<0.01); specific activites in kidneys were highly significant than control group at1and3d post-injection (P<0.01); however, there were no significant differences in specific activities of NAGase in spleens. NAGase activities in serum could not be detected.
引文
[1]Nguyen H A, Nguyen T H, Kfen V, et al. Heterologous expression and characterization of an N-Acetyl-/?-D-hexosaminidase from Lactococcus lactis ssp. lactis IL1403 [J]. Journal of Agricultural and Food Chemistry,2012,60:3275-3281.
    [2]Slamova K, Bojarova P, Petraskova L, et al.β-N-Acetylhexosaminidase:What's in a name...? [J]. Biotechnology Advances,2010,28:682-693.
    [3]Keyhani N O, Wang L X, Lee Y C. The chitin catabolic cascade in the marine bacterium Vibrio furnissii Characterization of an N, N-diacetyl-chitobiose transport system [J]. The Journal of Biological Chemistry,1996,271(52):33409-33413.
    [4]Boller J, Gehri A, Mauch F. Chitinase in bean leaves:induction by ethylene, purification, properties, and possible function [J]. Planta,1983,157:22-31.
    [5]Kondo K, Matsumoto M, Kojo A, et al. Purification and characterization of chitinase from pupae Pieris rapae crucivora (Boiduval) [J]. Journal of Chemical and Engineering of Japan, 2002,35:241-246.
    [6]Fukamizo T. Chitinolytic enzymes:catalysis, substrate binding, and their application [J]. Current Protein & Peptide Science,2000,1 (1):105-124.
    [7]谢晓兰.南美白对虾N-乙酰-β-D-氨基葡萄糖苷酶的研究[D].厦门:厦门大学,2005.
    [8]Tsujibo H, Kondo N, Tanaka K, et al. Molecular analysis of the gene encoding, a novel transglycosy lative enzyme fromAlteromonas sp. strain O-7 and its physiological role in the chitinolytic system [J]. Journal of Bacteriology,1999,181:5461-5466.
    [9]Cheng Q, Li H, Merdek K, et al. Molecular characterization of the β-N-acetylglucosami-nidase of Escherichia coli and its role in cell wall recycling [J]. Journal of Bacteriology,2000, 182:4836-4840.
    [10]Stubbs K A, Balcewich M, Mark B L, et al. Small molecule inhibitors of a attenuate inducible AmpC-mediated β-lactam resistance [J]. Journal of Biological Chemistry,2007, 282:21382-21391.
    [11]Balcewich M D, Stubbs K A, He Y, et al. Insight into a strategy for attenuating AmpC-mediated β-lactam resistence:Structural basis for selective inhibition of the NagZ [J]. Protein Science,2009,18:1541-1551.
    [12]Kaplan J B, Ragunth C, Ramasubbu N, et al. Detachme nt o f Actinobacillus Actinomycete-mcomitans biofilm cells by an endogenous β-hexosaminidase activity [J]. Journal of Bacteriology,2003,185:4693-4698.
    [13]Ramasubbu N, Thomas L M, Ragunath C, et al. Structural analysis of Dispersin B, a biofilm-releasing from the periodontopathogen Actinobacillus actinomycetemcomitans [J]. Journal of Molecular Biology,2005,349:475-486.
    [14]Sheldon W L, Macauley M S, Taylor E J, et al. Functional analysis of a group A streptococcal Spy 1600 from family 84 reveals it is a β-N-acetylglucosaminidase and not a hyaluronidase [J]. Biochemical Journal,2006,399:241-247.
    [15]Rast D M, Baumgartner D, Mayer C, et al. Cell wall-asso ciated enzymes in fungi [J]. Phytochemistry,2003,64:339-366.
    [16]Rast D M, Horsch M, Furter R, et al. A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii:properties and function [J]. Journal of General Microbiology,1991,137:2797-2810.
    [17]Pusztahelyi T, Pocsi I, Szentirmai A. Aging of Penicillium chrysogenumcultures under carbon starvation:II:protease and N-acetyl-β-D-hexosaminidase production [J]. Biotechnology and Applied Biochemistry,1997,25:87-93.
    [18]Diez B, Rodriguez-Saiz M, de la Fuente JL, et al. The nagA gene of Penicillium chrysogenum encoding P-N-acetylglucosaminidase [J]. FEMS Microbiology Letter,2005, 242:257-264.
    [19]St. Leger RJ, Cooper RM, Charnley AK. Characterization of chitinase and chitobiase produced by etomopathogenic fungus Metarhizium anisopliae [J]. Journal of Invert Pathology,1991,58:415-426.
    [20]Lorito M, Harman G E, Hayes C K, et al. Chitinolytic enzymes produced by Trichoderma harzianum:antifungal activity of purified endochitinase and chitobiosidase [J]. Phytopathology,1993,83:302-307.
    [21]Brunner K, Peterbauer C K, Mach R L, et al. The Nag 1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol [J]. Current Genetics,2003,43:289-295.
    [22]Lisboa de Marco J, Valadares-Inglis M C, Felix C R. Purification and characterization of an N-acetylglucosaminidase produced by a Trichoderma harzianum strain which controls Crinipellisperniciosa [J]. Applied Microbiology and Biotechnology,2004,64:70-75.
    [23]Mamarabadi M, Jensen D F, Liibeck M. An N-acetyl-β-D-glucosaminidase gene, cr-nagl, from the biocontrol agent Clonostachys rosea is up-regulated in antagonistic interactions with Fusarium culmorum [J]. Mycology Research,2009,113:33-43.
    [24]Andronopoulou E, Vorgias C E. Purification and characterization of a new hyperthermostable, allosamidin-insensitive and denaturation-resistant chitinase from the hyperthermophilic archaeon Thermococcus chitonophagus [J]. Extremophiles,2003,7: 43-53.
    [25]Ramot O, Viterbo A, Friesem D, et al. Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine [J]. Current Genetics,2004, 45:205-213.
    [26]Zhuravleva N V, Luk'yanov p A, Pivkin M V. N-Acetyl-β-D-hexosaminidase secreted by the marine fungus Phoma glomerata [J]. Applied Biochemistry and Microbiology,2004, 40(5):448-453.
    [27]Gkargkas K, Mamma D, Nedev G, et al. Studies on a N-acetyl-β-D-glucosaminidase produced by Fusarium oxysporum F3 grown in solid-state fermentation [J]. Process Biochemistry,2004,39:1599-1605.
    [28]张宇婷.来源于维氏气单胞菌B565的两个几丁质降解酶的高效表达、性质研究及水产养殖应用[D].北京:中国农业科学院,2012.
    [29]史益敏,颜季琼,费雪南,等.番茄叶片胞外β-N-乙酰氨基己糖苷酶的部分性质研究[J].植物学报,1994,36(11):864-870.
    [30]Jin Y L, Jo Y Y, Kim K Y, et al. Purification and characterization of β-N-acetylhexosaminidase from rice seeds [J]. Journal of Biochemistry and Molecular Biology,2002,35:313-319.
    [31]Oikawa A, Itoh E, Ishihara A, et al. Purificati on and characterization of P-N-acetylhexosaminidase from maize seedlings [J]. Journal of Plant Physiology,2003,160: 991-999.
    [32]Jagadeesh B H, Prabha T N, Srinivasan K. Activities of glycosidases during fruit development and ripening of tomato (Lycopersicum esculantum L.):implication in fruit ripening [J]. Plant Science,2004,166:1451-1459.
    [33]Jagadeesh B H, Prabha T N. β-Hexosaminidase, an enzyme from ripening bell capsicum (Capsicum annuum var. variata) [J]. Phytochemistry,2002,61:295-300.
    [34]Strasser R, Bondili J S, Schoberer J, et al. Enzymatic properties and subcellular localization of Arabidopsis β-N-acetylhexo saminidases [J]. Plant Physiology,2007,145:5-16.
    [35]Zitta K, Wertheimer E V, Miranda P V. Sperm N-acetylgl ucosaminidase is involved in primary binding to the zona pellucida [J]. Molecular Human Reproduction,2006,12: 557-563.
    [36]Cattaneo F, Pasini M E, Intra J, et al. Identification and expression analysis of Drosophila melanogaster genes encoding β-hexosaminidases of the sperm plasma membrane [J]. Glycobiology,2006,16:786-800.
    [37]Miranda P V, Gonzalez-Echeverria F, Blaquier J A, et al. Evidence for the participation of β-hexosaminidase in human sperm-zona pellucida interacti on in vitro [J]. Molecular Human Reproduction,2000,6:699-706.
    [38]Perez Martinez S L, Menendez Helman R J, Zitta K S, et al. Characterization of human sperm N-acetylglucosaminidase [J]. International Journal of Andrology,2008,31(3): 315-324.
    [39]Lambert C, Goudeau H, Franchet C, et al. Ascidian eggs block polyspermy by two independent mechanisms:one at the egg plasma membrane, the other involving the follicle cells [J]. Molecular Reproduction and Development,1997,48:137-143.
    [40]Koyanagi R and Honegger T G. Molecular cloning and sequence analysis of an ascidian egg β-N-acetylhexosaminidase with a potential role in fertilization [J]. Development, Growth & Differentiation,2003,45(3):209-218.
    [41]冯健超,袁华均,潘厚炎,等.水牛唾液N-乙酰-β-D-氨基葡萄糖苷酶的变化规律与排卵[J].华中农业大学学报,1997,16(4):357-360.
    [42]Hogenkamp D G, Arakane Y, Kramer K J, et al. Characterization and expression of the β-N-acetylhexosa minidase gene family of Tribolium castaneum[J]. Insect Biochem Mol Biol, 2008,38:478-489.
    [43]Altmann F, Schwihla H, Staudacher E, et al. Insect cells contain an unusual, membrane-bound β-N-acetylglucosaminidase probably involved in the processing of protein N-glycans[J]. Journal of Biological Chemistry,1995,270:17344-17349.
    [44]Gutternigg M, Kretschmer-Lubich D, Paschinger K, et al. Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanism in nematodes, plants and insects[J]. Journal of Biological Chemistry,2007,282:27825-27840.
    [45]Tomiya N, Narang S, Park J, et al. Purification, characterization and cloning of a Spodoptera frugiperda Sf9 β-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core[J]. Journal of Biological Chemistry,2006,281:19545-19560.
    [46]Leonard R, Rendi c D, Rabouille C, et al. TheDrosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing[J]. Journal of Biological Chemistry,2006,281:4867-4875.
    [47]Geisler C, Aumiller J J, Jarvis D L. A fused lobes gene encodes the processing β-N-acetylglucosaminidase in Sf 9 cells[J]. Journal of Biological Chemistry,2008,283: 11330-11339.
    [48]Kim Y K, Kim K R, Kang D G, et al. Suppression of β-N acetylglucosaminidase in the N-glycosylation pathway for complex glycoprotein formation in Drosophila S2 cells[J]. Glycobiology,2009,19:301-308.
    [49]Filho B P D, Lemos F J A, Secundino N F C, et al. Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti A chitinolytic system involving peritrophic matrix formation and degradation[J]. Insect Biochemisry and Molecular Biology, 2002,32:1723-1729.
    [50]Lemieux M J, Mark B L, Cherney M M, et al. Crystallographic structure of human β-hexosaminidase A:interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis[J]. Journal of Molecular Biology,2006,359:913-929.
    [51]Wilson D J, Herer P S, Sears P M. N-Acetyl-β-D-Glucosaminidase, etiologic agent and duration of clinical signs for sequential episodes of chronic clinical mastifs in dairy cows [J]. Journal of Dairy Science,1991,74:1539-1543.
    [52]荆强,苗晋锋,顾蓓蓓,等.CpG-ODN对山羊实验性乳腺炎乳中NAGase^ MPO及乳铁蛋白的影响[J].南京农业大学学报,2009,32(1):95-99.
    [53]聂雪清.孕妇血清N-乙酰-β-D-氨基葡萄糖苷酶水平变化与胎盘功能关系的临床探讨[J].实用预防医学,2007,14(1):155-156.
    [54]王丽萍,胡继明,吴传京.运动对N-乙酰-β-D-氨基葡萄糖苷酶及其同工酶活性变化的影响[J].中国运动医学杂志,2003,22(3):297-198.
    [55]郭丽曼,赵锦程,邢凤有.N-乙酰-β-D-氨基葡萄糖苷酶在流行性出血热各期中的研究[J].中国病理生理杂志,2003,19(11):1567-1568.
    [56]谭卫.NAG联合3种尿液微量蛋白的检测对糖尿病早期肾损伤的诊断价值[J].临床研究,2011,9(14):266-267.
    [57]Stubbs K A, Balcewich M, Mark B L, et al. Small molecule inhibitors of a attenuate inducible AmpC-mediated β-lactam resistance[J]. Journal of Biological Chemistry,2007,282: 21382-21391.
    [58]Balcewich M D, Stubbs K A, He Y, et al. Insight into a strategy for attenuating AmpC-mediated β-lactam resistence:Structural basis for selective inhibition of the NagZ [J]. Protein Science,2009,18:1541-1551.
    [59]Gutternigg M, Rendic D, Voglauer R, et al. Mammalian cells contain a second nucleocyto-plasmic hexosaminidase [J]. Biochemical Journal,2009,419:83-90.
    [60]Robbins P W, Trimble R B, Wirth D F, et al. Primary structure of the Streptomyces enzyme Endo-β-N-acetyl-glucosaminidase H [J]. Journal of Biological Chemistry,1984,259(12): 7577-7583.
    [61]Tews I, Vincentelli R, Vorgias C E. N-acetylglucosaminidase (chitobiase) from Serratia marcescens:gene sequence, and protein production and purification in Escherichia coli [J]. Gene,1996,170:63-67.
    [62]Peterbauer C K, Lorito M, Hayes C K, et al. Molecular cloning and expression of the nagl gene (N-acetyl-p-D-glucosaminidase-encoding gene) from Trichoderma harzianwn P1 [J]. Current Genetics,1996,30:325-331.
    [63]Tsujibo H, Hatano N, Mikami T, et al. Cloning, characterization and expression of β-N-acetyl-glucosaminidase gene from Streptomyces thermoviolaceus OPC-520 [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1998,1425(2):437-440.
    [64]Lonhienne T, Zoidakis J, Vorgias C E, et al. Modular structure, local flexibility and cold-activity of a novel chitobiase from a Psychrophilic Antarctic Bacterium [J]. Journal of Moleular Biology,2001,310:291-297.
    [65]Fujita K, Takegawa K. Tryptophan-216 is essential for the transglycosylation activity of Endo-β-N-acetylglucosaminidase A [J]. Biochemical and Biophysical Research Communications,2001,283:680-686.
    [66]Peterbauer C K, Brunner K, Mach R L, et al. Identification of the N-acetyl-D-glucosamine inducible element in the promoter of the Trichoderma atroviride naglgene encoding N-acetyl-glucosaminidase [J]. Molecular Genetics and Genomics,2002,267(2):162-170.
    [67]Harty D W S, Chen Y J, Simpson C L, et al. Characterization of a novel homodimeric N-acetyl-β-D-glucosaminidase from Streptococcus gordonii [J]. Biochemical and Biophysical Research Communications,2004,319:439-447.
    [68]Mark B L, Mahuran D J, Cherney M M, et al. Crystal structure of human β-hexosaminidase B:Understanding the molecular basis of Sandhoff and Tay-Sachs disease [J]. Journal of Molecular Biology,2003,327:1093-1109.
    [69]Rao F V, Dorfmueller H C, Villa F, et al. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis [J]. The EMBO Journal,2006,25(7): 1569-1578.
    [70]Ficko-Blean E, Gregg K J, Adams J J, et al. Portrait of an enzyme, a complete structural analysis of a multimodular β-N-acetylglucosamini-dase from Clostridium perfringens [J]. Journal of Biological Chemistry,2009,284:9876-9884.
    [71]Dennis R J, Taylor E J, Macauley M S, et al. Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity [J]. Nature Structural & Molecular Biology, 2006,13:365-371.
    [72]Horsch M, Mayer C, Sennhauser U, et al. β-N-acetylhexosaminidase:a target for the design of antifungal agents [J]. Pharmacology & Therapeutics,1997,76(1-3):187-218.
    [73]Woynarowska B, Wikiel H, Sharma M, et al. Inhibition of human ovarian carcinoma cell-and hexosaminidase-mediated degradation of extracellular matrix by sugar analogs [J]. Anticancer Research,1992,12(1):161-166.
    [74]Haltiwanger R S, Grove K, Philipsberg G A. Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-β-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyra-nosylidene) amino-N-phenylcarbamate [J]. Journal of Biological Chemistry,1998,273(6): 3611-3617.
    [75]van den Berg R J, Donker Koopman W, van Boom J H, et al. Design and synthesis of 2-acetamidomethyl derivatives of isofagomine as potential inhibitors of human lysosomal P-hexosaminidases [J]. Bioorganic & Medicinal Chemistry,2004,12(5):891-902.
    [76]潘晓芳,谢晓兰,徐海金,等.有机溶剂对黄粉虫N-乙酰-β-D-氨基葡萄糖苷酶活力影响[J].宁德师专学报(自然科学版),2006,(4):352-355.
    [77]林建城,谢晓兰,龚敏,等.有机溶剂对南美白对虾N-乙酰-β-D-氨基葡萄糖苷酶活力的影响[J].厦门大学学报(自然科学版),2005,44(5):693-696.
    [78]谢进金,张继平,王勤,等.锯缘青蟹N-乙酰氨基葡萄糖苷酶在甲醛溶液中的失活动力学研究[J].厦门大学学报(自然科学版),2006,45(1):98-101.
    [79]Xie X L, Chen Q X. Inactivation kinetics of β-N-Acetyl-D-glucosaminidase from prawn (Penaeus vannamei) in the dioxane solution [J]. Biochemistry Moscow,2004,69(12): 1365-1371.
    [80]Chen Q X, Zhang Z, Huang H, et al. Unfolding and inactivation of Ampullarrium crossean P-glucosidase during denaturation by guanidinium hydrochloride [J]. The International Journal of Biochemistry & Cell Biology,2003,35:1227-1233.
    [81]Moudni B E, Rodier M H, Jacquemin J L. Purification and characterization of N-acetyl glucosaminidase from Trypanosoma cruzi [J]. Experimental Parasitology,1996,83:167-173.
    [82]杨学敏,谢进金,张继平,等.金属离子对锯缘青蟹NAGase活力的影响[J].台湾海峡,2006,25(3):343-346.
    [83]石艳.菜青虫N-乙酰-β-D-氨基葡萄糖苷酶的性质研究[D].厦门:厦门大学,2006.
    [84]颜雅雯,张继平,王勤,等.抗菌类药物对锯缘青蟹N-乙酰-β-D-氨基葡萄糖苷酶活力的影响[J].台湾海峡,2007,26,2:231-235.
    [85]谢晓兰,黄乾生,魏晓倩,等.养殖常用消毒药物对凡纳滨对虾NAGase活力的影响[J].水生态学杂志,2009,2(4):108-112.
    [86]李思发,李晨虹,李家乐,等.尼罗罗非鱼选育三代效果评价[J].上海水产大学学报,2001,10(4):289-292.
    [87]彭城宇.罗非鱼片冰温气调保鲜工艺及其货架期预测模型研究[D].青岛:中国海洋大学,2010.
    [88]Trewavas E. Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia [M]. London:British Natural History Museum,1983.
    [89]贺艳辉,张红燕,龚赞翀,等.我国罗非鱼养殖品种及养殖发展分析[J].水产养殖,2009,2:12-14.
    [90]刘超.罗非鱼良种选育技术[D].北京:中国农业科学院,2010.
    [91]陈艳翠.新吉富罗非鱼两年三茬养殖模式试验[J].科学养鱼,2013,(9):18-20.
    [92]万松良,雷晓中,万珊.罗非鱼性别三系配套技术研究进展[J].水产科学,2009,28(9):547-550.
    [93]杨弘.我国罗非鱼产业现状及产业技术体系建设[J].中国水产,2010,9:6-10.
    [94]张继军,陈钟,刘燕燕.中国罗非鱼出口特征与行业发展对策分析[J].中国水产,2010,4:67-70.
    [95]柯剑.罗非鱼病原菌分离鉴定及不同品系间抗病力初步比较[D].上海:上海海洋大学,2011.
    [96]Eknath A E, Tayamen M M, Palada-de Vera M S, et al. Genetic improvement of farmed tilapias:the growth performance of eight strains of Oreochromis niloticus tested in different farm environments [J]. Aquaculture,1993,111(1-4):171-188.
    [97]叶志桁.“新吉富”罗非鱼品种特点和养成技术要点[J].福建水产,2011,(6):14-15.
    [98]马国红,张延华,师吉华,等.新吉富罗非鱼的含肉率及营养价值评定[J].长江大学学报,2008,5(4):35-38.
    [99]颉晓勇.新吉富罗非鱼选育过程中遗传变异跟踪研究[D].上海:上海水产大学,2006.
    [100]Lowry O H, Rosebrough N J, Farr A L. Protein measurement with the folin phenol reagent [J]. Biological Chemistry,1951,193:365-269.
    [101]Chen Q X, Zhang W, Zheng W Z, et al. Kinetics of inhibition of alkaline phosphatase from green crab(Scylla serrata) by N-bromosuccinimide [J]. Journal of Protein Chemistry, 1996,15:345-350.
    [102]黄小红,罗忠宝,黄一帆,等.猪精液酸性N-乙酰-β-D-氨基葡萄糖苷酶的纯化及性质[J].应用与环境生物学报,2009,15(6):819-823.
    [103]李建武,萧能赓,余瑞元,等.生物化学实验原理与方法[M].北京:北京大学出版社,2002.
    [104]Wang Q, Gao Z X, Zhang N, et al. Purification and characterization of trypsin from the intestine of hybrid tilapia(Oreochromis niloticus X O. aureus) [J]. Journal of Agricultural and Food Chemistry,2010,58(1):655-659.
    [105]Ueno R and Yuan CS. Purification and properties of neutral beta-N-acetylglucosaminidase from carp blood [J]. Biochimica et Biophysica Acta,1991, 1074:79-84.
    [106]Xie X L, Chen Q X, Lin J C, et al. Purification and some properties of P-N-acetyl-D-glucosaminidase from prawn(Penaeus vannamei) [J]. Marine Biology,2004, 146(1):143-148.
    [107]Zhang J P, Chen Q X, Wang Q, et al. Purification and some properties of β-N-acetyl-D-glucosaminidase from viscera of green crab (Scylla serrata) [J]. Biochemistry (Moscow),2006,71(1):S55-S59.
    [108]Sakai T, Nakanishi Y, Kato 1. Purification and characterization of beta-N-acetyl-D-hexosaminidase from the mid-gut gland of scallop (Patinopecten yessoensis) [J]. Bioscience Biotechnology and Biochemistry,1993,57(6):965-968.
    [109]Shi Y, Jiang Z, Han P, et al. Purification and some properties of β-N-acetyl-D-glucosaminidase from the cabbage butterfly (Pieris rapae) [J]. Biochimie, 2007,89(3):347-354.
    [110]黄小红,陈宏惠,黄一帆.中华绒螯蟹(Eriocheir sinensis)N-乙酰-β-D-氨基葡萄糖苷酶的分离纯化及性质的初步研究[J].水生生物学报,2007,31(4):563-569.
    [111]陈欣颖.克氏原螯虾N-乙酰-β-D-氨基葡萄糖苷酶的性质及活力调控[D].福州:福建农林大学,2007.
    [112]Tsou C L. Kinetics of substrate reaction during irreversible modification of enzyme activity [J]. Advances in Enzymology and Related Areas of Molecular Biology,1988,61: 381-436.
    [113]Lin J C, Chen Q X, Xie X L, et al. Irreversible kinetics of β-N-acetyl-D-glucosaminidase from prawn (Litopenaeus vannamei) inactivated by mercuric ion[J]. Journal of Experimental Marine Biology and Ecology,2006,339:30-36.
    [114]黄小红,王寿昆,黄一帆,等.日本沼虾(Macrobrachium nipponense)N-乙酰-β-D-氨基葡萄糖苷酶初步纯化及部分性质叨.应用与环境生物学报,2006,12(6):804-808.
    [115]张继平.锯缘青蟹N-乙酰-β-D-氨基葡萄糖苷酶的性质及活力调控的研究[D].厦门:厦门大学,2006.
    [116]Xie X L, Huang Q S, Gong M, et al. Inhibitory kinetics of β-N-acetyl-D- glucosaminidase from prawn (Litopenaeus vannamei) by zinc ion [J]. IUBMB Life,2009,61: 163-170.
    [117]Zhang J P, Hu Y H, Wang Q, et al. Inhibitory kinetics of β-N-Acetyl-D-glucosaminidases from green crab (Scylla serrata) by Zinc ion [J]. Journal of Agricultural and Food Chemistry,2010,58:8763-8767.
    [118]张伟妮,陈欣颖,黄小红,等.4种重金属离子对克氏原螯虾(Procambarus clarkii) NAGase活力的影响[J].应用与环境生物学报,2012,18(6):943-947.
    [119]Handy R D. Chronic effects of copper exposure versus endocrine toxicity:two sides of the same toxicological process? [J]. Comparative Biochemistry and Physiology,2003,135(1): 25-38.
    [120]Grosell M, McGeer J C, Wood C M. Plasma copper clearance and biliary copper excretion are stimulated in copper-acclimated trout [J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology,2001,280:R796-R806.
    [121]文衍红,周焕佳,司徒玲.硫酸铜对越冬大棚罗非鱼小瓜虫病的防治试验[J].广西水产科技,2011,3:20-23.
    [122]Koga D, Nakashima M, Matsukura T, et al. Purifications and some properties of NAGase from alimentary canal of the silkworm, Bombyx mori[J]. Agricultural and Biological Chemistry,1986,50:2357-2368.
    [123]Adriana P, Cifali B P, Dias F. Purifications and partial characterization of N-acetyl-β-D-glucosaminidase from Tritrichomonas foetus [J]. Parasitology Research,1999, 85:256-262.
    [124]汪开毓,陈德芳,赵敏,等.罗非鱼主要疾病介绍与防治技术(二)[J].科学养鱼,2010,7:12-14.
    [125]黄志斌,胡红.水产药物应用表解[M].南京:江苏科学技术出版社.2004.
    [126]冯义元,魏丰,李廷荣.水产养殖抗菌药物防治鱼病的规范使用技术[J].黑龙江水产,2013,(01):25-27.
    [127]Nouh W G and Selim A G. Toxopathological studies on the effect of formalin and copper sulphate in tilapia as a commonly used disinfectant in aquaculture [J]. Journal of Appllied Environmental and Biological Science,2013,3:7-20.
    [128]Saez-Royuela M, Melendre P M, Celada J D, et al. Possibilities of artificial incubation of signal crayfish (Pacifastacus leniusculus Dana) eggs at high densities and reduced flow rate using formaldehyde as antifungal treatment [J]. Aquaculture,2009,288:65-68.
    [129]Eduardo P F, Kleber C M F, Joaber P J. Parasitology of juvenile mullet (Mugil liza) and effect of formaldehyde on parasites and host [J]. Aquaculture,2012,354-355:111-116.
    [130]Holladay S D, Smith B J, Gogal J R M. Exposure to formaldehyde at therapeutic levels decreases peripheral blood lymphocytes and hematopoietic progenitors in the pronephros of tilapia Oreochromis niloticus [J]. Aquatic Biology,2010,10:241-247.
    [131]Duong A, Steinmaus C, McHale C M, et al. Reproductive and developmental toxicity of formaldehyde:A systematic review (Review) [J]. Mutation Research,2011,728:118-138.
    [132]Zahra T, Parviz T, Simin F, et al. Effect of formaldehyde injection in mice on testis function [J]. International Journal of Pharmacology,2007,3:421-424.
    [133]Wang H X, Zhou D X, Li Y, et al. Effects of formaldehyde exposure on sperm quality, serum sex hormone content and Leydig cell structure and function in adult male rats [J]. Journal of Xi'an Jiaotong University (Medical Sciences),2012,33:413-415.
    [134]Xie X L, Shi Y, Huang Q S, et al. Inactivation kinetic of β-N-Acetyl-D-glucosaminidases from prawn (Penaeus vannamei) by formaldehyde [J]. Marine Science Bulletin,2006,8(1):34-45.
    [135]Lin J C, Chen Q X, Shi Y, et al. The chemical modification of the essential groups of β-N-Acetyl-D-glucosaminidases from Turbo cornutus Solander [J]. IUBMB life 2003,55: 547-552.
    [136]张伟妮,朱志华,陈智伟,等.日本鳗鲡腐皮病病原菌的分离及鉴定[J].淡水渔业,2010,40(2):4146.
    [137]张水波.新吉富罗非鱼常见细菌性疾病及防治方法[J].渔业致富指南,2012,20:57-59.
    [138]张伟妮,林旋,王寿昆,等.人工感染嗜水气单胞菌对日本鳗鲡血清酶活力的影响[J].淡水渔业,2012,42(1):20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700