用户名: 密码: 验证码:
金黄扶正散对免疫抑制小鼠的免疫调节作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     为了探讨金黄扶正散对免疫抑制小鼠的免疫调节作用,本研究通过建立免疫抑制小鼠模型,观察金黄扶正散对免疫抑制小鼠免疫器官、抗应激能力、抗自由基水平和免疫细胞功能等方面的影响,并进行作用机制研究,为其临床应用提供依据。
     方法
     1 SPF级昆明种小鼠60只,14-18g,随机分为六组,分别为:正常对照组(生理盐水灌胃0.2mL/10g,连续10天);环磷酰胺组(生理盐水灌胃0.2mL/10g,连续10天,同时隔天皮下注射环磷酰胺30mg/kg);阳性对照组(每天灌胃左旋咪唑剂25 mg/kg,连续10天,给药后隔天皮下注射环磷酰胺30mg/kg);金黄扶正茶高、中、低剂量组(每天分别灌胃金黄扶正茶5.08g/kg、2.54g/kg、1.27 g/kg,连续10天,给药后隔天皮下注射环磷酰胺30mg/kg),建立免疫功能低下小鼠模型。末次给药后小鼠禁食12h,处死,分别取胸腺,脾脏称重,计算胸腺、脾脏指数。将脾脏制成组织匀浆,离心,取上清,进行乳酸脱氢酶(LDH)活性测定和酸性磷酸酶(ACP)活性测定。
     2造模及给药方法同1,分别进行负重游泳实验、耐高温实验、耐低温实验、常压耐缺氧实验和亚硝酸盐中毒性耐缺氧实验。游泳实验观察其游泳时间,其余各实验观察存活时间。
     3造模及给药方法同1,取小鼠脾脏制成组织匀浆,离心,取上清,测定总抗氧化能力(T-AOC)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)和丙二醛(MDA)。
     4造模及给药方法同1,采用四甲基偶氮唑蓝(MTT)法,测定刀豆蛋白A (ConA)诱导脾脏T淋巴细胞增殖和脂多糖(LPS)诱导B淋巴细胞增殖的影响,测定自然杀伤细胞(NK细胞)和淋巴因子激活的杀伤细胞(LAK细胞)活性,检测巨噬细胞吞噬中性红能力和诱导型一氧化氮合酶(iNOS)的活性。
     5造模及给药方法同1.1,末次用药后小鼠禁食12h,各组小鼠尾静脉取血1mL,离心,取血清备用,采用细胞因子抗体芯片进行细胞因子定量检测。
     6造模及给药方法同1.1,小鼠处死后,取脾,立即置液氮中,随后转移置-80℃低温冰箱保存,采用实时荧光定量PCR (FQ-PCR)方法检测脾脏T-bet、GATA mRNA的表达。
     7造模及给药方法同1.1,小鼠处死后,取脾,4%多聚甲醛固定,常规脱水,石蜡包埋,切片,采用TUNEL染色法观察细胞凋亡情况。
     8采用FQ-PCR方法检测脾脏Bcl-2、Bax、Fas和FasL mRNA的表达。
     结果
     1与正常对照组比较,环磷酰胺组胸腺指数,脾脏指数显著降低(P<0.05),给药后,金黄扶正散中、高剂量组可显著提高免疫抑制小鼠的胸腺指数、脾脏指数(P<0.01,P<0.05)。与正常对照组比较,环磷酰胺组可明显降低LDH、ACP的活性(P<0.01);给药后,金黄扶正散低、中、高剂量组可明显提高免疫抑制小鼠的LDH活性和ACP活性(P<0.01,P<0.05)。
     2与正常对照组比较,环磷酰胺组负重游泳时间明显减少(P<0.05),耐高温存活时间明显减少(P<0.01),耐低温存活时间明显减少(P<0.01),在常压缺氧条件下的存活时间明显减少(P<0.01),亚硝酸盐中毒性缺氧状态下存活时间明显减少(P<0.01);给药后与模型组比较,金黄扶正散中、高剂量组能明显延长负重游泳时间(P<0.05),金黄扶正散低、中剂量组能明显延长耐高温存活时间(P<0.01),金黄扶正散低、中剂量组可显著提高小鼠的耐低温存活时间(P<0.05),金黄扶正散低、高剂量组能明显延长常压耐缺氧存活时间(P<0.01),金黄茶中剂量组能明显延长亚硝酸盐中毒性缺氧存活时间(P<0.01)。
     3与正常对照组比较,环磷酰胺组可显著降低T-AOC能力(P<0.01),降低CAT、SOD、GSH-PX的活性(P<0.05,P<0.01);明显提高MDA含量(P<0.05)。给药后,金黄扶正散中、高剂量组可明显提高免疫抑制小鼠的T-AOC能力(P<0.01);金黄扶正散高剂量组可明显提高免疫抑制小鼠的CAT、SOD、GSH-PX的活性(P<0.05,P<0.01);金黄扶正散中、高剂量组可明显降低免疫抑制小鼠的MDA含量(P<0.05,P<0.01)。
     4与环磷酰胺组比较,金黄扶正散低、中、高剂量组均能显著提高免疫抑制小鼠的T、B淋巴细胞增殖能力(P<0.01);金黄扶正散中、高剂量组能显著提高免疫抑制小鼠NK细胞、LAK细胞活性(P<0.01,P<0.05);金黄扶正散高剂量组能显著性提高免疫抑制小鼠的CD3+淋巴细胞数(P<0.05),金黄扶正散中、高剂量组能显著性提高免疫抑制小鼠的CD4’淋巴细胞数(P<0.01),金黄扶正散低、中、高剂量组降低CD8+淋巴细胞数和提高CD4+/CD8+比值(P<0.01,P<0.05);金黄扶正散中、高剂量组可提高腹腔巨噬细胞吞噬能力(P<0.05);金黄扶正散低、中、高剂量组可提高巨噬细胞iNOS活性(P<0.01,P<0.05)。
     5与正常对照组比较,环磷酰胺组的2种细胞因子IFN-Y和RANTES呈显著性降低(P<0.05),金黄扶正散低、中、高剂量组给药后IFN-γ有显著性提升,高剂量组的RANTES呈显著性升高(P<0.05);与对照组比较,环磷酰胺组的5种细胞因子IL-5、IL-6、IL-9、IL-13和MCP-1呈显著性升高(P<0.01,P<0.05),给药组给药后有不同程度降低(P<0.01,P<0.05);13种细胞因子GM-CSF、IL-1α、IL-1β、IL-2、IL-3、IL-4、IL-10、IL-12、IL-17、M-CSF、TNF-α、KC和VEGF无明显变化(P>0.05)。
     6与环磷酰胺组比较,金黄扶正散低、中、高剂量组的T-bet mRNA表达量呈显著性提高而GATA mRNA表达量呈显著性降低(P<0.01)。
     7与正常对照组比较,环磷酰胺组凋亡指数显著性提高(P<0.05);金黄扶正散中、高剂量组凋亡指数与环磷酰胺组比较显著性下降(P<0.01,P<0.05)。金黄扶正散低剂量凋亡指数与环磷酰胺组比较无显著差异(P>0.05)。
     8与环磷酰胺组比较,金黄扶正散中、高剂量组的bcl-2 mRNA表达量呈显著性提高(P<0.01),bcl-2/ bax mRNA比值呈显著性降低(P<0.01,P<0.05)。与环磷酰胺组比较,金黄扶正散中、高剂量组的Fas和FasL mRNA表达量均呈显著性降低(P<0.01,P<0.05)。
     结论:
     1采用免疫抑制剂环磷酰胺制造免疫抑制小鼠模型,造模后小鼠胸腺指数、脾指数下降,金黄扶正散可提高免疫抑制小鼠的胸腺指数、脾脏指数,提高免疫抑制小鼠的LDH和ACP活性,激活巨噬细胞的活化状态。
     2金黄扶正散可延长免疫抑制小鼠负重游泳时间,提高其耐高温、低温、常压耐缺氧、亚硝酸盐中毒性缺氧的存活时间,提高免疫抑制小鼠抗应激的能力。
     3金黄扶正散可显著提高免疫抑制小鼠CAT、T-SOD、GSH-PX的活性显著提高T-AOC能力,明显降低MDA含量,调节体内抗氧化酶的水平和自由基水平,改善机体的氧化还原状态。
     4金黄扶正散能显著提高免疫抑制小鼠脾脏T淋巴细胞和B淋巴细胞增殖能力;提高免疫抑制小鼠NK细胞和LAK细胞杀伤活性;提高免疫抑制小鼠外周血CD3+和CD4+/CD8+比值;提高免疫抑制小鼠腹腔巨噬细胞吞噬活性及iNOS活力,从而提高免疫抑制小鼠的细胞免疫功能。
     5小鼠血清中细胞因子的变化提示,免疫抑制小鼠的Th1细胞向Th2细胞偏移,Thl/Th2亚群失衡,金黄扶正散对免疫抑制小鼠Thl/Th2亚群的调节,可能是通过提高免疫抑制小鼠脾脏T-bet mRNA的表达和降低GATA mRNA的表达来实现的。
     6金黄扶正散可抑制免疫抑制小鼠脾细胞凋亡,降低凋亡指数,其机制可能是通过促进bcl-2 mRNA的表达、提高bcl-2/bax的比值,抑制Fas与FasL mRNA的表达,影响线粒体、死亡受体依赖的凋亡途径来实现的。
Objective:To investigate the immune regulation effects of Jinhuang fuzheng Powders in immunosuppressive mice, the immunosuppressive mouse model was established to observe JH in immune organs, anti-stress ability, the levels of anti-free radical and immune cell function of immunosuppressive mice and to explore its mechanisms. This study provides a basis to clinical application.
     Methods:
     1 Mice were divided into 6 groups randomly. All of mice were administrated orally 10 days, at the same time, in addition to the control group. Mice were injected Cyclophosphamide (CTX) 30mg/kg every other day subcutaneously to establish the immunosuppressive mice model. These six group were Control group(ig NS 0.02mL/10g), CTX group(sc CTX 30mg/kg q.o.d), LMS group(ig LMS 25 mg/kg/d, 10d+sc CTX 30mg/kg q.o.d), JH-L group(ig JH 1.27 g/kg/d, 10d+sc CTX 30mg/kg q.o.d), JH-M group(ig JH 2.54g/kg/d, lOd+sc CTX 30mg/kg q.o.d) and JH-H group(ig JH 5.08g/kg/d, 10d+sc CTX 30mg/kg q.o.d) respectively. After the last administration, the mice were fasted more than 12h, the thymus and spleen were weighed to calculate the thymus index and spleen index, lactate dehydrogenase (LDH) activity and acid phosphatase (ACP) activity were measured in the spleen suspension.
     2 After administration, swimming test, high temperature test, cold temperature test, normobaric hypoxia test and toxic hypoxia test were observed in mice.
     3 Total antioxidant capacity(T-AOC), activities of catalase(CAT), superoxide dismutase(SOD), glutathione peroxidase(GSH-PX) and malondialdehyde (MDA) contents were measured in spleen of mice.
     4 Using four methyl thiazolyl tetrazolium(MTT) method, T lymphocyte and B lymphocyte proliferation were measured in spleen cells induced by concanavalin A (ConA) and lipopolysaccharide(LPS) respectively. Activities of Natural killer cells(NK cells) and Lymphokine-activated killer cells(LAK cells) activities were measured. Peritoneal macrophages phagocytosis of neutral red ability and inducible Nitric oxide synthase (iNOS) activity were measured.
     5 Cytokines were quantitative detectected by using cytokine antibody microarray in mice serum.
     6 Expression of T-bet and GATA mRNA were detected by real time quantitative polymerase chain reaction (FQ-PCR) method in spleen of Mice.
     7 After administration, mice were sacrificed and their spleen were fixed by 4% polyoxymethylene, dehydrated, embedded in paraffin and sliced, then apoptosis were observed by TUNEL method.
     8 Expression of Bcl-2, Bax, Fas and FasL mRNA were detected by FQ-PCR method in spleen of Mice.
     Results:
     1 Compared with the control group, the thymus index and the spleen index of CTX group were decreased significantly (P<0.05), after administration, the thymus index and the spleen index of middle dose group of JH(JH-M) and high dose group of JH(JH-H) were increased significantly (P<0.01, P<0.05); Compared with the control group, LDH and ACP activities of CTX group were decreased significantly (P<0.01); after administration, LDH and ACP activities of JH-L, JH-M and JH-H groups were increased significantly (P<0.01, P<0.05).
     2 Compared with the normal control group, the swimming time of CTX group was decreased significantly (P<0.05), survival time in high temperature, low temperature, normobaric hypoxia and toxic hypoxia test were decreased significantly (P<0.01); after administration, compared with CTX group, swimming time of JH-M and JH-H groups were prolonged significantly (P<0.05), high temperature survival time of JH-L and JH-M groups were prolonged significantly (P<0.01), cold temperature survival time of JH-L and JH-M group were prolonged significantly (P<0.05), normobaric hypoxia survival time of JH-L and JH-H groups were prolonged significantly (P<0.01), toxic hypoxia survival time of JH-M group were prolonged significantly (P<0 .01).
     3 Compared with the control group, T-AOC capability and CAT, SOD, GSH-PX activities of CTX group were decreased significantly (P<0.05, P<0.01), MDA content of CTX group were increased significantly (P<0.05). After administration, T-AOC capability of JH-M and JH-H groups were increased significantly (P<0.01); CAT, SOD and GSH-PX activities of JH-H group were increased significantly (P<0.05, P<0.01); MDA content of JH-M and JH-H groups were decreased significantly (P<0.05, P<0.01).
     4 Compared with CTX group, T and B lymphocyte proliferation ability of JH-L, JH-M and JH-H groups were improved significantly (P<0.01). NK cells and LAK cells activities of JH-M and JH-H groups were increased significantly (P<0.01, P<0.05). CD3+ numbers of JH-H group were increased significantly (P<0.05), CD4+ numbers of JH-M and JH-H groups were increased significantly (P<0.01), CD8+ numbers of JH-L, JH-M and JH-H groups were decreased, CD4+/CD8+ ratio of JH-L, JH-M and JH-H groups were increased significantly (P<0.01, P<0.05). phagocytic ability of peritoneal macrophages of JH-M and JH-H groups were increased and iNOS activity of JH-L, JH-M and JH-H groups were increased significantly (P<0.01, P<0.05).
     5 Compared with the control group, IFN-γand RANTES of CTX group decrease significantly (P<0.05), after administration, IFN-γof JH-L, JH-M and JH-H groups and RANTES of JH-H group increase significantly (P<0.05). Compared with the control group, IL-5, IL-6, IL-9, IL-13 and MCP-1 of CTX group increase significantly (P<0.01, P<0.05), after administration, IL-5, IL-6, IL-9, IL-13 and MCP-1 of JH-L, JH-M and JH-H groups were decreased to different degrees. The rest Cytokines of GM-CSF, IL-1 a, IL-10, IL-2, IL-3, IL-4, IL-10, IL-12, IL-17, M-CSF, TNF-α, KC and VEGF were no changes obviously(P>0.05).
     6 Compared with CTX group, expressions of T-bet mRNA of JH-L, JH-M and JH-H groups were increased but the expressions of GATA mRNA were decreased significantly(P<0.01).
     7 Compared with the control group, the apoptosis index of CTX group were increased significantly(P<0.05). Compared with CTX group, the apoptosis index of JH-M and JH-H groups were decreased significantly(P<0.01, P<0.05). The apoptosis index of JH-L groups was no changes obviously(P>0.05).
     8 Compared with CTX group, the expressions of Bcl-2 mRNA and the ratio of Bcl-2/ Bax mRNA of JH-M and JH-H groups were increased significantly(P<0.01, P<0.05), but expressions of GATA mRNA were decreased significantly(P<0.01). Compared with CTX group, expressions of Fas and FasL mRNA of JH-M and JH-H groups were decreased significantly(P<0.01, P<0.05).
     Conclusions:
     1 The immunosuppressive mice model is established by using CTX. The thymus index and the spleen index decrease in immunosuppressive mice. JH can enhance the thymus index and the spleen index and increase activities of LDH and ACP in immunosuppressive mice, antagonize the immune suppression state caused by CTX.
     2 JH can prolong the swimming time of immunosuppressive mice, prolong survival time of high temperature, low temperature, normobaric hypoxia and toxic hypoxia, increase anti-stress ability in immunosuppressive mice.
     3 JH can improve ability of T-AOC and increase activities of CAT, SOD and GSH-PX significantly, decrease content of MDA significantly in immunosuppressive mice, regulate antioxidant enzymes and free radicals levels in the body.
     4 JH can enhance proliferative capacity of spleen T lymphocytes and B lymphocytes in immunosuppressive mice significantly; improve activities of NK cells and LAK cells in immunosuppressive mice; enhance CD3+ numbers and CD4+/CD8+ ratio in immunosuppressive mice; enhance phagocytic activity of peritoneal macrophage and activity of iNOS in immunosuppressive mice, enhance cellular immunological function in immunosuppressive mice.
     5 Cytokine changes of serum suggest that Thl cells may be offset to Th2 cells in immunosuppressive mice, there are imbalance in Th1/Th2 subgroup. Regulation of JH on Thl/Th2 subgroup may be achieved by improving expression of T-bet mRNA and reducing expression of GATA mRNA in immunosuppressive mice.
     6 JH can inhibit apoptosis of spleen cells, reduce the apoptotic index? the mechanism may be achieved by promoting expression of Bc1-2 mRNA and ratio of the Bcl-2/Bax, inhibiting the expression of Fas and FasL mRNA, affecting the mitochondrial-death receptor-dependent apoptosis pathway.
引文
[1]Kerr WG. Progress towards a new wave of immune-based therapeutics[J]. Trends Biotechnol,1996,14(10):359-360.
    [2]Hoffmann JA, Kafatos FC, Janeway CA. Phylogenetic perspectives in innate immunity[J]. Science,1999,284(5418):1313-1318.
    [3]Matzinger P. The danger model:a renewed sense of self[J]. Science,2002, 296(5566):301-305.
    [4]刘华钢,朱丹.金黄1号对小鼠免疫功能的影响[J].中国中药杂志,2007,32(11):1116-1117.
    [5]Smale ST. Transcriptional regulation in the innate immune system[J]. Curr Opin Immunol,2012,24(1):51-57.
    [6]Artym J, Zimecki M, Kruzel ML. Reconstitution of the cellular immune response by lactoferrin in cyclophosphamide-treated mice is correlated with renewal of T cell compartment[J]. Immunobiology,2003,207(3):197-205.
    [7]Scheinfeld N, Rosenberg JD, Weinberg JM. Levamisole in dermatology:a review[J]. Am J Clin Dermatol,2004,5(2):97-104.
    [8]Knowles L, Buxton JA, Skuridina N, et al. Levamisole tainted cocaine causing severe neutropenia in Alberta and British Columbia[J]. Harm Reduct J, 2009,6(30):1-7.
    [9]Dardenne M. Role of thymic peptides as transmitters between the neuroendocrine and immune systems[J]. Ann Med,1999,2:34-39.
    [10]Augoff K, Grabowski K. Significance of lactate dehydrogenase measurements in diagnosis of malignancies[J]. Pol Merkur Lekarski,2004, 17(102):644-647.
    [11]Jedrzejas MJ. Structure, function, and evolution of phosphoglycerate mutases:comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase[J]. Prog Biophys Mol Biol,2000,73(2-4):263-287.
    [12]Taira A, Merrick G, Wallner K, et al. Reviving the acid phosphatase test for prostate cancer[J]. Oncology (Williston Park),2007,21(8):1003-1010.
    [13]陈奇.中药药理研究方法学[M].北京:人民卫生出版社,2000:714.
    [14]Liang ZH, Yin DZ. Preventive treatment of traditional Chinese medicine as antistress and antiaging strategy[J]. Rejuvenation Res,2010,13(2-3):248-252.
    [15]Calabrese F, Molteni R, Riva MA. Antistress properties of antidepressant drugs and their clinical implications[J]. Pharmacol Ther,2011,132(1):39-56.
    [16]Swanson CJ, Schoepp DD. A role for noradrenergic transmission in the actions of phencyclidine and the antipsychotic and antistress effects of mGlu2/3 receptor agonists[J]. Ann N Y Acad Sci,2003,1003:309-317.
    [17]刘晓波,郭美仙,徐静,等.双参对小鼠抗应激作用的实验研究[J].现代医药卫生,2008,24(9):1265-1266.
    [18]Fan Sq, Gao S, Shao L, et al. A factor in lymph node and spleen induced by restraint stress in mice and rats suppresses indueed by lymphocyte proferation[J]. Neuroirnnluno modulation,1995,2:274-281.
    [19]Jomova K, Valko M.Advances in metal-induced oxidative stress and human disease[J]. Toxicology,2011,283(2-3):65-87.
    [20]Patel VP, Chu CT. Nuclear transport, oxidative stress, and neurodegeneration[J]. Int J Clin Exp Pathol,2011,4(3):215-229.
    [21]Carrasco GA, Van de Kar LD. Neuroendocrine pharmacology of stress[J]. Eur J Pharmacol,2003,463(1-3):235-272.
    [22]颜军,尹剑春,孙宏,等.强迫游泳和冷刺激对大鼠白细胞介素2和β-内啡肤的影响[J].中国心理卫生杂志,2002,16(12):811-813.
    [23]Nystorm T. The free radical hypothesis of aging goes prob aryotic[J]. Cellular and molecular life science(CMLS),2003,60(7):1333-1341.
    [24]赵克然,杨毅军,曹道俊.氧自由基与临床.北京:中国医药出版社,2000:8-19.
    [25]Harman D. Aging:a theory based on free radical and radiation chemistry [J]. J Gerontol,1956, 11(3):298-300.
    [26]McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) [J]. J Biol Chem,1969,244(22):6049-6055.
    [27]McCord JM, Edeas MA. SOD, oxidative stress and human pathologies:a brief history and a future vision[J]. Biomed Pharmacother,2005,59(4):139-142.
    [28]Turgay M, Turgay F, Devrim E, et al. The effects of dexamethasone on oxidant/antioxidant status in kidneys of rats administered mercuric chloride[J]. Bratisl Lek Listy,2012,113(1):10-13.
    [29]莫简.医用自由基生物学导论[M].北京:人民卫生出版社,1989,16:173.
    [30]Jia J, Wu YH, Zhou XQ, et al. Effects of testosterone propionate on oxidative stress and the expression of spleen cytokine genes in endosulfan-treated mice[J]. J Environ Pathol Toxicol Oncol,2012,31(1):17-26.
    [31]王惠国.安络小皮伞多糖的提取及其免疫调节作用研究[D].辽宁中医药大学博士学位论文:16-17.
    [32]白吉庆,贺新怀,席孝贤.姬松茸菌孢多糖对小鼠NK、LAK细胞活性影响的实验研究[J].陕西中医,2007,9(28):1253.
    [33]龚菲力.医学免疫学[M].北京:科学出版社,2004:158.
    [34]张志敏,工建华,赵兴华,等.苦马豆素对小鼠腹腔巨噬细胞免疫功能的影响[J].中国农业科学,2008,41(10):3423-3424.
    [35]Gaulard P, de Leval L. Follicular helper T cells:implications in neoplastic hematopathology[J]. Semin Diagn Pathol,2011,28(3):202-213.
    [36]SunQ, BurtonRL, LueasKG. Cytokine production and cytolytic mechanism of CD4(+) cytotoxic T lymphoeytes in ex vivo expanded therapeutic Epstein-Barr virus-specifie T-cell cultures[J]. Blood,2002,99:3302-3309.
    [37]Welinder E, Ahsberg J, Sigvardsson M. B-lymphocyte commitment: identifying the point of no return[J]. Semin Immunol,2011,23(5):335-340.
    [38]黄凯,杨新波,黄正明,等.金丝桃苷对正常小鼠免疫功能的影响[J].解放军药学学报,2009,25(2):133-135.
    [39]陈向涛.复方中药玉屏风多糖的免疫调节作用及其机理的研究,[博士学位论文].安徽合肥:安徽医科大学,2006.
    [40]Geller MA, Miller JS. Use of allogeneic NK cells for cancer immunotherapy[J]. Immunotherapy,2011,3(12):1445-1459.
    [41]Grimm EA, Muul LM, Wilson DJ. The differential inhibitory effects exerted by cyclosporine and hydrocortisone on the activation of human cytotoxic lymphocytes by recombinant interleukin-2 versus allospecific CTL[J]. Transplantation,1985,39(5):537-540.
    [42]Snyder JT, Alexander-Miller MA, Berzofskyl JA, etal. Moleeular mechanisms and biological significance of CTL avidity [J]. Curr HIV Res,2003, 1:287-294.
    [43]Liu CC, Huang KJ, Lin YS, et al. Transient CD4/CD8 ratio inversion and aberrant immune activation during dengue virus infection[J]. J Med Virol,2002, 68:241-252.
    [44]MehrzadJ, ZhaoX. T lymphoeyte proliferative capacity and CD4+/CD8+ ratio in primiparous and pluriparous lactating cows[J]. J Dairy Res,2008, 75:457-465.
    [45]窦肇华.免疫细胞学与疾病[M].北京:医药科技出社,2004.
    [46]Han SB, Chang WL, Young JJ. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis[J]. Immunopharmacology,1999,41:157-164.
    [47]胡庭俊,程富胜,陈炅然,等.黄芪多糖对小鼠免疫细胞信号转导相关分子的影响[J].畜牧兽医学报,2005,36(6):616-619.
    [48]Tyers M, Mann M. From genomics to proteomics[J]. Nature,2003, 422(6928):193-197.
    [49]Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome a projects:why all proteins expressed by a genome should be identified and how to do it[J]. Biotechnol Genet Eng Rev,1995,13:19-50.
    [50]Service RF. High-speed biologists search for gold in proteins[J]. Science, 2001,294:2074-2077.
    [51]Bertone P, Snyder M. Advances in functional protein microarray technology [J]. FEBS Journal,2005,272:5400-5411.
    [52]Macbeath G. Protein microarrays and proteomics[J]. Nature Genetics,2002, 32:526-532.
    [53]Zhang CX, Liu HP, Tang ZM, et al. Cell detection based on protein array using modified glass slides[J]. Electropho-resis,2003,24(18):3279-3283.
    [54]龚非力.医学免疫学(2版)[M].北京:科学出版社,2004.
    [55]Kasai T, Inada K, Takakuwa T, et al. Anti-inflammatory cytokine levels in patients with septic shock [J]. Pathol Pharmacol,1997,98:34-42.
    [56]Stasi R, Zinnani PL, Galieni P, et al. Clinical implications of cytokine and soluble receptor measurements in patients with newly diagnosed agressive nonHodgKin'Smphomal [J]. Eur J Haematal,1995,54:9-17.
    [57]Plata-Salaman CR. Cytokines and feeding suppression:an integrative view from neurologic to molecular levels[J]. Nutrition,1995,11(5):674-677.
    [58]王重庆,主编.分子免疫学基础[M].北京大学出版社,1999:214.
    [59]邱全瑛,关洪全,邹樟.医学免疫学与病原生物学[M].修订版.北京:科学出版社,2007.
    [60]Higuchi R, Dollinger G, Walsh P S, et al. Simultane-ous amplification and detection of specific DNA-sequences[J]. Bio-Technology,1992,10(4):413-417.
    [61]Chung HW. Reverse transcriptase PCR (RT-PCR) and quantitative competitive PCR (QC-PCR)[J]. Exp Mol Med,2001,33(11):85-97.
    [62]Mikaelk, Jose MA, Martin B, et al. The real-time poly-merase chain reaction [J]. Molecular Aspects of Medicine,2006,27:95-125.
    [63]Clegg RM. Fluorescence resonance energy transfer[J]. Curr Opin Biotechnol,1995,6(1):103-110.
    [64]Bustin S A, Mueller R. Real-time reverse transcrip-tion PCR (qRT-PCR) and its potential use in clinical diagnosis[J]. Clinical Science,2005, 10(9):365-379.
    [65]ChakirH, WangH. T-bet/GATA-3 ratio as a measure of the Thl/Th2 cytokine Profile in mixed cell populations Predominant Role of GATA-3[J]. J Immunol Methods,2003,278(1-2):157-169.
    [66]Glimcher LH, Murphy KM. Lineage commitment in the immune system: the T helper lymphocyte grows up[J]. Genes Dev,2000,14(14):1693-1711.
    [67]Tan AH, Goh SY, Wong SC, et al. T helper cell-specific regulation of indueible costimulator expression via distinet mechanisms mediated by T-bet and GATA-3[J]. J Biol Chem,2008,283:128-36.
    [68]Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Thl line-age commitment [J]. Cell,2000,100:655-669.
    [69]Finotto S, Glimcher L. T cell directives for transcriptional regulation in asthma[J]. Springer Semin ImmunoPathol,2004,25(3-4):281-294.
    [70]Faedo A, Ficara F, GhianiM, et al. Develop-ment expression of the T-box transcription factorT-bet/Tbx21 duringmouse embryogen-esis[J]. Mechanisms ofDevelopment,2002,116(1-2):157-160.
    [71]Weigmann B, Neurath MF. T-bet as a possible therapeutic targe Inauto-immune disease[J]. ExpertOpin TherTargets,2002,6(6):619-622.
    [72]Mullen AC, High FA, HutchinsAS, et al. Role of T-bet commitment of Th1 cells Before IL-12 dependent selection[J]. Science,2001,292(5523):1907-1910.
    [73]Mullen AC, HutchinsAS, High FA, et al. Hlx is induced by and genetically interacts with T-bet to promote heritableT (H) 1 gene induction [J]. Nat Immunol, 2002,3(7):652-658.
    [74]Lighvani AA, Frueht DM. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells[J]. Proc Natl Aead Sci USA,2001, 98(26):15137-15142.
    [75]Szabo SJ, Sullivan BM, Stemmann C, et al. Distinct effects of T-bet in Th1 lineage com-mitment and IFN-gamma production in CD4 and CD8 T cell[J]. Science,2002,295(5553):338-342.
    [76]Coussens PM, Pudrith CB. Johne's disease in cattle is associated with enhanced expression of genesen coding IL-5, GATA-3, tissue inhibitors of matrix metalloproteinases 1 and 2, and factors Promoting apoptosis in peripheral blood mononuclear cells[J]. Vet Immunol ImmunoPathol,2005, 105(3-4):221-234.
    [77]Airik R, Karner M. Gene expression analysis of Gata3-/- mice by using cDNA microarray technology[J]. LifeSci,2005,76(22):2559-2568.
    [78]Martin P, Diaz-Meco MT. The signaling adapter P62 is an important mediator of T helper2 cell function and allergic airway inflammation [J]. EMBOJ, 2006,25(15):3524-3533.
    [79]Ouyang W, Ranganath SH, et al. Inhibition of Thl development mediated by GATA-3 throughan IL-4-independent mechanism[J]. Immunity,1998, 9(5):745-755.
    [80]Zheng W, Flavell RA. The transcription factor GATA-3 is neeessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell,1997, 89(4):587-596.
    [81]Schwenger GT, Mordvinov VA. Transcription factor GATA-3 is involved in repression of promoter aetivity of the human inter leukin-4 gene[J]. Biochemistry(Mose),2005,70(9):1065-1069.
    [82]Mendoza L. A network model for the control of the differentiation proeess in Th cells[J]. Biosystems,2006,84(2):101-114.
    [83]Chakir H, Wang H. T-bet/GATA-3 ratio as a measuer of the Thl/Th2 cytokine profilein mixed cell populations:predominant role of GATA-3 [J]. J Immunol Methods,2003,278(1-2):157-169.
    [84]Kerr JF, Winterford CM, Harmon BV. Apoptosis, its significance in cancer and cancer therapy[J]. Cancer,1994,73:2013-2202.
    [85]钱铮.复方高渗液复苏对失血性休克大鼠机体免疫的保护作用[学位论文].第二军医大学,2004.04.
    [86]Migheli A, Cavalla P, Marino S, et al. A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of DNA strand breaks[J]. J Neuropathol Exp Neurol,1994,53:606-616.
    [87]Wijsman JH, Jonker RR, Keijzer R, et al. A new method to detect apoptosis in paraffin sections:in situ end-labeling of fragmented DNA[J]. J Histochem Cytochem,1993,41:7-12.
    [88]Lipponen P, Aaltomaa S. Apoptosis in bladder cancer as related to standard prognostic factors and prognosis.[J]. J Pathol.1994,173(4):333-339.
    [89]Lipponen P, Aaltomaa S, Kosma VM, et al. Apoptosis in breast cancer as related to histopathological characteristics and prognosis[J]. Eur J Cancer,1994, 30(14):2068-2073.
    [90]Ci YX, Zhang CY, Feng J. Progress in the analytical methods of apoptosis[J]. Prog Chem,1998,10(4):451-459.
    [91]Weiss A. Chapter 12:T lymphoeyte activation. Fundamental Immunology. PhiladelPhia(USA):Raven Publishers[M],1999,532.
    [92]Xu C, Chen KS, Ding H, et al. A review of methods for measuring Plant programmed cell death(PCD) [J]. Yi Chuan,2004,26:127-132.
    [93]李德远,汤坚,徐现波,等.枸杞多糖对慢性辐射小鼠细胞凋亡及bc1-2基因表达的影响[J].营养学报.2005,27(3):235-237.
    [94]申梅淑,宋明勋,王桂云.芦笋多糖对衰老小鼠胸腺组织中Bcl-2、Fas表达水平影响的研究[J].中国食物与营养.2010,3:74-76.
    [95]张晨晓.泥鳅多糖的免疫调节和抗肿瘤作用机理.2005年博士学位论文.湖北武汉:华中科技大学:71.
    [96]Dlamini Z, Mbita Z, Zungu M. Genealogy, expression, and molecular mechanisms in apoptosis[J]. Pharmacol Ther,2004,101(1):1-15.
    [97]Natarajan SK, Becker DF. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress[J]. Cell Health Cytoskelet,2012,2012(4):11-27.
    [98]Adams J, Cory S. The bcl-2 protein family:arbiters of cell survival[J]. Science,1998,281(5381):1322-1326.
    [99]Voehringer DW, Meyn RE. Redox aspects of Bcl-2 function[J]. Antioxid Redox Signal,2000,2:537-550.
    [100]Metrailler-Ruchonnet I, PaganoA, Carnesecchi S, et al. Bcl-2 protects a-gainsthyperoxia-induced apoptosis through inhibition of themitochondria-dependentpathway[J]. Free Radic BiolMed,2007,42(7):1062-1074.
    [101]Ellerby LM, Ellerby HM, Park SM, et al. Shift of the cell ularoxidation reduction potential in neural cells expressing Bcl-2[J]. J Neurochem,1996, 67:1259-1267.
    [102]Mathai JP, Germain M, Shore GC. BH3-only BIK regulates BAX, BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mito-chondrial apoptosis during stress-induced cell death[J]. J Biol Chem,2005, 280:23829-23836.
    [103]Chami M, Prandini A, Campanella M, et al. Bcl-2 and Bax exertopposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region[J]. J BiolChem,2004,279:54581-54589.
    [104]Humlova Z. Protooncogene Bcl-2 in process of apoptosis[J]. Sb Lek,2002, 103:419-425.
    [105]Brooks C, Dong Z. Regulation of mitochondrial morphological dynamics during apoptosis by Bcl-2 family proteins:a key in Bak[J]. Cell Cycle,2007, 6(24):3043-3047.
    [106]Schbitz WR, Sommer C, Zoder W, et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia [J]. Stroke,2000 31(9):2212-2217.
    [107]Nagata S, Golstein P. The Fas death factor[J]. Science,1995, 267(5203):1449-1456.
    [108]Griffith TS, Brunner T, Fletcher SM, et al. Fasligand-induced apotosis As a mechanism of immune privilege[J]. Science,1995,270(5239):1189-1192.
    [109]Suda T,Takahashi T, Golstein P, et al. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family [J]. Cell, 1993,75(6):1169-1178.
    [110]Green DR. Apoptosis pathways, theroads to ruin[J]. Cell,1998,94(6):695-698.
    [111]Finkel E. Pathways to death become earr in the Antipodean sunshine[J]. Lanct,1998,351(9103):653.
    [112]Steller H. Artificial death switches:induction of apoptosis by chemically induced caspase multimerization[J]. Proc Natl Acad Sci U S A,1998, 95(10):5421-5422.
    [113]Van-Pariis L, Ibraghimov A, Abbas AK. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance[J]. Immunity,1996,4(3): 321-328.
    [1]Rodriguez RM, Lopez-Vazquez A, Lopez-Larrea C. Immune systems evolution[J]. Adv Exp Med Biol,2012,739:237-251.
    [2]McGargill MA, Derbinski JM, Hogquist KA, et al. Receptor editing in
    developing T cells[J]. NatRev Immunol,2000,1(4):336-341. [3] Tousseyn T, De Wolf-Peeters C. T cell/histiocyte-rich large B-cell lymphoma: an update on its biology and classification[J]. Virchows Arch,2011, 459(6):557-563.
    [4]Bangham CR, Toulza F. Adult T cell leukemia/lymphoma:FoxP3(+) cells and the cell-mediated immune response to HTLV-1[J]. Adv Cancer Res,2011, 111:163-182.
    [5]Gaulard P, Leval L. Follicular helper T cells:implications in neoplastic hematopathology[J]. Semin Diagn Pathol,2011,28(3):202-213.
    [6]Murphy KM, Reiner SL. The lineage decisions of helper T cells[J]. NatRev Immunol,2002,2:933-944.
    [7]Sun Q, Burton RL, Lueas KG. Cytokine production and cytolytic mechanism of CD4(+) cytotoxic T lymphoeytes in ex vivo expanded therapeutic Epstein-Barr virus-specifie T-cell cultures[J]. Blood,2002,99:3302-3309.
    [8]Liu CC, Huang KJ, Lin YS, etal.Transient CD4/CD8 ratio inversion and aberrant immune activation during dengue virus infection[J]. J Med Virol,2002, 68:241-252.
    [9]Mehrzad J, ZhaoX. T lymphoeyte proliferative capacity and CD4+/CD8+ ratio in primiparous and pluriparous lactating cows[J]. J Dairy Res,2008, 75:457-465.
    [10]Koike M, Sekigawal, Okada M, etal. Relationship between CD4+/CD8+ T cell ratio and T cell activation in multiplemyeloma:reference to IL-16[J]. Leuk Res,2002,26:705-711.
    [11]Kosonen J, Luhtala M, Viander M, et al. Evidence of CD4/CD8 and CD3/CD16+CD56 ratio elevations in vitro. Exp Dermatol,2005,14:551-558.
    [12]Pozzilli P, Visalli N, Cavallo MG, et al. Normalization of the CD4/CD8 lymphocyte ratio and inereased B lymphoeytes in long standing diabetie patients following therapy with thymopentin[J]. Diabetes Res,1987,6:51-56.
    [13]AI-Sakkaf L, Pozzilli P, Tarn AC, et al. Persistent reduction of CD4/CD8 lymphocyte ratio and cell activation before the onset of type 1 (insulin-dependent) diabetes[J]. Diabetologia,1989,32:322-325.
    [14]Maeda N, Sekigawal, Iida N, et al. Relationship between CD4+/CD8+ T cell ratio and T cell activation in systemic lupus erythematosus[J]. Seand J Rheumatol,1999,28:166-170.
    [15]Welinder E, Ahsberg J, Sigvardsson M. B-lymphocyte commitment: identifying the point of no return[J]. Semin Immunol,2011,23(5):335-340.
    [16]Lazorchak AS, Su B. Perspectives on the role of mTORC2 in B lymphocyte development, immunity and tumorigenesis[J]. Protein Cell,2011,2(7):523-530.
    [17]Furie R, Petri M, Zamani O, et al. A phase Ⅲ, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus[J]. Arthritis Rheum,2011,63(12):3918-3930.
    [18]Yanagawa N, Osakabe M, Furuse H, et al. Peripheral T-cell lymphoma arising from an intraglandular lymph node in the parotid gland:a case report and literature review[J]. Pathol Int,2012,62(1):60-64.
    [19]Geller MA, Miller JS. Use of allogeneic NK cells for cancer immunotherapy[J]. Immunotherapy,2011,3(12):1445-1459.
    [20]Li XC, Baldwin WM. NK cells:new partners in antibody-triggered chronic rejection[J]. Am J Transplant,2012,12(2):275-276.
    [21]Malhotra A, Shanker A. NK cells:immune cross-talk and therapeutic implications[J]. Immunotherapy,2011,3(10):1143-1166.
    [22]Zeromski J, Mozer-Lisewska I, Kaczmarek M, et al. NK cells prevalence, subsets and function in viral hepatitis C[J]. Arch Immunol Ther Exp (Warsz). 2011,59(6):449-455.
    [23]Shi FD, Ljunggren HG, La Cava A, et al. Organ-specific features of natural killer cells[J]. Nat Rev Immunol,2011,11 (10):658-671.
    [24]Marcenaro E, Carlomagno S, Pesce S, et al. NK cells and their receptors during viral infections [J]. Immunotherapy,2011,3(9):1075-1086.
    [25]Mortha A, Diefenbach A. Natural killer cell receptor-expressing innate lymphocytes:more than just NK cells[J]. Cell Mol Life Sci,2011, 68(21):3541-3555.
    [26]Ouimet M, Marcel YL. Regulation of lipid droplet cholesterol efflux from macrophage foam cells[J]. Arterioscler Thromb Vasc Biol,2012,32(3):575-581.
    [27]Cassetta L, Cassol E, Poli G. Macrophage polarization in health and disease[J]. ScientificWorldJournal,2011,11:2391-2402.
    [28]Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol,2011,11(11):723-737.
    [29]Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease[J]. Nat Rev Immunol,2011,11(11):738-749.
    [30]Moon ML, McNeil LK, Freund GG. Macrophages make me sick:how macrophage activation states influence sickness behavior[J]. Psychoneuroendocrinology,2011,36(10):1431-1440.
    [31]Gan, HuaZhang, LiangYang, et al. Immunomodulation and antitumor activity by a polysaeeharide-protein complex from Lyeiumbar barum[J]. Int Immunopharmacol,2004,4:563-569.
    [32]Breitbart E, Wang X, LekaL S, et al. Altered memory B-cell homeostasis in human aging[J]. J Gerontol A Biol Sci Med Sci,2002,57:304-311.
    [33]Chiva-Blanch G, Urpi-Sarda M, Llorach R, et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis:a randomized clinical trial[J]. Am J Clin Nutr,2012,95(2):326-334.
    [34]Gerber PA, Buhren BA, Steinhoff M, etal. Rosacea:The cytokine and chemokine network[J]. J Investig Dermatol Symp Proc,2011,15(1):40-47.
    [35]Perrier C, Rutgeerts P. Cytokine blockade in inflammatory bowel diseases[J]. Immunotherapy,2011,3(11):1341-1352.
    [36]Kokkas A, Goulas A, Stavrianos C, et al. The role of cytokines in pulp inflammation[J]. J Biol Regul Homeost Agents,2011,25(3):303-311.
    [37]Saggini A, Anogeianaki A, Maccauro G, et al. Cholesterol, cytokines and diseases[J]. Int J Immunopathol Pharmacol,2011,24(3):567-581.
    [38]Wolfs IM, Dormers MM, Winther MP. Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation[J]. Thromb Haemost,2011,106(5):763-771.
    [39]Glimcher LH, Mrphy KM. Lineage commitment in the immune system:the T helper lymphoeyte grows up [J]. Genes Dev,2000,14:1693-1711.
    [40]Tan AH, Goh SY, Wong SC, et al. T helper cell-specific regulation of inducible costimulator expression via distinct mechanisms mediated by T-bet and GATA-3[J]. J Biol Chem,2008,283:128-136.
    [41]Usui T, Preiss JC, Kanno Y, et al. T-bet regulates Thl responses through essential effects on GATA-3 function rather than on IFN Y gene acetylation and transeription [J]. J Exp Med,2006,203:755-766.
    [42]Cen O, Ueda A, Guzman L, et al. The adaptor molecule-signaling lymphoeytic activation molecule-associated Protein (SAP) regulates IFN-ganuna and IL-4 production in ValPha14 transgenie NK T cells via effects on GATA-3 and T-bet expression [J]. J Irnnnunol,2009,182:1370-1378.
    [43]Itunan D, Kawana K, Sehust D, et al. Cyelic regulation of T-bet and GATA-3 in human edometrium[J]. Reprod Sei,2008,15:83-90.
    [44]Chen GY, Osada H, Santamaria-Babi LF, et al. Interaction of GATA-3/T-bet transeription factors regulates expression of sialyl Lewis X homing receptors onThl/Th2 lymphoeytes[J]. Proe Natl Acad Sei USA,2006, 103:16894-16899.
    [45]Chakir H, Wang H, Lefebvre DE, et al. T-bet/GATA-3 ratio as a measure of the Thl/Th2 cytokine profile in mixed cell populations:Predominant role of GATA-3[J]. J Immunol Methods,2003,278:157-169.
    [46]周俊.中药复方-天然组合化学库与多靶作用机理[J].中国中西医结合杂志,1998,18(2):67.
    [47]Chen W, Li Y, Yu M. Astragalus polysaccharides inhibited diabetic cardiomyopathy in hamsters depending on suppression of heart chymase activation [J]. Journal of Diabetes and its Complications,2010,24(3):199-208.
    [48]WU, X. Thoughts on Intervention in HIV/AIDS with Traditional Chinese Medicine[J]. Journal of Traditional Chinese Medicine,2011,31(4):265-268.
    [49]Zhang, H. Study on the history of Traditional Chinese Medicine to treat diabetes[J]. European Journal of Integrative Medicine,2010,2(1):41-46.
    [50]Wei HZ. Function of Traditional Chinese Medicine in Cancer Radiotherapy and its Prospect[J]. World Science and Technology,2009,11(5):742-746.
    [51]Nagai, T. Pinellic acid from the tuber of Pinellia ternata Breitenbach as an effective oral adjuvant for nasal influenza vaccine[J]. International Immunopharmacology,2002,2(8):1183-1193.
    [52]Dardenne M. Role of thymic peptides as transmitters between the neuroendocrine and immune systems[J]. Ann Med,1999,2:34-39.
    [53]聂伟,张永祥.六味地黄方的现代药理学研究进展[J].中药药理与临床,1998,14(5):41-44.
    [54]章晓红,王曾礼.呼吸道病毒感染局部细胞免疫研究进展[J].国外医学·呼吸系统分册,2005,25(1):20-22.
    [55]宋康,骆仙芳,汪玉冠,等.防感煎剂对流感病毒感染小鼠体重以及免疫器官与肺脏的影响[J].中华中医药学刊,2010,28(2):239-242.
    [56]周香意,袁长津,卢芳国,等.柴板合剂对流感小鼠肺保护作用及其对免疫器官影响的实验研[J].中医药导报,2009,15(4):1-3.
    [57]刘芳,靳虹,张云智.益气活血方药对D-半乳糖拟衰老大鼠免疫器官质量及大脑皮层SOD、MDA的影响[J].中国老年学杂志,2009,29(24):3213-3214.
    [58]张香斋,贾青辉,李蕴玉,等.中药制剂对热应激下雏鸡T淋巴细胞转化率和免疫器官指数的影响[J].河北科技师范学院学报,2009,23(3):31-32.
    [59]刘廷,鞠玉琳,李杨,等.中药复方连黄对小鼠T淋巴细胞亚群CD4+、CD8+的影响[J].四川动物,2009,28(1):115-117.
    [60]曹志然,陈淑兰,马晓莉,等.十全大补汤对荷瘤鼠的瘤重及脾脏淋巴细胞增殖反应的影响[J].河北职工医学院学报,2001,18(2):9-10.
    [61]曹志然,杨宏莉,邢志勇.十全大补汤对荷瘤鼠脾脏细胞IL-6、TNF-a的分泌的影响[J].河北职工医学院学报,2002,19(1):3-4.
    [62]苏丽贤,汤朝晖,刘叶,等.蒿芩清胆汤和玉屏风散对流感病毒感染湿热证小鼠T淋巴细胞亚群和血清Th1/Th2细胞因子变化的影响[J].辽宁中医杂志.2010,37(7):544-545.
    [63]王楠,杨睿悦,张佳丽,等.五味中药复方制剂对小鼠细胞免疫和NK细胞活性的影响.2010年北京营养学会第四届会员代表大会暨膳食与健康研讨会.
    [64]万幸,王建华.补中益气汤对正常及脾虚型小鼠NKC—IL-2—IFN-Y调节网络的影响[J].中国免疫学杂志1993,(3):3.
    [65]Arai S, Yamamoto H, Itoh K, et al.Suppressive effect of Human natural killer cells on pokeweed mitogen-induced B Cell differentiation[J]. Journal Immunology,1983,131:651.
    [66]徐杭民,王绪鳌,谢志慧,等.中药复方“艾滋1号”的免疫药理作用[J].中药药理与临床,1995(4):21-23.
    [67]凌卓莹,李佳荃,凌鸿英.中药增强LAK细胞抗肿瘤作用的实验研究[J].医学文选,1995,16(3):180-182.
    [68]张宏方,马振亚,胥冰,等.中药调衡方对S180与H22荷瘤小鼠TNF与LAK细胞活性的影响[J].陕西中医,2005,26(9):983-985.
    [69]魏彦明,项光华,陈智华,等.中药对免疫抑制小鼠吞噬细胞吞噬功能的影响[J].中国兽医杂志.1998,24(8):40-41.
    [70]孙成宏,张亚兴,宋兵,等.中药喘可治注射液对小鼠腹腔巨噬细胞的影响[J].暨南大学学报(医学版),2010,31(6):572-575.
    [71]胡莉文,刘安平,黄礼明,等.清毒扶正中药联合细胞因子对树突细胞诱导作用的实验研究[J].新中医,2010,42(6):106-108.
    [72]Siegel I, Liu TL, Gieicher N. The Red-cell Immune System[J]. Lancet, 1981,2:556-559.
    [73]陈书明,梁新峰,雷娜,等.复方中药对感染NIB鸡红细胞免疫功能的影响[J].中国兽药杂志,2009,43(12):6-8.
    [74]效梅,安立龙,王秋芳.中药添加剂对热应激蛋鸡细胞免疫功能的影响[J].西北农业大学学报,2000,28(6):115-117.
    [75]易宁育,严名,周象华,等.中医扶正方剂玉屏风散的药理研究[J].中药通 报,1981,1:33-35.
    [76]戴远威,江青艳,傅伟龙等.补益中药提取物对雏鸡免疫功能的影响[J].中国兽医学杂志,1997,(2):2-5.
    [77]剡根强,谷新利,王玮等.中草药免疫增强剂对雏鸡免疫功能的影响[J].养禽与禽病防治,1998,(4):11-12.
    [78]万幸,刘倩娴,陈妙欢,等.黄芪建中汤和补中益气汤对脾虚模型小鼠免疫调节作用的实验研究[J].中国实验方剂学杂志,1998,4(5):24-27.
    [79]任添华,张淑文.中药复方912注射液对MODS动物模型细胞因子的实验研究[J].首都医科大学学报,2010,31(2):251-254.
    [80]胡涛,耿排力.中药制剂及外源性细胞因子对化疗损伤小鼠细胞因子及NK细胞活性的影响[J].中国中医药信息杂志,2004,11(1):33-35.
    [81]刘峻,张明雪,车红花,等.益气活血中药复方对病毒性心肌炎模型大鼠趋化因子CXCL12 SASH1表达的影响[J].中华中医药学刊,2010,28(12):2492-2494.
    [82]张新民,段元丽,沈自尹,等.三类中药复方对侧脑室内注射IL-1大鼠下丘脑-垂体-肾上腺素皮质轴反应状态的影响[J].中医杂志,2002,43(1):59-62.
    [83]马渊,周文霞,程均平,等.六味地黄汤对悬吊应激小鼠下丘脑-垂体-卵巢轴激素的影响[J].中国实验方剂学杂志,2002,8(6):18-21.
    [84]Normile D, Asianmedieine. The new face of traditional Chinese medicine[J]. Seience,2003,299:188-190.
    [85]Liu X, Guo DA. Application of proteomics in the mechanistic study of traditional Chinese medicine[J]. Biochem Soc Trans,2011,39(5):1348-1352.
    [86]Xu J, Y Yang. Traditional Chinese medicine in the Chinese health care system[J]. Health Policy,2009,90(2-3):133-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700