用户名: 密码: 验证码:
高尔基体α-甘露糖苷酶Ⅱ(GMⅡ)在胃癌细胞生长中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:成功构建GMⅡ基因过表达载体与RNAi表达载体并分别稳定转染胃癌细胞株;通过体内外实验观察过表达与沉默GMⅡ基因对胃癌细胞株生长的影响;初步探讨GMⅡ基因在胃癌细胞生长作用中可能涉及的分子机制。
     方法:1、通过RT-PCR、Westernblot分别检测人永生化胃粘膜上皮GES-1、胃癌细胞株BGC-823、SGC-7901、MKN-28的GMⅡmRNA及蛋白表达水平,筛选出GMⅡ低表达与高表达的胃癌细胞株作为实验用株。2、构建GMⅡ基因过表达载体并测序验证;设计3条靶向GMⅡ的siRNA并合成GMⅡ-shRNA-1、GMⅡ-shRNA-2、GMⅡ-shRNA-3及阴性对照shRNA-NC,shRNA退火后与线性化的质粒载体相连接并转化大肠杆菌感受态细胞DH5α,重组质粒载体扩增并提取后进行酶切测序鉴定。3、通过脂质体LipofectAMINE2000介导,将GMⅡ基因过表达载体转染GMⅡ低表达的胃癌细胞株;GMⅡ-shRNA-1、GMⅡ-shRNA-2、GMⅡ-shRNA-3及GMⅡ-shRNA-NC表达载体转染GMⅡ高表达的胃癌细胞株,应用荧光倒置显微镜对转染效果进行评价;通过RT-PCR、Westernblot检测瞬时转染胃癌细胞株后GMⅡmRNA及蛋白表达水平,进一步验证GMⅡ基因过表达载体的成功构建,同时筛选出干扰效果最好的表达载体用于后续实验研究;经G418筛选以获得稳定转染GMⅡ基因过表达载体与RNAi表达载体的胃癌细胞株。4、MTT法检测GMⅡ基因过表达与沉默后胃癌细胞株增殖活性的改变,流式细胞术分析细胞周期分布的改变;Hoechst33258染色及AnnexinV/PI合染并流式细胞术检测GMⅡ基因过表达及沉默后胃癌细胞株凋亡率的改变。5、将GMⅡ基因稳定过表达及沉默的胃癌细胞株接种至裸鼠皮下,观察移植瘤的生长速度并绘制肿瘤生长曲线,将移植瘤剥除后通过免疫组织化学检测GMⅡ蛋白的表达。6、通过RealtimePCR及Westernblot检测GMⅡ基因过表达及沉默后胃癌细胞株增殖与凋亡相关基因CyclinD1、Bcl-2、c-mycmRNA及蛋白水平的改变,同时检测MAPK通路中ERK1/2、p-ERK1/2的改变。
     结果:1、GMⅡ基因与蛋白在胃癌细胞株MKN-28中表达最低,而在胃癌细胞株BGC-823中表达最高,因此筛选BGC-823、MKN-28为实验用细胞株。2、酶切测序表明GMⅡ基因的过表达载体及3条GMⅡ-shRNA表达载体构建成功。3、将GMⅡ基因的过表达载体转染胃癌细胞株MKN-28,GMⅡ-shRNA-1、GMⅡ-shRNA-2、GMⅡ-shRNA-3及GMⅡ-shRNA-NC表达载体转染胃癌细胞株BGC-823,转染后细胞在荧光倒置显微镜下发出绿色荧光;与空白对照组及转染空质粒组相比,过表达载体转染后胃癌细胞株MKN-28的GMⅡmRNA及蛋白水平明显升高(P<0.05);与空白对照组、转染空质粒组及转染GMⅡ-shRNA-1、GMⅡ-shRNA-3及GMⅡ-shRNA-NC组相比,GMⅡ-shRNA-2表达载体转染后胃癌细胞株BGC-823的GMⅡmRNA及蛋白水平明显降低(P<0.05);经G418筛选后获得稳定表达GMⅡ基因的胃癌细胞株MKN-28及稳定表达GMⅡ-shRNA-2的胃癌细胞株BGC-823。4、MTT法及流式细胞术检测结果显示,与空白对照组及转染空质粒组细胞相比,转染GMⅡ基因过表达载体的胃癌细胞株MKN-28生长速度明显增加,并且S期细胞比例显著增加(P<0.05);转染GMⅡ-shRNA-2表达载体的胃癌细胞株BGC-823生长速度明显减慢,并且G1期细胞比例显著增加(P<0.05)。Hoechst33258染色及AnnexinV/PI合染并流式细胞术检测结果显示,与空白对照组及转染空质粒组细胞相比,转染GMⅡ基因过表达载体的胃癌细胞株MKN-28凋亡率明显降低(P<0.05);转染GMⅡ-shRNA-2表达载体的胃癌细胞株BGC-823凋亡率明显升高(P<0.05)。5、裸鼠体内成瘤实验结果显示,与空白对照组及转染空质粒组细胞接种裸鼠后形成的移植瘤相比,转染GMⅡ基因过表达载体的胃癌细胞株MKN-28接种裸鼠后形成的移植瘤重量及体积明显增加(P<0.05),移植瘤GMⅡ蛋白的表达明显增强(P<0.05);转染GMⅡ-shRNA-2表达载体的胃癌细胞株BGC-823接种裸鼠后形成的移植瘤重量及体积明显降低(P<0.05),移植瘤GMⅡ蛋白的表达明显减弱(P<0.05)。6、RealtimePCR及Westernblot结果显示,与空白对照组及转染空质粒组细胞相比,转染GMⅡ基因过表达载体的胃癌细胞株MKN-28增殖与凋亡相关基因CyclinD1、c-mycmRNA与蛋白表达水平明显增加(P<0.05),而Bcl-2mRNA与蛋白表达水平三组之间无显著性差异(P>0.05),MAPK通路中p-ERK1/2蛋白表达明显增加(P<0.05);转染GMⅡ-shRNA-2表达载体的胃癌细胞株BGC-823增殖与凋亡相关基因CyclinD1、c-mycmRNA与蛋白表达水平明显降低(P<0.05),而Bcl-2mRNA与蛋白表达水平三组之间无显著性差异(P>0.05),MAPK通路中p-ERK1/2蛋白表达明显降低(P<0.05)。
     结论:GMⅡ通过促进细胞增殖、抑制细胞凋亡而促进胃癌细胞的生长;增殖与凋亡相关基因CyclinD1、c-myc及MAPK信号转导通路可能参与了GMⅡ在胃癌细胞生长中的作用;GMⅡ可能成为研究胃癌发生发展分子机理的重要靶点。
Objective:To successfully construct the overexpression and silencing plasmid vectors targeted for GM Ⅱ gene and stably transfect them to the gastric cancer cell strains; to observe the growth change of gastric cancer cell strains after GM Ⅱ gene overexpressed and silenced by the tests in vitro and in vivo; and to preliminarily explore the molecular mechanisms of GM Ⅱ gene involved in the growth of gastric cancer cells.
     Methods:1.By RT-PCR and Western blot respectively, the expression level of GM Ⅱ gene and protein in human gastric mucosal epithelium GES-1, gastric cancer cell strains BGC-823,SGC-7901and MKN-28were detected, and the cell strains with the lowest and the highest expression of GM Ⅱ gene were screenesd out as the experimental strains.2. The overexpressiom plasmid vector tageted for GM Ⅱ gene was constructed.Three siRNA segments targeted for GM Ⅱ gene were designed and the correspongding shRNA named GM Ⅱ-shRNA-1, GM Ⅱ-shRNA-2, GM Ⅱ-shRNA-3and one negative control of GM Ⅱ-shRNA-NC were synthetized by the biotech company. ShRNA after annealing were connected with linearized plasmid vector and transfected into E. coli competent cells DH5α, and the recombinant plasmid vectors were increased and the extracts were digested by restriction enzyme and identified by DNA sequencing.3. By LipofectAMINETM2000, the overexpression and silencing plamid vectors targeted for GM Ⅱ gene were transfected to the gastric cancer cell strains with the lowest and highest expression of GM Ⅱ gene respectivly. The transfection efficiency was evaluated by fluorescence inverted microscope. By RT-PCR and Western blot, the GM Ⅱ mRNA and protein of the gastric cancer cell strains after instantaneous transfection were detected, and overexpression plamid vector was further verified; at the same time, the best one of the silencing plasmid vectors used for subsequent experiments was screened out. The gastric cancer cell strains which were stably transfected with overexpression and silencing plasmid targeted for GM Ⅱ gene were selected by G418.4. After GM Ⅱ gene was overexpressed and silenced,MTT assay and flow cytometry were used to detect gastric cancer cell proliferation activity and cell cycle distribution respectively; Hoechst33258staining and Annexin V/PI co-staining and flow cytometry analysis were used to detect the rate of apoptosis.5. The gastric cancer cell strains were inoculated subcutaneously into nude mice, which were stably transfected with the overexpressed and silencing plamid vectors. The growth speed of the tumor was observed and tumor growth curve were drew, mice were sacrificed followed by HE staining of the transplanted tumors. GM Ⅱ protein expression of the transplanted tumors was detected by immunohistochemistry.6. By Real time PCR and Western blot analysis, the cell proliferation and apoptosis related genes cyclin D1, Bcl-2, c-myc mRNA and protein levels were detected, the protein level of ERK1/2, p-ERK1/2in MAPK pathway were detected by Western blot.
     Results:1.GM Ⅱ gene and protein expression in gastric cancer cell strain MKN-28was the lowest while those in gastric cancer cell strain BGC-823was the highest, so the gastric cancer cell strains BGC-823and MKN-28were used for the following experiment.2. DNA sequencing showed that over expression vectors and three GM Ⅱ-shRNA expression vectors were constructed succefully.3. The overexpression vector targeted for GM Ⅱ gene was transfected to gastric cancer cell strain MKN-28, while GM Ⅱ-shRNA-1, GM Ⅱ-shRNA-2, GM Ⅱ-shRNA-3and of GM Ⅱ-shRNA-NC expression vector were transfected to gastric cancer cell strain BGC-823, the green fluorescence of the transfected cells could be observed under the fluorescence microscope.4. Compared to those of the black control group and the group transfected with empty plasmid, GM Ⅱ mRNA and protein levels of gastric cancer cell strain MKN-28transfected with overexpression vector increased significantly (P<0.05); Compared with those of the black control group and the group transfected with empty plasmid, the group transfected with GM Ⅱ-shRNA-1, GM Ⅱ-shRNA-3and GM Ⅱ-shRNA-NC, the GM Ⅱ mRNA and protein levels of the gastric cancer cell strain BGC-823transfected with GM Ⅱ-shRNA-2expression vector was decreased significantly (P<0.05); after G418selection, the gastric cancer cell MKN-28with stably overexpressed GM Ⅱ gene and the gastric cancer cell strain BGC-823with stably expressed GM Ⅱ-shRNA-2were obtained. Compared to those of the bland control group and the group transfected with the empty plasmid, MTT assay and flow cytometry results showed the growth rate of gastric cancer cell strain MKN-28transfected with overexpression vector increased significantly, and the S-phase cells increased significantly (P<0.05); the growth rate of gastric cancer cell strain BGC-823transfected with GM Ⅱ-shRNA-2expression vector was decreased significantly, and the rate of cells in G1phase was increased significantly (P<0.05). Hoechst33258staining and Annexin V/PI co-staining and flow cytometry results showed that the apoptosis rate of the gastric cancer cell strain MKN-28transfected with overexpression vector was decreased significantly (P<0.05); the apoptosis rate of the gastric cancer cell strain BGC-823transfected with the GM Ⅱ-shRNA-2expression vector was increased significantly (P<0.05).5. After the gastric cancer cell strain MKN-28transfected with overexpression vector were inoculated to the nude mouse, the weight and volume of transplanted tumor were significantly increased compare to those of transplanted tumor arising from inoculation of the blank control and the gastric cancer cell strain MKN-28transfected with the empty plamid(P<0.05); After the gastric cancer cell strain BGC-823transfected with GM Ⅱ-shRNA-2expression vector were inoculated to the nude mouse, the weight and volume of transplanted tumor were significantly decreased compare to those of transplanted tumor arising from inoculation of the blank control and the gastric cancer cell strain BGC-823transfected with the empty plamid(P<0.05).6. Real time PCR and Western blot results showed that compare to those of the control group and the group transfected with the empty plasmid, the proliferation and apoptosis-related genes Cyclin D1, c-myc mRNA and protein expression levels of gastric cancer cell strain MKN-28transfected with overexpressin vector were increased significantly (P<0.05), and p-ERK1/2protein expression the of MAPK pathway was increased significantly (P<0.05), but Bcl-2mRNA and protein expression levels among the three groups showed no significant difference (P>0.05); the proliferation and apoptosis-related genes Cyclin D1, c-myc mRNA and protein expression levels of gastric cancer cell strain BGC-823transfected with GM Ⅱ-shRNA-2expression vector were decreased significantly (P<0.05), and p-ERKl/2protein expression the of MAPK pathway was decreased significantly (P<0.05), but Bcl-2mRNA and protein expression levels among the three groups showed no significant difference (P>0.05).
     Conclusion:GM Ⅱ gene could promote the growth of gastric cancer by promoting the proliferation and inhibting the apoptosis; the proliferation and apoptosis related gene such as Cyclin D1, c-myc and MAPK signal transduction pathway may be involved in the role of GM Ⅱ gene in the growth of gastric cancer; and GM II can be become an important target used to explore the molecular mechanism in gastric cancer occurrence and development.
引文
[1]Krejs GJ. Gastric Cancer:Epidemiology and Risk Factors [J].Dig Dis,2010,28(4-5):600-603.
    [2]Lau KS, Partridge EA, Grigorian A, et al.Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation [J].Cell,2007,129(1):123-34.
    [3]Pinho SS, Osorio H, Nita-Lazar M,et al.Role of E-cadherin N-glycosylation profile in a mammary tumor model[J].Biochem Biophys Res Commun,2009,379(4):1091-6.
    [4]Santos IC, Silbiger VN, Higuchi DA, et al. Angiostatic activity of human plasminogen fragments is highly dependent on glycosylation[J].Cancer Sci,2010,101(2):453-9.
    [5]Janik ME, Litynska A, Vereecken P.Cell migration-the role of integrin glycosylation[J]. Biochim Biophys Acta,2010,1800(6):545-55.
    [6]Varki A, Kannagi R, Toole BP. Glycosylation Changes in Cancer. In:Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors.Essentials of Glycobiology,2nd edition[M].Cold Spring Harbor (NY):Cold Spring Harbor Laboratory Press,2009,Chapter44.
    [7]Zhao Y, Takahashi M, Gu J, et al. Functional roles of N-glycans in cell signaling and cell adhesion in cancer[J]. Cancer Sci,2008,99:1304-10.
    [8]Rizzolo LJ, KornfeldR.Post-translational protein modification in the endoplasmic reticulum:demonstration of fattyaeylase and deoxyman-nojifimycin-sensitive-mannosidase activitie s[J]. J Biol Chem,1988,26(3):9520-9525.
    [9]Suits MD, Zhu Y, Taylor EJ,et al. Structure and kinetic investigation of Streptococcus pyogenes family GH38alpha-mannosidase[J]. PLoS One,2010,5(2):e9006.
    [10]Gomathinayagam S, Mitchell T, Zartler ER, et al. Structural elucidation of an α-1,2-mannosidase resistant oligosaccharide produced in Pichia pastoris[J].Glycobiology,2011,21(12):1606-15.
    [11]Sun JY, Zhu MZ, Wang SW,et al.Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine[J]. Phytomedicine,2007,14(5):353-9.
    [12]Kuntz DA,Nakayama S,Shea K,et al.Structural investigation of the binding of5-substituted swainsonine analogues to Golgi alpha-mannosidase II[J]. Chembiochem,2010,11(5):673-80.
    [13]孙纪元,朱妙章,王四旺,等。苦马豆素对肝癌细胞在体内外生长的抑制作用[J]。华西药学杂志,2006,21(3):221-224。
    [14]路浩,王建军,孙莉莎,等。苦马豆素抗肿瘤作用研究进展[J]。动物医学进展,2009,30(9):87-90。
    [15]Jacob GS.Glycosylation inhibitors in biology and medicine[J]. Curr Opin Struct Biol.1995,5(5):605-11.
    [16]Van den Elsen JM, Kuntz DA, Rose DR. Structure of Golgi alpha-mannosidase II:a target for inhibition of growth and metastasis of cancer cells[J]. EMBO J.2001,15,20(12):3008-17.
    [17]杨雅莹,李艳青,易永芬,等。高尔基体α-甘露糖苷酶Ⅱ在胃癌中的表达及其与E-cadherin、Galectin-3的关系[J]。重庆医科大学学报,2010,35(9):1313-1317。
    [18]Fiaux H, Kuntz DA,Hoffman D,,et al. Functionalized pyrrolidine inhibitors of human type II alpha-mannosidases as anti-cancer agents:optimizing the fit to the active site[J]. Bioorg Med Chem.2008,16(15):7337-46.
    [19]Chae BS, Ahn YK, Kim JH.Effects of swainsonine on the humoral immune response of lipopolysaccharide[J]. Arch Pharm Res.1997,20(6):545-9.
    [20]Tamori Y, Deng WM.Cell competition and its implications for development and cancer[J]. J Genet Genomics,2011,38(10):483-95.
    [21]Kelly GL, Strasser A. The essential role of evasion from cell death in cancer [J]. Adv Cancer Res.2011,111:39-96.
    [22]Suzuki O, Abe M.Cell surface N-glycosylation and sialylation regulate galectin-3-induced apoptosis in human diffuse large B cell lymphoma[J]. Oncol Rep.2008,19(3):743-8.
    [23]刘炳亚,林言箴,尹浩然等。苦马豆素抑制胃癌生长及转移的实验研究[J]。中 华肿瘤杂志,1998,20(3):168-170。
    [24]Gerber-Lemaire S, Juillerat-Jeanneret L. Studies toward new anti-cancer strategies based on alpha-mannosidase inhibition.[J] Chimia (Aarau).2010,64(9):634-9.
    [25]Cuddy, K., B. Foley, J.S. Jaffe, et al., RT-PCR with affinity-captured mRNA[J]. Nucleic Acids Res,1993,21(9):2281.
    [26]Wiemann S, Weil B, Wellenreuther R,et al. Toward a catalog of human genes and proteins:sequencing and analysis of500novel complete protein coding human cDNAs[J]. Genome Res,2001,11(3):422-35.
    [27]Wellenreuther R, Schupp I, Poustka A, et al. German cDNA Consortium. SMART amplification combined with cDNA size fractionation in order to obtain large full-length clones[J]. BMC Genomics,2004,5(1):36.
    [28]Bechtel S, Rosenfelder H, Duda A,et al. The full-ORF clone resource of the German cDNA Consortium [J]. BMC Genomics,2007,8:399.
    [29]Collins JE, Wright CL, Edwards CA, et al. A genome annotation-driven approach to cloning the human ORFeome [J]. Genome Biol,2004,5(10):R84.
    [30]Temple G, Lamesch P, Milstein S, et al. From genome to proteome:developing expression clone resources for the human genome [J]. Hum Mol Genet,2006, No1:R31-43.
    [31]Montgomery MK.RNA interference:historical overview and significance[J]. Methods Mol Biol,2004,265:3-21.
    [32]Zeller SJ, Kumar P.RNA-based gene therapy for the treatment and prevention of HIV:from bench to bedside[J]. Yale J Biol Med,84(3):301-9.
    [33]Mockenhaupt S, Schurmann N, Grimm D.When cellular networks run out of control:global dysregulation of the RNAi machinery in human pathology and therapy[J]. Prog Mol Biol Transl Sci,2011,102:165-242.
    [34]Cerutti H, Ma X, Msanne J, Repas T.RNA-mediated silencing in Algae:biological roles and tools for analysis of gene function[J]. Eukaryot Cell,2011,10(9):1164-72.
    [35]Evan GI, Brown L, Whyte M, et al. Apoptosis and the cell cycle[J].Curr Opin Cell Biol,1995,7(6):825-34.
    [36]Kukuruzinska MA, Lennon K. Protein N-glycosylation:molecular genetics and functional significance [J].Crit Rev Oral Biol Med.1998,9(4):415-48.
    [37]Lau KS, Partridge EA, Grigorian A,et al.Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation[J]. Cell,2007,129(1):123-34.
    [38]Stanley P.A method to the madness of N-glycan complexity[J]? Cell,2007,129(1):27-9.
    [39]Lau KS, Dennis JW.N-Glycans in cancer progression[J]. Glycobiology,2008,18(10):750-60.
    [40]Herscovics A, Schneikert J, Athanassiadis A, et al. Isolation of a mouse Ge1s-mannesidase cDNA, a member of a gene family conserved from yeast to mammals[J]. J Biol Chem,1994,269(13):9864-9871.
    [41]Misago M, Liao YF, Kudo S, et al. Molecular cloning and expression of cDNAs encoding human alpha-mannosidase II and a previously unrecognized alpha-mannosidase IIx isozyme[J].Proc Natl Acad Sci U S A.1995,92(25):11766-70.
    [42]Daniel P, Winchester B, WalTen CD. Mammalian a-mannosidase-multiple forms but acommon purpeso [J]? Glycobiology,1994,4:113-125。
    [43]Li Z, Xu X, Huang Y,et al. Swainsonine Activates Mitochondria-mediated Apoptotic Pathway in Human Lung Cancer A549Cells and Retards the Growth of Lung Cancer Xenografts[J]. Int J Biol Sci.2012,8(3):394-405.
    [44]Suzuki O, Abe M.Cell surface N-glycosylation and sialylation regulate galectin-3-induced apoptosis in human diffuse large B cell lymphoma[J]. Oncol Rep.2008,19(3):743-8.
    [45]Sun JY, Yang H, Miao S,et al.Suppressive effects of swainsonine on C6glioma cell in vitro and in vivo[J]. Phytomedicine,2009,16(11):1070-4.
    [46]Przybylo M, Litynska A, Pochec E.Different adhesion and migration properties of human HCV29non-malignant urothelial and T24bladder cancer cells:role of glycosylation[J].Biochimie,2005,87(2):133-42.
    [47]Fiaux H, Popowycz F, Favre S, et al. Functionalized pyrrolidines inhibit alpha-mannosidase activity and growth of human glioblastoma and melanoma cells [J]. J Med Chem,2005,48(13):4237-46.
    [48]Gerber-Lemaire S, Juillerat-Jeanneret L. Studies toward new anti-cancer strategies based on alpha-mannosidase inhibition[J]. Chimia (Aarau),2010,64(9):634-9.
    [49]Kuntz DA, Nakayama S, Shea K,et al. Structural investigation of the binding of5-substituted swainsonine analogues to Golgi alpha-mannosidase II[J]. Chembiochem,2010,11(5):673-80.
    [50]Venkatesan M, Kuntz DA, Rose DR.Human lysosomal alpha-mannosidases exhibit different inhibition and metal binding properties[J]. Protein Sci,2009,18(11):2242-51.
    [51]Dennis JW, Koch K, Beckner D.Inhibition of human HT29colon carcinoma growth in vitro and in vivo by swainsonine and human interferon-alpha[J]. J Natl Cancer Inst,1989,81(13):1028-33.
    [52]Dennis JW, Koch K, Yousefi S, VanderElst I.Growth inhibition of human melanoma tumor xenografts in athymic nude mice by swainsonine[J]. Cancer Res,1990,50(6):1867-72.
    [53]路浩,王建军,孙莉莎,等。苦马豆素抗肿瘤作用研究进展[J]。动物医学进展,2009,30(9):87-90。
    [54]Goss PE, Baptiste J, Fernandes B,et al. A phase I study of swainsonine in patients with advanced malignancies [J]. Cancer Res,1994,54(6):1450-7.
    [55]Gerber-Lemaire S, Juillerat-Jeanneret L.Studies toward new anti-cancer strategies based on alpha-mannosidase inhibition[J]. Chimia (Aarau),2010,64(9):634-9.
    [56]Mohla S, Humphries MJ, White SL,et al. Swainsonine:a new antineoplastic immunomodulator[J]. J Natl Med Assoc,1989,81(10):1049-56.
    [57]Livak KJ, Schmittgen TD:Analysis of relative gene expression data using real-time quantitative PCR and the2(-Delta Delta C(T)) Method[J].Methods,2001,25(4):402-408.
    [58]Weihong Liu and David A. Saint Validation of a quantitative method for real time PCR kinetics[J]. Biochemical and Biophysical Research Communications,2002,294(2): 347-353.
    [59]Musgrove EA, Caldon CE, Barraclough J,et al. Cyclin D as a therapeutic target in cancer[J]. Nat Rev Cancer,2011,11(8):558-72.
    [60]Lee YM, Sicinski P.Targeting cyclins and cyclin-dependent kinases in cancer: lessons from mice, hopes for therapeutic applications in human[J]. Cell Cycle,2006,5(18):2110-4.
    [61]Motohashi M, Wakui S, Muto T, et al. Cyclin D1/cdk4, estrogen receptors a and β, in N-methyl-N'-nitro-N-nitrosoguanidine-induced rat gastric carcinogenesis: immunohistochemical study [J]. J Toxicol Sci,2011,36(3):373-8.
    [62]Joyce D, Albanese C, Steer J, et al. NF-kappaB and cell-cycle regulation:the cyclin connection[J]. Cytokine Growth Factor Rev,2001,12(1):73-90.
    [63]Cole MD, McMahon SB. The Myc oncoprotein:a critical evaluation of transactivation and target gene regulation [J].Oncogene,1999,18(19):2916-292.
    [64]Dai MS, Lu H. Crosstalk between C-MYC and ribosome in ribosomal biogenesis and cancer [J].J Cell Biochem,2008,105:670-677.
    [65]Luscher B, Vervoorts J.Regulation of gene transcription by the oncoprotein MYC[J]. Gene,2012,494(2):145-60.
    [66]Pinho SS, Seruca R, Gartner F, et al. Modulation of E-cadherin function and dysfunction by N-glycosylation [J].Cell Mol Life iSc,2011,68(6):1011-20.
    [67]Pinho S.S, Osorio H, Nita-Lazar M, et al. A Role of E-cadherin N-glycosylation profile in a mammary tumor mode [J]. Biochem. Biophys. Res. Commun,2009,379(4):1091-1096.
    [68]Vagin O, Tokhtaeva E, Yakubov I, et al. Inverse correlation between the extent of N-glycan branching and intercellular adhesion in epithelia[J]. Contribution of the Na, K-ATPase b1subunit. J Biol Chem,2008,283(4):292-2202.
    [69]Pinho SS, Reis CA, Paredes J, et al. The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin[J]. Hum Mol Genet,2009,18(14):2599-608.
    [70]Kam Y, Quaranta V.Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation:evidence for an intersection between beta-catenin pools [J]. PLoS One,2009,4(2):e4580.
    [71]Heuberger J, Birchmeier W.Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling [J]. Cold Spring Harb Perspect Biol,2010,2(2):a002915.
    [72]Wu X, Tu X, Joeng KS,et al.Racl activation controls nuclear localization of beta-catenin during canonical Wnt signaling [J]. Cell,2008,133(2):340-53.
    [73]MacDonald BT, Tamai K, He X.Wnt/beta-catenin signaling:components, mechanisms, and diseases [J].Dev Cell,2009,17(1):9-26.
    [74]Antonyak MA, Moscatello DK, Wong AJ.Constitutive activation of c-Jun N-terminal kinase by a mutant epidermal growth factor receptor [J]. J Biol Chem,1998,273(5):2817-22.
    [75]Lau KS, Partridge EA, Grigorian A, et al.Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation [J].Cell,2007,129(1):123-34.
    [1]Ohtsubo K and Marth J D.Glycosylation in cellular mechanisms of health and disease[J]. Cell,2006,126(5):855-867.
    [2]Reis CA, Osorio H, Silva L, et al. Alterations in glycosylation as biomarkers for cancer detection [J]. J. Clin. Pathol,2010,63(4):322-329.
    [3]Liang P H, Wu C Y, Greenberg W A et al. Glycan arrays:biological and medical applications[J].Curr. Opin. Chem.Biol,2008,12(1):86-92.
    [4]Rudd P M, Elliott T, Cresswell P, et al. Glycosylation and the immune system [J]. Science,2001,291(5512):2370-2376.
    [5]Cummings J H and Stephen A M.Carbohydrate terminology and classifi cation [J].Eur. J. Clin. Nutr,2007,61Suppl.1:S5-S18.
    [6]Honda S, Suzuki S and Taga A.Analysis of carbohydrates as1-phenyl-3-methyl-5-pyrazolone derivatives by capillary/microchip electrophoresis and capillary electrochromatography [J]. J. Pharmaceut. Biomed,2003,30(6):1689-1714.
    [7]Trombetta ES, Parodi AJ. N-glycan processing and glycoprotein folding[J].Adv Protein Chem,2001,59:303-44.
    [8]Hassan H, Reis CA, Bennett EP, et al. The lectin domain of UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-T4directs its glycopeptide specificities [J]. J Biol Chem,2000,275(49):38197-205.
    [9]Clausen H, Bennett EP. A family of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation[J].Glycobiology,1996,6(6):635-46.
    [10]Ten Hagen KG, Fritz TA, Tabak LA. All in the family:the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases[J]. Glycobiology,2003,13(1):1R-16R.
    [11]Homa FL, Hollander T, Lehman DJ, et al. Isolation and expression of a cDNA clone encoding a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase[J]. J Biol Chem,1993,268(17):12609-16.
    [12]BennettEP, HassanH, ClausenH. cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine.Polypeptide N-acetylgalactosaminyltransferase, Gal-NAc-T3[J]. J Biol Chem,1996,271(29):17006-12.
    [13]White T, Bennett EP, Takio K. Purification and cDNA cloning of a human UDP-Nacetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase[J]. J Biol Chem,1995,270(41):24156-65.
    [14]Wandall HH, Hassan H, Mirgorodskaya E, et al. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1,-T2, and-T3[J]. J Biol Chem,1997,272(38):23503-14.
    [15]Gomes J, Marcos NT, Berois N, et al. Expression of UDP-N-acetyl-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase-6in Gastric Mucosa, Intestinal Metaplasia, and Gastric Carcinoma[J]. J Histochem Cytochem,2009,57(1):79-86.
    [16]Wandall HH, Hassan H, Mirgorodskaya E, et al. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1,-T2, and-T3[J]. J Biol Chem,1997,272(38):23503-14.
    [17]Bennett EP, Hassan H, Hollingsworth MA, et al. A novel human UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T7, with specificity for partial GalNAc-glycosylated acceptor substrates[J]. FEBS Lett,1999,460(2):226-30.
    [18]Sutherlin ME, Nishimori I, Caffrey T, et al. Expression of three UDP-N-acetylalpha-D-galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines [J]. Cancer Res,1997,57(21):4744-8.
    [19]Brooks SA, Carter TM, Bennett EP, et al. Immunolocalisation of members of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with biologically relevant altered cell surface glycosylation in breast cancer [J]. Acta Histochem,2007,109(4):273-84.
    [20]Rajpert-De Meyts E, Poll SN, et al. Changes in the profile of simple mucin-type O-glycans and polypeptide GalNAc-transferases in human testis and testicular neoplasms are associated with germ cell maturation and tumour differentiation[J]. Virchows Arch,2007,451(4):805-14.
    [21]Stanley P.Golgi glycosylation[J]. Cold Spring Harb Perspect Biol,2011,3(4). pii: a005199. doi:10.1101/cshperspect.a005199.
    [22]Blom N, Sichefitz-Pont6n T, Gupta R,et al. Prediction of post-translational glycosylation an dphosphorylation of protein from the amino acid sequence[J]. Proteomics,2004,4(6):1633-1649.
    [23]Herscovics A, Schneikert J, Athanassiadis A, et al.Isolation of a mouse Ge ls-mannesidase cDNA.a member of a gene family conserved from yeast to mammals[J].J Biol Chem,1994,269(13):9864-9871.
    [24]Gill DJ, Clausen H, Bard F.Location, location, location:new insights into O-GalNAc protein glycosylation[J]. Trends Cell Biol,2011,21(3):149-58.
    [25]Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW.Protein N-glycosylation, protein folding, and protein quality control[J].Mol Cells,2010,30(6):497-506.
    [26]Elbein AD.Inhibitors of the biosynthesis and processing of N-linked oligosaccharides[J].CRC Crit Rev Biochem,1984,16(1):21-49.
    [27]Hamanoue M, Okano H. Cell surface N-glycans-mediated isolation of mouse neural stem cells[J].J Cell Physiol,2011,226(6):1433-8. doi:10.1002/jcp.22436.
    [28]Boscher C, Dennis JW, Nabi IR.Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol,2011,23(4):383-92.
    [29]Isaji T, Kariya Y, Xu Q, et al.Functional roles of the bisecting GlcNAc in integrin-mediated cell adhesion [J].Methods Enzymol,2010,480:445-59.
    [30]Sperandio M, Gleissner CA, Ley K.Glycosylation in immune cell trafficking[J]. Immunol Rev,2009,230(1):97-113.
    [31]Yeung S J, Pan J and Lee M H. Roles of p53, Myc and HIF-1in Regulating Glycolysis-the Seventh Hallmark of Cancer[J].Cell,Mol. Life Sci,2008,65(24):3981-3999.
    [32]Varki A, Kannagi R and Toole B P. Glycosylation changes in cancer[M].2009in Essentials of glycobiology,2nd edition,(eds.) A Varki, R D Cummings, J D Esko, H H Freeze, P Stanley, C R Bertozzi, G W Hart and M E Etzler (New York:Cold Spring Harbor Laboratory Press) pp580-670.
    [33]Fuster M M and Esko J D. The sweet and sour of cancer:Glycans as novel therapeutic targets[J].Nat. Rev. Cancer,2005,5(7):526-542.
    [34]Gilbert S F.Ageing and cancer as diseases of epigenesist[J].J.Biosci,2009,34(4)601-604.
    [35]Varki A, Kannagi R and Toole B P.Glycosylation changes in cancer[M].2009in Essentials of glycobiology,2nd edition,(eds.) A Varki, R D Cummings, J D Esko, H H Freeze, P Stanley, C R Bertozzi, G W Hart and M E Etzler (New York:Cold Spring Harbor Laboratory Press) pp580-670
    [36]Contessa J N, Bhojani M S, Freeze H H, et al.Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy[J].Clin. Cancer Res,2010,16(12):3205-3214.
    [37]Waetzig G H, Chalaris A, Rosenstiel P, et al. N-linked glycosylation is essential for the stability but not the signaling function of the interleukin-6signal transducer glycoprotein130[J]. J. Biol. Chem,2010,285(3):1781-1789.
    [38]Zhao Y Y, Sato Y, Isaji T,et al.Branched N-glycans regulate the biological functions of integrins and cadherins[J].FEBS J,2008a,275(9):1939-1948.
    [39]Pinho S S, Osorio H, Nita-Lazar M, et al. Role of E-cadherin N-glycosylation profi le in a mammary tumor model[J].Biochem. Biophs. Res. Commun,2009,379(4):1091-1096.
    [40]Zavareh R B, Lau K S, Hurren R, et al. Inhibition of the sodium/potassium ATPase impairs N-glycan expression and function[J]. Cancer Res,2008(16),68:6688-6697.
    [41]Gu J, Sato Y, Kariya Y, et al. A mutual regulation between cell-cell adhesion and N-glycosylation:Implication of the bisecting GlcNAc for biological functions[J].J. Proteome Res,2009,8(2):431-435.
    [42]Wang L Y, Liang Y L, Li Z X, et al. Increase in beta1-6GlcNAc branching caused by N-acetylglucosaminyltransferase V directs integrin beta1stability in human hepatocellular carcinoma cell line SMMC-7721[J].J. Cell Biochem,2007,100(1):230-241.
    [43]Patsos G, Hebbe-Viton V, Robbe-Masselot C, et al. O-Glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines[J].Glycobiology,2009,19(4):382-398.
    [44]Gallegos B, Perez-Campos E, Martinez R, et al. O-glycosylation expression in fi broadenoma[J].Prep.Biochem. Biotech,2010,40(1):1-12.
    [45]Ju T Z, Lanneau G S, Gautam T, Wang Y C, et al. Human tumor antigens to and sialyl Tn arise from mutations in Cosmc[J]. Cancer Res,2008,68(6):1636-1646.
    [46]McCluskey K, Wiest A and Plamann M.The Fungal Genetics Stock Center:a repository for50years of fungal genetics research[J].J. Biosci,2010,35(1):119-126.
    [47]Wu M H, Hong T M, Cheng H W, et al. Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons[J]. Mol. Cancer Res,2009,7(3):311-318.
    [48]Deguchi T, Tanemura M, Miyoshi E, et al. Increased immunogenicity of tumor-associated antigen, Mucin1, engineered to EXPRESS alpha-Gal epitopes:a novel approach to immunotherapy in pancreatic cancer [J]. Cancer Res,2010,70(13):5259-5269.
    [49]Brockhausen I.Pathways of O-glycan biosynthesis in cancer cells[J].Bba-Gen Subjects,1999,1473(1):67-95.
    [50]Meyts E, Poll S N, Goukasian I, et al.Changes in the profi le of simple mucin-type O-glycans and polypeptide GalNAc-transferases in human testis and testicular neoplasms are associated with germ cell maturation and tumour differentiation[J].Virchows Arch,2007,451(4):805-814.
    [51]Mayoral M A, Mayoral C, Meneses A, et al.Identification of Galectin-3and mucin-type O-glycans in breast cancer and its metastasis to brain[J].Cancer Invest,2008,26(6):615-623.
    [52]Peracaula R, Barrabes S, Sarrats A, et al. Altered glycosylation in tumours focused to cancer diagnosis[J].Dis. Markers,2008,25(4-5):207-218.
    [53]Dwek M V and Brooks S A.Harnessing changes in cellular glycosylation in new cancer treatment strategies[J].Curr. Cancer Drug Tar,2004,4(5):425-442.
    [54]Kim Y S, Yoo H S and Ko J H. Implication of aberrant glycosylation in cancer and use of lectin for cancer biomarker discovery[J].Protein Peptide Lett,2009,16(5):499-507.
    [55]Arnold J N, Saldova R, Hamid U et al. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation[J].Proteomics2008,8(16):3284-3293.
    [56]Huang G C and Chen L B.Recombinant human endostatin improves anti-tumor effi cacy of paclitaxel by normalizing tumor vasculature in Lewis lung carcinoma[J].J. Cancer Res.Clin,2010,136(8):1201-1211.
    [57]Zhang G, Zhang H T, Wang Q, et al. Suppression of human prostate tumor growth by a unique prostate-specifi c monoclonal antibody F77targeting a glycolipid marker[J].Proc. Nat. Acad.Sci,2010,107(2):732-737.
    [58]Yi J K, Chang J W, Han W, et al. Autoantibody to Tumor Antigen, Alpha2-HS Glycoprotein:A Novel Biomarker of Breast Cancer Screening and Diagnosis[J].Cancer Epidem. Biomar,2009,18(5):1357-1364.
    [59]Rose A, Grosset A A, Dong Z F, et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer[J].Clin.Cancer Res,2010,16(7):2147-2156.
    [60]Ariga T, Suetake K, Nakane M, et al. Glycosphingolipid antigens in neural tumor cell lines and anti-glycosphingolipid antibodies in sera of patients with neural tumors[J].Neurosignals,2008:16(2-3):226-234.
    [61]Heim R, Tsien RY. Enineering green fluorescent protein for improved brightness, longer wayelengths and fluores-cence resonance energy transfer[J].Curr Biol,1996,6(2): 178-182.
    [62]Dwek M V and Brooks S A. Harnessing changes in cellular glycosylation in new cancer treatment strategies[J].Curr. Cancer Drug Tar,2004,4(5):425-442.
    [63]Zavareh R B, Lau K S, Hurren R, et al. Inhibition of the sodium/potassium ATPase impairs N-glycan expression and function[J].Cancer Res,2008,68(16):6688-6697.
    [64]Contessa J N, Bhojani M S, Freeze H H, et al. Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy[J].Clin. Cancer Res,2010,16(12):3205-3214.
    [65]Knas M, Szajda S D, Snarska J, et al. Colon Cancer Releases alpha-Tocopherol from Its O-Glycosides Better Than Normal Colon Tissue[J]. Hepato-Gastroenterol,2009,56(90):339-342.
    [66]Tang C K, Katsara M and Apostolopoulos V. Strategies used for MUC1immunotherapy:human clinical studies[J]. Expert Rev Vaccines,2008,7(7):963-975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700