用户名: 密码: 验证码:
白僵菌和绿僵菌在植物根际的定殖及对几种土传植物病原真菌的抑制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虫生真菌是昆虫的重要自然调节因素,在农、林、卫生害虫生物防治方面发挥了重要作用。金龟子绿僵菌和球孢白僵菌是两类重要的昆虫病原真菌,可寄生多种昆虫,在害虫生物防治中得到广泛的应用。本文通过形态学鉴定、分子标记等方法研究了分离自涡阳、萧县、蒙城三个地区玉米根际土壤的白僵菌,以球孢白僵菌和金龟子绿僵菌为研究对象,探讨了虫生真菌对多菌灵的敏感性,虫生真菌在植物根际的定殖能力,虫生真菌对土传植物病原真菌的抑制作用及不同碳、氮营养对虫生真菌生物学特性和抑菌活性的影响。主要研究结果如下:
     1.通过白僵菌选择性培养基从采自安徽省涡阳、萧县、蒙城三个地区的玉米根际土壤中共分离到39个白僵菌菌株,经培养特点、形态特征及rDNA ITS鉴定分离的菌株均为球孢白僵菌(Beauveria bassiana),且不同菌株间的菌落生长直径和分生孢子产生量存在显著差异。
     2.通过ISSR-PCR分子标记技术对分离自玉米根际的球孢白僵菌的遗传多样性进行了研究。从40个引物中共筛选出11个多态性高、稳定性好的引物用于正式的扩增分析,在37个菌株中共扩增出83条谱带,其中多态性条带占69条,多态性百分率为83.13﹪。平均每引物扩增条带在7.5条。群体的多态位点百分率(PPL)是83.13﹪,Nei基因多样性指数(H)为0.3169,Shannon信息指数(I)为0.4657。结果表明,分离自安徽省涡阳、萧县、蒙城三个不同地区的球孢白僵菌具有较高的遗传多样性。
     3.通过菌丝生长抑制率法测定了球孢白僵菌(B. bassiana)和金龟子绿僵菌(Metarhizium anisopliae)对多菌灵的敏感性。发现球孢白僵菌和金龟子绿僵菌不同菌株对多菌灵的敏感性存在一定的差异。在供试的球孢白僵菌菌株中,菌株GY~(-1)7的EC_(50)值最大,GY-6的EC_(50)值最小。在供试的金龟子绿僵菌菌株中,Ma55菌株的EC_(50)值最小,对多菌灵的敏感性最强,其次是Ma27菌株,Ma10菌株的EC_(50)值最高。
     4.在含多菌灵平板上,通过贴接菌丝块法和涂分生孢子法定向筛选获得了球孢白僵菌和金龟子绿僵菌抗多菌灵菌株,并测定了不同抗性菌株对多菌灵的抗性水平。测定结果表明,在球孢白僵菌抗多菌灵菌株中,BC-4菌株的EC_(50)值最大,其EC_(50)值为258.7711,对多菌灵的抗性水平最高,达到242.11,BC-3菌株的EC_(50)值最小,其EC_(50)值为18.6311,抗性水平最低。在金龟子绿僵菌抗多菌灵菌株中,MC-2菌株的EC_(50)值最大,其EC_(50)值为397.0643,对多菌灵的抗性水平达到102.35;MC-4菌株的EC_(50)值最小,其EC_(50)值为149.5440。研究了球孢白僵菌和金龟子绿僵菌抗多菌灵菌株的菌丝生长速率和产孢能力的差异,发现球孢白僵菌和金龟子绿僵菌不同抗性菌株间的菌丝生长速率和产孢能力均存在一定的差异,抗性菌株的生长速率均比对照敏感菌株(亲本菌株)小,产孢能力均比对照敏感菌株要强,但不同菌株间存在一定的差异,在球孢白僵菌抗性菌株中,BC-4菌株的分生孢子产生量最大,在金龟子绿僵菌抗性菌株中,MC-2菌株的分生孢子产生量最大。
     5.采用分生孢子悬浮液蘸根法研究了球孢白僵菌抗多菌灵菌株BC-8菌株和金龟子绿僵菌抗多菌灵菌株MC-2菌株在植物根际的定殖能力及对根际微生物的影响。结果显示,BC-8菌株和MC-2菌株均可以在玉米、棉花外根际和根表定殖,但在玉米、棉花根内未分离到供试菌株。BC-8菌株和MC-2菌株对植物根际微生物的数量都有一定程度的影响,尤其以前期影响较为明显,随着时间的推移,影响减弱。
     6.在实验室条件下,研究了金龟子绿僵菌和球孢白僵菌对几种土传植物病原真菌的拮抗作用及其机制。对峙培养结果表明,金龟子绿僵菌和球孢白僵菌对供试的植物病原真菌均有抑制作用,其中绿僵菌以Ma55的制效果最好,白僵菌以Bb2092的效果最好。在培养基中加入Ma55和Bb2092不同浓度的分生孢子悬浮液,当浓度为106cfu·mL~(-1)时,对植物病原真菌菌丝生长具有明显的抑制作用。Ma55和Bb2092液体振荡培养获得的无菌发酵液对供试的植物病原真菌菌丝生长都有较好的的抑制作用,对植物病原真菌的分生孢子(菌核)产生及分生孢子(菌核)萌发也都有一定的抑制作用。显微镜观察未发现金龟子绿僵菌和球孢白僵菌与植物病原真菌菌丝间有重寄生现象。上述结果显示,虫生真菌对供试植物病原真菌的拮抗机制主要是营养竞争、空间竞争及抗生作用。
     7.研究了不同碳源和氮源对球孢白僵菌和金龟子绿僵菌菌丝生长、分生孢子产生量、菌丝生物量及其次生代谢产物的抑菌活性。结果表明,虫生真菌对单糖、双糖、多糖等碳营养及有机氮和无机氮等氮营养均能够利用,但利用程度存在一定差异。代谢液的抑菌活性实验结果表明,不同处理获得的球孢白僵菌发酵液对供试的5种镰刀菌菌丝生长均有不同程度的抑制作用,在碳源发酵液中,甘油的抑菌效果最好,乳糖的抑菌效果最差。在氮源发酵液中,硫酸铵的抑菌效果最好,脲的抑菌效果最差;不同处理获得的金龟子绿僵菌代谢液对植物病原真菌菌丝生长均有较好的抑制作用,在碳源发酵液中,白砂糖的抑菌效果最好,乳糖的抑菌效果最差。在氮源发酵液中,蛋白胨的抑菌效果最好,脲的抑菌效果最差。
Entomogenous fungi are an important regulator of insect populations and they spreadwidely in agro-ecosystems and play an important role for biological control of crop,orchard, forest and medical insects. Metarhizium anisopliae and Beauveria bassiana aretwo most important entomogenous fungi, which has a wide range of insect hosts and hasbeen widely used for fungal insecticides. In this paper, some isolates from maizerhizosphere soil collected from Guoyang, Xiaoxian and Mengcheng, north Anhui wereidentified as B. bassiana by both morphological method and rDNA ITS sequenceanalysis. They and some M. anisopliae isolates were tested for their sensitivity tocarbendazim, the colonization ability in plant rhizosphere, the inhibition on soil-borneplant pathogenic fungi, and the effects of different carbon and nitrogen sources on theirbiological characteristics and anti-fungal activity. The results were as follows:
     1. With selective medium, thirty-nine strains of Beauveria were isolated from maizerhizosphere soil, collected from Counties of Guoyang, Xiaoxian, and Mengcheng in thenorth of Anhui province. The strains were classified and identified as B. bassiana by bothmorphological and molecular (rDNA ITS sequence analysis) means. The colony diameterand conidia number of different strains were tested in vitro and showed significantdifference.
     2. The genetic diversity of thirty-seven B. bassiana strains isolated from maizerhizosphere was estimated using inter-simple sequence repeats (ISSR) markers. Elevenamong forty ISSR primers were chosen for their reproducibility and high polymorphism.Each primer resulted in7.5markers and totally83fragments were amplified, in which69(83.13%) were polymorphic. Genetic diversity analysis revealed a relatively high level ofintraspecific genetic diversity of B. bassiana. The percentage of polymorphic loci (PPL)was83.13﹪, Nei’s genetic diversity (H) was0.3169and Shannon’s information index (I)was0.4657. It suggested that the thirty-seven B. bassiana strains had highly geneticdiversity.
     3. The sensitivities of B. bassiana and M. anisopliae to carbendazim were studiedby mycelial growth inhibition rate method. The results showed that the sensitivities ofB. bassiana and M. anisopliae to carbendazim had some differences. Among the testedstrains of B. bassiana, the EC_(50)value of GY~(-1)7was the highest, but that of GY-6wasthe lowest. Among the tested strains of M. anisopliae, the EC_(50)value of Ma55was thelowest, followed by Ma27, while the EC_(50)value (4.05) of Ma10was the highest.
     4. The resistant level of the carbendazim-resistant strains of B. bassiana and M.anisopliae were studied, by mycelium and conidium oriented screening. The resultsshowed that the resistant level of BC-4was the highest among thecarbendazim-resistant strains of B. bassiana, with EC_(50)and the resistant level at258.77and242.11, respectively. The resistance level of BC-3was the lowest amongthe carbendazim-resistant strains of B. bassiana, with EC_(50)at18.63. The resistantlevel of MC-2was the highest among the carbendazim-resistant strains of M.anisopliae, with EC_(50)and resistant level was397.06and102.35, respectively. TheEC_(50)of MC-4was the smallest (149.54). The mycelia growth rate and sporulationability of the carbendazim-resistant mutants were studied too. It showed that themycelium growth rate and sporulation capacity had some differences among differentcarbendazim-resistant mutants. The growth rate of resistant mutants was smaller thanthat of the control (parent strain), but sporulation ability was stronger than that of thecontrol (susceptible strain), and different strains had some differences. Among thecarbendazim-resistant strains, the sporulation of BC-4mutant and MC-2mutant wasthe highest.
     5. The colonization ability and the influence on rhizosphere microorganisms of thecarbendazim-resistant mutants BC-8and MC-2in the plant rhizosphere were studied bymeans of dipping in conidial suspension. BC-8and MC-2were detected from outerrhizosphere and root surface of maize and cotton, but not from inside the roots. Itsuggested that BC-8strain and MC-2strain had a certain influence on the number of plantrhizosphere microorganisms, especially at the beginning, but the effects decreased withtime.
     6. Under laboratory conditions, the inhibition of M. anisopliae and B. bassianaagainst Fusarium oxysporium f. sp. vasinfectum and other soil-borne plant pathogenicfungi, and its mechanism were studied in vitro by dual culture, cup-plate test andmicroscopic examination. The results of dual-culture test showed that among three M.anisopliae isolates and four B. bassiana isolates which all displayed obvious inhibition onthe tested soil-borne plant pathogenic fungi, Ma55and Bb2092resulted in the highestinhibition. On the PDA plates mixed with different concentrations of conidial suspensionof Ma55and Bb2092, the inhibition rate by the suspension of106conidia per milliliterswas the highest to all tested fungi. The inhibition on mycelia growth of the tested fungi bysterile fermented broth of M. anisopliae and B. bassiana shake culture was obvious, andthose to production and germination of their conidia (sclerotia) were also significant. No hyperparasitism of M. anisolpiae and B. bassiana on the hyphae of the tested fungi wasobserved microscopically. All these evidences suggested that the inhibitory mechanisms ofM. anisopliae and B. bassiana against the pathogen of soil-borne plant diseases weremainly competition to nutrition, space and antibiosis.
     7. The biological characteristics of B. bassiana and M. anisopliae were compared indifferent carbon sources and nitrogen sources by measuring the mycelium growth, drymycelium biomass and conidia yield. The results showed that B. bassiana and M.anisopliae could use many carbohydrate and nitrogen sources for the mycelia growth. Bymeans of mycelium growth rate, the inhibitory rates of metabolic liquid cultured withdifferent carbon sources and nitrogen sources were tested. The anti-fungal assay of thesecondary metabolites of B. bassiana showed that the metabolic liquid cultured withdifferent carbon sources and nitrogen sources had significant difference on the5testedstrains of Fusarium. Among the metabolic liquid, the inhibitory rates of those withglycerol and ammonium sulfate as carbon and nitrogen source were the highest and thosewith lactose and urea as carbon and nitrogen source were the lowest. The anti-fungal assayof the secondary metabolites of M. anisopliae revealed that secondary metabolitesproduced in the culture with sucrose as the carbon source and/or the peptone as thenitrogen sources was the highest.
引文
[1]蒲蛰龙,李增智.昆虫真菌学[M].合肥:安徽科学技术出版社,1996.
    [2]王利军,谭万忠,罗华东,等.虫生真菌及其在害虫生物控制中的应用现状与展望[J].河南农业科学,2010,(4):119-125.
    [3]王清海,万平平,黄玉杰,等.虫生真菌在害虫生物防治中的应用研究[J].山东科学,2005,18(4):37-41.
    [4]林华峰.虫生真菌研究进展(综述)[J].安徽农业大学学报,1998,25(3):251-254.
    [5]王记祥,马良进.虫生真菌在农林害虫生物防治中的应用[J].浙江林学院学报,2009,26(2):286-291.
    [6]李增智.中国虫生真菌应用50年简史[J].安徽农业大学学报,2007,34(2):203-207.
    [7] Shah P A, Pell J K. Entomopathogenic fungi as biological control agents [J]. AppliedMicrobiology and Biotechnology,2003,61:413-423.
    [8]杨佳后,孙钒,廖坤宏,等.4株球孢白僵菌对红火蚁毒力的生物测定[J].环境昆虫学报,2009,31(1):46-51.
    [9]刘玉军,张龙娃,何亚琼,等.栎旋木柄天牛高毒力球孢白僵菌菌株的筛选[J].昆虫学报,2008,51(2):143-149.
    [10]朱元,方力,陈斌,等.球孢白僵菌对烟草甲幼虫的毒力测定[J].云南农业大学学报,2009,24(1):42-46.
    [11]李庚祥,陈斌,李正跃,等.三株丝孢虫生真菌对松墨天牛幼虫的感染效应[J].云南农业大学学报,2009,24(1):47-50.
    [12] Eken C, Tozlu G, Dane E, et al. Pathogenicity of Beauveria bassiana (Deuteromycotina:Hypomycetes) to larvae of the small poplar longhorn beetle, Saperda populnea (Coleoptera:Cerambycidae)[J]. Mycopathologia,2006,162:69-71.
    [13] Devi K U, Padmavathi J, Sharma H C, et al. Laboratory evaluation of the virulence ofBeauveria bassiana isolates to the sorghum shoot borer Chilo partellus Swinhoe(Lepidoptera: Pyralidae) and their characterization by RAPD-PCR[J]. World Journal ofMicrobiology&Biotechnology,2001,17:131-137.
    [14] Hegedus D D, Bidochka M J, Miranpuri G S, et al. A comparison of the virulence, stabilityand cell-wall-surface characteristics of three spore types produced by the entomopathogenicfungus Beauveria bassiana [J]. Applied Microbiology Biotechnology,1992,36:785-789.
    [15] Sekhon A S, Padhye A A, Kaufman L, et al. Antigenic relationships among pathogenicBeauveria bassiana with Engyodontium album (=B. alba) and non-pathogenic species of thegenus Beauveria [J]. Mycopathologia,1997,138:1-4.
    [16] Aslantas R, Eken C, Hayat R. Beauveria bassiana pathogenicity to the cherry slugworm,Caliroa cerasi (Hymenoptera: Tenthredinidae) larvae [J]. World Journal of Microbiologyand Biotechnology,2008,24:119-122.
    [17] Alves S B, Tamai M A, Rossi L S, et al. Beauveria bassiana pathogenicity to the citrus rustmite Phyllocoptruta oleivora[J]. Experimental and Applied Acarology,2005,37:117-122.
    [18] Genthner F J, Cripe G M, Crosby D J. Effect of Beauveria bassiana and its toxins onMysidopsis bahia(Mysidaces)[J]. Archives of Environmental Contamination and Toxicology,1994,26:90-94.
    [19] Marti G A, Scorsetti A C, Siri A, et al. Isolation of Beauveria bassiana (Bals.) Vuill.(Deuteromycotina: Hyphomycetes) from the Chagas disease vector, Triatoma Infestans(Hemiptera: Reduviidae) in Argentina [J]. Mycopathologia,2005,159:389-391.
    [20] Campbell R K, Anderson T E, Semel M, et al. Management of the Colorado potato beetleusing the entomogenous fungus Beauveria bassiana[J]. American Potato Journal,1985,26:29-37.
    [21] Wekesa V W, Maniania N K, Knapp M, et al. Pathogenicity of Beauveria bassiana andMetarhizium anisopliae to the tobacco spider mite Tetranychus evansi[J]. Experimental andApplied Acarology,2005,36:41-50.
    [22]余金勇,黄吉勇,吴跃开,等.白僵菌防治马尾松毛虫试验[J].贵州林业科技,2007,35(2):38-40.
    [23]原贵生,谢映平,牛宇,等.白僵菌对山西林区油松毛虫的致病效果[J].中国生物防治,2006,22(2):118-122.
    [24]顾丽嫱,李春香,张淑红.球孢白僵菌和布氏白僵菌对甜菜夜蛾的室内毒力测定[J].江苏农业科学,2009,3:118-120.
    [25]徐耀昌.白僵菌不同菌株防治马尾松毛虫效果[J].福建林学院学报,2003,23(4):360-363.
    [26]李春香,安彦杰,张淑红.绿僵菌防治农林害虫研究进展[J].唐山师范学院学报,2006,28(5):4-6.
    [27]单乐天,冯明光.不同寄主及地理来源的16株绿僵菌对桃蚜的毒力比较[J].微生物学报,2006,46(4):602-607.
    [28] Shah F A, Prasad M, Butt T M. A novel method for the quantitative assessment of thepercolation of Metarhizium anisopliae conidia through horticultural growing media [J].BioControl,2007,52:889-893.
    [29] Brooks A, Wall R. Horizontal transmission of fungal infection by Metarhizium anisopliae inparasitic Psoroptesmites (Acari: Psoroptidae)[J]. Biological Control,2005,34:58-65.
    [30]裘晖,吴振强,梁世中.金龟子绿僵菌及其杀虫机理[J].农药,2004,43(8):342-345.
    [31]雷仲仁,问锦曾.绿僵菌治蝗研究进展[J].植物保护,2004,30(4):14-17.
    [32] Prior C, Carey M, Hraham Y J, et al. Development of a bioassay method for the selection ofentomopathogenic fungi virulent to the desert locust Schistocerca gregaria(Forakal)[J].Journal of Applied Entomology,1995,11(9):567-575.
    [33]金玉荣,殷宏,罗建勋.生防绿僵菌研究进展[J].安徽农业科学,2009,37(5):2060-2062,2077.
    [34] Sim K L, Perry D. Analysis of swainsonine and its early metabolic precursors in cultures ofMetarhizium anisopliae [J]. Glycoconjugate Journal,1997,14:661-668.
    [35] Chandler D, Davidson G, Jacobson R J. Laboratory and glasshouse evaluation ofentomopathogenis fungi against the two-spotted spider mite, Tetranychus urticae(Acari:Tetranychidae), on tomato, Lycopersicon esculentum [J]. Biocontrol Science andTechnology,2005,15:37-54.
    [36] Brooks A, Wall R. Horizontal transmission of fungal infection by Metarhizium anisopliae inparasitic Psoroptesmites (Acari: Psoroptidae)[J]. Biological Control,2005,34:58-65.
    [37] Kirkland B H, Cho E M, Keyhani N O. Differential susceptibility of Amblyomma maculatumand Amblyomma americarum (Acari: Ixodidea) to the entomopathogenic fungi Beauveriabassiana and Metarhizium anisopliae [J]. Biological Control,2004,31:414-421.
    [38]叶斌,江英成,林文清,等.金龟子绿僵菌对马尾松林节肢动物群落多样性的影响[J].福建农林大学学报(自然科学版),2005,34(2):239-243.
    [39]宋漳,江英成.绿僵菌防治第1代马尾松毛虫的研究[J].应用与环境生物学报,2001,7(6):604-608.
    [40]于凤泉,田春晖,李志强,等.绿僵菌对稻水象甲的田间防治效果研究[J].辽宁农业科学,2008(6):5-8.
    [41]丁福章,张泽华,张礼生,等.绿僵菌对椰心叶甲的控制作用研究[J].西南农业大学学报(自然科学版),2006,28(3):454-456.
    [42] Tamura S, Takhoshi N. Destruxins and piericidins: Naturally Occuring Insecticides [M]. NewYork: Marcel Dekker Inc,1971,499-539.
    [43] Kodaria T. Studies on the new toxic substance to insects, destruxin A and B, produced byOospora destructor. I. Isolation and purification of destruxin A and B [J]. Agricultural andBiological Chemistry,1961,26:36-42.
    [44] Vining L C, Kelleher W J, Schwartim A E. Oosporein production by a strain of Beauveriabassiana originally identified as America muscaria [J]. Canadian Journal of Microbiology,1962,8:931-933.
    [45] Wat C K, Mcinnes A G, Smith D G, et al. The yellow pigments of Beauveria species,structures of tenellin and bassianin [J]. Canadian Journal of Chemistry,1977,55:4090-4098.
    [46]董宏平,袁生.球孢白僵菌代谢产物的研究概况[J].生物技术,1999,9(4):33-36.
    [47]李建庆.虫生真菌毒素的性质与分离研究进展[J].滨州学院学报,21(3):53-58.
    [48]胡景江,樊美珍.球孢白僵菌胞外蛋白酶与其毒力的关系[J].安徽农业大学学报,1996,23(3):273-278.
    [49]彭国雄,张永军,杨星勇,等.球孢白僵菌不同世代菌株胞外蛋白酶与毒力的关系[J].中国生物防治,2000,16(2):61-64.
    [50]林海萍,魏锦瑜,毛胜凤,等.球孢白僵菌蛋白酶、几丁质酶、脂肪酶活性与其毒力相关性[J].中国生物防治,2008,24(3):290-292.
    [51]刘智辉,陈守文,郭志红,等.球孢白僵菌胞外蛋白酶和几丁质酶活性与对亚洲玉米螟毒力的相关性分析[J].华中农业大学学报,2005,24(4):364-368.
    [52] Leger R J S, Cooper R M, Chamley A K. Characterization of chitinase and chitobiaseproduced by the entomopathogenic fungus Metarhizium anisopliae [J]. Journal ofInvertebrate Pathology,1991,58:415-426.
    [53]樊美珍,李增智,唐晓庆.白僵菌菌种退化及其控制[J].安徽农业大学学报,1996,23(3):239-245.
    [54]卢忠燕,高松,江渝.金龟子绿僵菌固体培养条件的筛选[J].应用与环境生物学报,2004,10(2):223-225.
    [55]程国华,舒静,丁克坚.球孢白僵菌营养需求及培养条件研究[J].中国农学通报,2006,22(5):365-68.
    [56]陆晴,曹伟平,董建臻,等.不同碳、氮营养对球孢白僵菌HFW-05的生长及胞外蛋白酶产量的影响[J].华北农学报,2008,23(5):142-146.
    [57]孔琼,袁盛勇,王传铭,等.营养成分对球孢白僵菌生长的影响[J].红河学院学报,2008,6(5):37-39,79.
    [58]宋漳.金龟子绿僵菌液体深层培养研究[J].热带作物学报,2002,23(2):72-76.
    [59]李农昌,樊美珍,李春如,等.白僵菌有关培养条件及其与毒力关系的研究[J].1996,23(3):254-259.
    [60]詹儒林,许天委,黄俊生.紫外光的照射与绿僵菌对多菌灵敏感性变化的关系[J].热带作物学报,2006,27(4):91-94.
    [61]徐艳聆,赵润洲,任向辉,等.常见农药与球孢白僵菌的相容性[J].湖北农业科学,2009,48(6):1383-1385.
    [62]何末军,周国英,李燕荣.环境条件及常见农药对球孢白僵菌生长的影响[J].福建林业科技,2009,36(2):31-35.
    [63]许寿涛,应盛华,冯明光.十种常用农药与球孢白僵菌的生物学相容性[J].植物保护学报,2002,29(2):158-162.
    [64]廖文程,叶兰钦,邓建华,等.烟田常用化学农药对白僵菌孢子和菌丝的影响[J].云南农业大学学报,2004,19(1):10-13.
    [65]谷祖敏,李璐,纪明山,等.6种常用农药与球孢白僵菌和蜡蚧轮枝菌的相容性[J].农药,2006,45(5):325-326.
    [66]马静,安永平,王彩芬,等.遗传多样性研究进展[J].陕西农业科学,2010(1):126-130.
    [67]张学卫,潘建芝,高宝嘉.昆虫遗传多样性研究及展望[J].河北林果研究,2009,24(4):433-438,444.
    [68] Coates B S, Hellmich R L, Lewis C. Allelic variation of a Beauveria bassiana (Ascomycota:Hypocreales) minisatellite is independent of host range and geographic origin [J]. Genome,2002,45(1):125-132.
    [69] Bidochka M J, McDonald M A, St Leger R J, et al. Differentiation of species and strains ofentomopathogenic fungi by random amplification of polymorphic DNA (RAPD)[J]. CurrentGenetics,1994,25(2):107-113.
    [70] Glare T R, Inwood A J. Morphological and genetic characterisation of Beauveria spp. fromNew Zealand [J]. Mycological Research,1998,102:250-256.
    [71] Mohammadi T H, Reesink W, Pietersz R N, et al. Amplified-fragment length polymorphismanalysis of Propionibacterium isolates implicated in contamination of blood products[J].British Journal of Haematology,2005,131(3):403-409.
    [72] Castrillo L A, Vandenberg J D, Wraight S P. Strain-specific detection of introducedBeauveria bassiana in agricultural fields by use of sequence-characterized amplified regionmarkers [J]. Journal of Invertebrate Pathology,2003,82(2):75-83.
    [73] Zietkiewicz E, Rafalsk A, Labuda D. Genome finger printing by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J]. Genome,1994,20(2):176-183.
    [74] Neuveglise C, Brygoo Y. Identification of group-1introns in28SrDNA of theentomopathogentic fungus Beauveria brongniartii [J]. Current Genetics,1994,27:38-45.
    [75]丁德贵,李增智,樊美珍,等.球孢白僵菌种群在松林的寄主转移及遗传多样性对松毛虫持续控制的影响[J].应用生态学报,2004,15(12):2315-2320.
    [76]方志刚,张立钦,林新春.不同球孢白僵菌菌株DNA的RAPD分析[J].南京林业大学学报(自然科学版),2001,25(4):65-68.
    [77]林会峰,黄勃,李增智,等.白僵菌不同菌株DNA扩增图谱与其来源的相关性分析[J].菌物系统,1999,18(1):73-78.
    [78]张立钦,林新春,毛胜凤.绿僵菌不同菌株DNA多态性的RAPD分析[J].浙江林学院学报,2001,18(3):281-285.
    [79]韩小勇,李会平,苏筱雨,等.土壤中金龟子绿僵菌菌落宏观特征与DNA多态性的RAPD分析[J].东北林业大学学报,2010,38(5):105-109.
    [80] Glare T R, Inwood A J. Morphological and genetic characteristics of Beauveria spp. fromNew Zealand [J]. Mycological Research,1997,102:250-256.
    [81] Maurer P, Couteaudier Y, Girard P A, et al. Genetic diversity of Beavueria bassiana andrelatedness to host insect range [J]. Mycological Research,1997.101:159-164.
    [82]刘玉军,侯奎,王滨,等.黄山球孢白僵菌野生种群流行菌株的28SrDNA I型内含子分析[J].中国生物防治,2008,24(2):116-121.
    [83]陈名君,张中,樊美珍,等.利用28SrDNAI型内含子研究琅琊山球孢白僵菌菌株的遗传多样性[J].菌物学报,2006,25(4):559-566.
    [84] Zietkiewicz E, Rafalski A, Labuda D. Genome finger printing by simple sequence repeat(SSR)–anchored polymerase chain reaction amplification [J]. Genomics,1994,20(5):176-183.
    [85]水稻纹枯病立枯丝核菌的分类及遗传多样性研究进展[J].中国稻米,2010,16(3):34-38.
    [86]李旻,王四宝,樊美珍,等.森林生态系统中球孢白僵菌遗传多样性的ISSR分析[J].遗传,2006,28(8):977-983.
    [87] Ormond E L, Thomas A P M, Pugh P J A, et al. A fungal pathogen in time and space: thepopulation dynamics of Beauveria bassiana in a conifer forest [J]. FEMS MicrobiologyEcology,2010,74(1):146-154.
    [88]沈瑞清,张萍,康萍芝,等.根际微生物与植物病害关系的研究进展[J].宁夏农林科技,2006,(5):46-47,61.
    [89]胡江春,薛德林,马成新,等.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,2004,15(10):1963-1966.
    [90]刘子雄,朱天辉,张建.林木根系分泌物与根际微生物研究进展[J].世界林业研究,2005,18(6):25-30.
    [91]胡小加.根际微生物与植物营养[J].中国油料作物学报,1999,21(3):77-79.
    [92]熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-148.
    [93]张学利,杨树军,张百习.我国林木根际土壤研究进展[J].沈阳农业大学学报,2002,33(6):461-465.
    [94]孙磊,宋未.非培养方法在植物内生和根际细菌研究中的应用[J].自然科学进展,2006,12(2):140-145.
    [95]叶秋萍.茶树根际微生物的研究进展[J].福建茶叶,2006,(4):3-5.
    [96]陆勇军,陆大京.广州市郊蔬菜根际真菌物种多样性[J].生态科学,1999,18(1):56-58.
    [97]胡小加,江木兰,张银波.巨大芽孢杆菌在油菜根部定殖和促生作用的研究[J].土壤学报,2004,41(6):945-948.
    [98]李志新,邢丹英,王晓玲,等. PGPR菌剂对油菜的促生作用和菌核病防治效果[J].中国油料作物学报,2005,27(2):51-54.
    [99] Kerr A. Biological control of crown gall: Seed inoculation [J]. Journal of AppliedBacterialogy,1972,35:493-497.
    [100]李雪玲,厉云,张天宇,等.利用木霉菌防治棉花黄萎病[J].植物保护学报,2003,30(3):284-288.
    [101]葛文中,李楠.绿色木霉应用的研究进展[J].黑龙江八一农垦大学学报,2005,17(2):75-80.
    [102]田连生,张根伟,黄亚丽.木霉对蔬菜立枯丝核菌病害的生防效果研究[J].河北省科学院学报,2002,19(4):254-256.
    [103]张广志,文成敬.木霉对玉米纹枯病的生物防治[J].植物保护学报,2005,32(4):353-356.
    [104]曾华兰,叶鹏盛,何炼,等.木霉菌防治川芎根腐病的初步研究[J].西南农业学报,2005,18(4):427-430.
    [105]曾华兰,叶鹏盛,李琼芳.中药材土传病害拮抗木霉的筛选与应用初探[J].云南农业大学学报,2002,17(4):386-388.
    [106] Susanto A., Sudharto P. S., Purba R.Y.. Enhancing biological control of basal stem rotdisease (Ganoderma boninense) in oil palm plantations [J]. Mycopathologia,2005,159:153-157.
    [107] ChangY C, Baker R, Chet I. Increased growth of plants in the biological control agentTrichoderma harzianum [J]. Plant Disease,1986,70(2):145-148.
    [108] Lynch J M, Lumsden R D, Atkey P T, et al. Prospects for control of Pythium damping-offof lettuce with Trichoderma, Gliocladium, and Enterobacter spp.[J]. Biology and Fertilityof Soils.1991,12(2):95-99.
    [109]徐庆丰.我国研究和利用白僵菌防治农林害虫及有关问题的探讨[J].中国虫生真菌研究与应用(第一卷),北京:学术期刊出版社,1988,241-255.
    [110] Holder D J, Kirkland B H, Lewis M W, et al. Surface characteristics of theentomopathogenic fungus Beauveria (Cordyceps) bassiana[J]. Microbiology,2007,153,3448-3457.
    [111] Maranga R O, Kaaya G P, Mueke J M, et al. Effects of combining the fungi Beauveriabassiana and Metarhizium anisopliae on the mortality of the tick Amblyommavariegatum(ixodidae) in relation to seasonal changes[J]. Mycopathologia,2005,159:527-532.
    [112] Eken C, Tozlu G, Dane E, et al. Pathogenicity of Beauveria bassiana (Deuteromycotina:Hypomycetes) to larvae of the small poplar longhorn beetle, Saperda populnea (Coleoptera:Cerambycidae)[J]. Mycopathologia,2006,162:69-71.
    [113] Hu G, St Leger R J. Field studies using a recombinant mycoinsecticide (Metarhiziumanisopliae) reveal that it is rhizosphere cometent [J]. Applied and EnvironmentalMicrobiology,2002,68(12):6383-6387.
    [114] Bing L A, Lewis L C. Suppression of Ostrinia nubilalis (Hübner)(Lepidoptera: Pyralidae)by endophytic Beauveria bassiana (Balsamo) Vuillemin [J]. Environmental Entomology,1991,20:1207-1211.
    [115] Bing L A, Lewis L C. Endophytic Beauveria bassiana (Balsamo) Vuillemin in corn: theinfluence of the plant growth stage and Ostrinia nubilalis (Hübner)[J]. Biocontrol Scienceand Technology,1992,2:39-47.
    [116] Ownley B H, Dee M M, Gwinn K D. Effect of conidial seed treatment rate ofentomopathogenic Beauveria bassiana11-98on endophytic colonization of tomatoseedlings and control of Rhizoctonia disease[J]. Phytopathology,2008,98: S118.
    [117] Ownley B H, Griffin M R, Klingeman W E, et al. Beauveria bassiana: endophyticcolonization and plant disease control [J]. Journal Of Invertebrate Pathology,2008,98(3):267-270.
    [118] Powell W A, Klingeman W E, Ownley H H, et al. Evidence of endophytic Beauveriabassiana in seed-treated tomato plants acting as a systemic entomopathogen to larvalHelicoverpa zea (Lepidoptera: Noctuidae)[J]. Journal of Entomological Science,2009,44:391-396.
    [119] Ownley B H, Gwinn K D, Vega F E. Endophytic fungal entomopathogens with activityagainst plant pathogens: ecology and evolution [J]. BioControl,2010,55:113-128.
    [120]陆雅海,张福锁.根际微生物研究进展[J].土壤,2006,38(2):113-121.
    [121]祝明亮,夏振远,张克勤,等.淡紫拟青霉在烤烟根际定殖能力分析[J].中国烟草学报,2004,10(1):25-27.
    [122]王英姿,纪明山,祁之秋,等.利用木霉菌生物防治黄瓜枯萎病研究进展[J].北方园艺,2008,10:81-82.
    [123]田连生,王伟华,石万龙,等.木霉对尖镰孢菌的拮抗机制及生防效果研究[J].植物保护,2001,27(4):47-48.
    [124]高智谋,曹君,潘月敏,等.哈茨木霉TH-1对棉花枯萎病菌和黄萎病菌的拮抗机制研究[J].棉花学报,2007,19(3):168-172.
    [125] YANG He-tong, Tang Wen-hua, Maarten R, et al. Mode of action of Trichoderma spp.against Fusarium oxysporum f. sp. vasinfectum and Verticillium dahliae [J]. ShandongScience,2005,18(3):9-15.
    [126] Roberti R, Ghisellini L, Innocenti G. Biological control of blackleg of beet (Phoma betae)by Metarhizium anisopliae[J]. Journal of Plant Diseases and Protection,1993,100(2):203-210.
    [127] Renwick A. Campbell R, Coe S. Assessment of in vivo screening systems for potentialbiocontrol agents of Gaeumannomyces graminis[J]. Plant Pathology,1991,40(4):524-532.
    [128] Reisenzein H, Tiefenbrunner W. Growth inhibiting effect of different isolates of theentomopathogenic fungus Beauveria bassiana (Bals.) Vuill. to the plant parasitic fungi ofthe genera Fusarium, Armillaria and Rosellinia[J]. Pflanzenschutz Berichte,1997,57:15-24.
    [129] Bark Y G, Lee D G, Kim Y H, et al. Antibiotic properties of an entomopathogenic fungus,Beauveria bassiana on Fusarium oxysporum and Botrytic cinerea[J]. Korean Journal ofPlant Pathology,1996,12:245-250.
    [130] Vega F E, Goettel M S, Blackwell M, et al. Fungal entomopathogens: new insights on theirecology [J]. Fungal Ecology,2009,2(4):149-159.
    [131] Flori P, Roberti R. Treatment of onion bulbs with antagonistic fungi for the control ofFusarium oxysporum f sp cepae[J]. Difesa delle Piante,1993,16:5-12.
    [132] Kapongo J P, Shipp L, Kevan P, et al. Co-vectoring of Beauveria bassiana and Clonostachysrosea by bumble bees (Bombus impatiens) for control of insect pests and suppression ofgrey mould in greenhouse tomato and sweet pepper[J]. Biological Control,2008,46(3):508-514.
    [133] Ownley B H, Bishop D G, Pereira R M. Biocontrol of Rhizoctonia damping-off of tomatowith Beauveria bassiana[J]. Phytopathology,2000,90:S58.
    [134] Ownley B H, Pereira R M, Klingeman W E, et al. Beauveria bassiana, a dual purposebiocontrol organism, with activity against insect pests and plant pathogens. In: Lartey R T,Caesar A (eds) Emerging concepts in plant health management[J]. Research Signpost,Kerala,2004,256-269.
    [135] Clark M M, Gwinn K D, Ownley B H. Biological control of Pythium myriotylum[J].Phytopathology,2006,96: S25.
    [136]徐良雄,冯娜,薛璟花,等.绿僵菌SC0924酚酸类代谢产物及其抗荔枝霜疫霉活性[J].热带亚热带植物学报,2008,16(2):140-143.
    [137]徐良雄,冯娜,薛璟花,等.绿僵菌SC0924含氮杂环类代谢产物及其抗荔枝霜疫霉活性[J].热带亚热带植物学报,2010,18(1):93-96.
    [138]张猛,张天宇,张玉娜.植物寄生线虫生防因子研究进展[J].山东农业大学学报(自然科学版),2004,35(2):311-314.
    [139]张飞跃,孙炳剑,李洪连,袁虹霞.植物寄生线虫生防因子研究进展[J].河南农业科学,2008,8:14-19.
    [140]祝明亮,李天飞,张克勤,等.根结线虫生防资源概况及进展[J].微生物学报,2004,31(1):100-104.
    [141]王会芳,肖彤,陈绵才,等.真菌和细菌防治根结线虫的研究进展[J].广东农业科学,2007,8:45-48.
    [142]姜培增,李宏园,陈铁保.淡紫拟青霉防治植物线虫研究进展[J].中国农业科技导报,2006,8(6):38-41.
    [143]毛成得,马国奇,孙新宇.淡紫拟青霉的研究开发[J].化学工程师,2004,7:63-64.
    [144]祝明亮,张克勤.根结线虫生防菌ZK7和IPC在烟草根部定殖的显微观察[J].西北农林科技大学学报(自然科学版),2008,36(7):201-206.
    [145]潘凤娟,许艳丽,孙玉秋,等.我国大豆胞囊线虫生防真菌研究现状[J].大豆通报,2006,4:15-17.
    [146]刘国坤,肖顺,张雯,等.淡紫拟青霉FZ-0289菌株对南方根结线虫卵寄生性的离体观测[J].植物病理学报,2006,36(2):169-170.
    [147]刘丹丹,段玉玺,陈立杰. Snf907—76发酵液杀线虫活性测定及活性物质分离纯化[J].农药,2007,46(9):644-646.
    [148]陈增齐,段玉玺,陈立杰,等.球孢白僵菌Snf907发酵液对番茄根结线虫病的控病效果及防御酶活性影响[J].农药,2009,48(4):304-306,310.
    [149]陆宁海,吴利民.健康与罹病玉米根际微生物数量及真菌区系研究[J].玉米科学,2007,15(5):136-138.
    [150]邢安,文景芝,吕国忠,等.黑龙江省大豆根腐病株上镰孢菌的分离与鉴定[J].东北农业大学学报,2009,40(8):5-9.
    [151]燕勇,李卫平,高雯洁,等. rDNA-ITS序列分析在真菌鉴定中的应用[J].中国卫生检验杂志,2008,18(10):1958-1962.
    [152]何劲,雷帮星,文庭池,等.一株虫生真菌的分离鉴定及杀虫活性初探[J].安徽农业科学,2009,37(10):4530-4531,4574.
    [153]张俊忠,陈秀蓉,杨成德,等.东祁连山高寒草地土壤5种镰孢菌的形态鉴定和ITSrDNA分析[J].草原与草坪,2010,30(2):33-37.
    [154]沈萍,范秀容,李广武.微生物学实验[M].高等教育出版社,1999.
    [155] Renske L, Paula L, Thomw K. Molecular identification of ectomycorrhizal mycelium in soilhorizons. Applied and Environmental Microbiology,2003,69(1):327-333.
    [156]高蕾,姚雷.9个油用玫瑰品种遗传关系的ISSR分析[J].上海交通大学学报(农业科学版),2010,28(5):449-452,466.
    [157]贾定洪,郑林用,王波,等.22个毛木耳菌株的ISSR分析[J].西南农业学报,2010,23(5):1595-1598.
    [158]黄姝博,胡永红,吴冬,等.福建地区小叶买麻藤遗传多样性ISSR分析[J].广西植物,2010,30(5):601-607.
    [159]吴晓清,成海钟,周玉珍,等.观赏贝母种质亲缘关系的ISSR分析[J].北方园艺,2010,18:157-160.
    [160]牟海飞,林贵美,邹瑜,等.利用ISSR分子标记分析香蕉品种的遗传多样性[J].西南农业学报,2010,23(4):1206-1210.
    [161]杨宝山,王惠,姜义仁,等.栗蚕种群遗传多样性的ISSR分析[J].东北林业大学学报,2010,38(9):93-95.
    [162]郭起荣,任立宁,牟少华,等.毛竹种质分子鉴别SRAP、AFLP、ISSR联合分析[J].江西农业大学学报,2010,32(5):982-986.
    [163]李佳丽,蔡悦,栾丰刚,等.皖南与皖西南蚕区球孢白僵菌种群遗传结构的ISSR分析[J].应用生态学报,2010,21(12):3239-3247.
    [164]冯明光.生物杀虫剂与新的农业科技革命[M].植物保护21世纪展望.北京:中国科技出版社,1998:21-24.
    [165]詹儒林,李伟,郑服丛.芒果炭疽病菌对多菌灵的抗药性[J].植物保护学报,2005,32(1):71-76.
    [166]石志琦,周明国,叶钟音.油菜菌核病菌对多菌灵、菌核净抗药性菌株性质研究[J].中国油料作物学报,2000,22(4):54-61.
    [167]杨敬辉,潘以楼,朱桂梅,等.油菜菌核病菌对多菌灵和乙霉威的抗药性机理[J].植物保护学报,2004,31(1):74-78.
    [168]李红霞,周明国,陆悦健.应用PCR方法检测油菜菌核病菌对多菌灵的抗药性[J].菌物系统,2002,21(3):370-374.
    [169] Nesci A, Barros G, Castillo C, et al. Soil fungal population in preharvest maize ecosystem indifferent tillage practices in Argentina [J]. Soil&Tillage Research,2006,91:143-149.
    [170] Caravaca F, Alguacil M M, Torres P, et al. Plant type mediates rhizospheric microbialactivities and soil aggregation in a semiarid Mediterranean salt march [J]. Geoderma,2005,124:375-382.
    [171] Pereira P, Nesci A, Etcheverry M. Effects of biocontrol agents on Fusarium verticillioidescount and fumonisin content in the maize agroecosystem: Impact on rhizospheric bacterialand fungal groups [J]. Biological Control,2007,42:281-287.
    [172]范延辉,王君,郭洪燕,等.根际微生物BZ-1的分离及其抗菌促生特性[J].北方园艺,2009,10:127-128.
    [173]林华峰,张磊,李世广.蛴螬的无公害防治技术研究[J].安徽农业大学学报,2004,31(4):475-479.
    [174]卜瑞文,覃俊.白僵菌防治烟田小地老虎的仿真研究[J].软件导刊,2009,8(7):29-30.
    [175]张建朝,费永祥,邢会琴,等.马铃薯地下害虫的发生规律与防治技术研究[J].中国马铃薯,2010,24(1):28-30.
    [176]徐鹏飞,吴俊江,范素杰,等.大豆疫霉根腐病菌的分离鉴定及种质资源对3号生理小种的抗性评价[J].2010,29(2):272-275.
    [177]王伟娟,鹿秀云,李宝庆,等.河北省棉花立枯丝核菌菌丝融合群及其致病性研究[J].华北农学报,2010,25(8):274-278.
    [178]郑俊强,高增贵,庄敬华,等.玉米土传病害生物防治的研究进展[J].玉米科学,2005,13(1):111-114.
    [179]葛红莲,赵红六,郭坚华.植物土传病害微生物农药的研究开发进展[J].安徽农业科学,2004,32(1):153-155.
    [180]台莲梅,金红,贾锡云.农作物病害生物防治研究进展[J].黑龙江八一农垦大学学报,2002,14(3):21-24.
    [181]吴文君,刘惠霞.对农药的几点看法[J].农药,1998,37(9):1-5.
    [182]郑永权,姚建仁,邵向东.21世纪农药展望[J].植物保护,1998,24(4):39-40.
    [183]朱薇玲,缪礼鸿,刘晓红,等.芽孢杆菌B15及其代谢产物对棉花枯萎病菌的抑菌效果[J].湖北农业科学,2006,45(5):604-605.
    [184]王少杰,杨合同,王桂英,等.棉花枯萎病生物防治研究[J].山东科学,1991,4(4):40-43.
    [185]高智谋,曹君,潘月敏,等.哈茨木霉TH-1对棉花枯萎病菌和黄萎病菌的拮抗机制研究[J].棉花学报,2007,19(3):168-172.
    [186]缪礼鸿,黄爱荣,周俊初.3株生防芽孢杆菌的筛选及对棉花枯萎病的防治研究[J].武汉工业学院学报,2008,27(1):1-4.
    [187]张学君,刘焕利,潘小玫,等.小麦纹枯病生防菌株B3产生抗菌物质条件的研究[J].南京农业大学学报,1995,18(1):26-30.
    [188]王金生,张学君,钱显明,等.小麦纹枯病生防菌株的筛选及小区试验[J].生物防治通报,1993,9(3):102-105.
    [189]胡琼波,任顺祥.绿僵菌素的研究进展[J].中国生物防治,2004,20(4):234-242.
    [190]路宏朝,杨鸣琦,朱晓飞,等.金龟子绿僵菌发酵代谢产物中苦马豆素的初步研究[J].西北农业学报,2006,15(4):70-72.
    [191]王伟,赵谦,杨微.木霉对土传病原尖孢镰刀菌的拮抗作用[J].中国生物防治,1997,13(1):46-47.
    [192]纪明山,李博强,陈捷,等.绿色木霉TR-8菌株的生物学特性研究[J].中国生物防治,2005,21(2):104-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700