用户名: 密码: 验证码:
一类新型的TiO_2、ZrO_2包膜的含氮、膦配体混合膦酸锆负载络合钯催化剂的合成、表征及催化羰化反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属均相络合催化剂催化的氢化、氧化,尤其是羰化反应包括氢甲酰化反应可以生产成百上千万吨的化工产品,是开展绿色化学“原子经济”型反应最有前途的一类催化反应,这些过渡金属催化剂的分离回收和重复使用是影响这类反应工业化应用的最大障碍,也是近年来有机催化领域的研究热点。目前,解决该难题的方法之一是均相络合催化剂的多相化即负载或固载,以求既保持原有均相络合催化剂的性能优点,又减少或根除过渡金属的流失,实现催化剂的重复使用,降低生产成本、简化操作,便于工业化应用,提高经济效益,减少环境污染。此外均相络合催化剂多相化后,由于“高分子效应”和“微环境效应”还有可能改善催化剂的催化性能。
     磷酸氢锆、亚磷酸氢锆和有机膦酸锆是一类优良的层状材料,具有固定的层状结构和较大的比表面积,不溶于水和有机溶剂,能耐一定的酸度和碱度,有较高的化学稳定性、热稳定性和机械强度。典型的α-磷酸氢锆、有机膦酸锆以及有机-无机混合磷酸锆具有数十至数百m~2/g的比表面,可以通过吸附、插入、夹入、嵌入、悬挂、柱撑或成键连入一定尺寸的有机基团来调节层间距大小,从而在α-磷酸氢锆优良稳定的骨架上引入不同的活性基团或活性中心以制备不同用途的离子筛、催化剂和催化剂载体。我们课题组在国内较早开展功能化的有机—无机混合磷酸盐催化剂领域的研究,首次将功能化的有机—无机混合磷酸锆催化剂的研究拓展到过渡金属负载络合催化剂的新领域。首次制备了一系列有机侧链带有O、N、P等配位基团的有机—无机混合磷酸锆催化剂载体,包括有机侧链含有胺衍生物、多胺衍生物、氨基酸衍生物、含Ph_2P-N基团衍生物和Ph_2P-CH_2-N基团衍生物有机膦酸的混合磷酸锆催化剂载体及其相应的过渡金属钯催化剂。这类负载络合催化剂具有很高的催化加氢活性和一定的羰化反应活性和优良的重复使用性。
     由于多相催化反应的反应中心主要集中在催化剂表面与溶剂和底物接触的部位,因此催化剂表面起催化作用的官能团才是催化反应的主要活性中心。为了充分发挥
    
    官能团的催化作用,尽量把起催化作用的官能团集中在催化剂的表面。
     本文以多胺乙基磷酸作为提供含氮有机侧链的有机磷酸原料,TIO。和ZrO。作为
    初级载体,将多胺乙基磷酸一磷酸氢钻包膜于金属氧化物粉末表面,首次制备了14
    种不同负载率的TO。及4种ZrO。表面包膜的多胺乙基磷酸一磷酸氢错载体(简称
    ZPP/TIO。及 ZPP/ZrO。人在多胺乙基磷酸原料的合成过程中本文尝试运用‘’P NMR
    和’3C NMR对合成过程进行监测,并根据表征结果对多胺乙基磷酸的制备过程和后
    处理的操作的合理性进行了解释。
     本论文制备了季鳞盐厂乡(*比OH川O用于对***几mZ表面的部分活性*一H
    进行二苯膀甲基化,首次制备了14种新型二苯磷甲基化的负载络合N、P配体。作
    者运用模型反应探索最佳[PhZP\CHZOH)2]CI“与ZPPITIOZ的投料比,发现按
    ZPP/TIO。中有机侧链上氮原子上活性氢含量的55~60mol%投料能够得到最佳季鳞
    盐转化率和有机侧链氮原子上活性氢的转化率。
     14种负载络合配体继续与PdC12反应制得相应得14种过渡金属负载络合错催化
    剂。首次运用这些催化剂进行了催化氯等级基化合成苯乙酸催化反应性能的研究,
    国内外未见相关研究报道。实验发现在NaOH强碱水溶液,正丁醇作为有机相,PTC
    存在,55℃,体系压力IMpa和反应24小时的条件下,有几种催化剂表现出较好的
    催化性能,苯乙酸的收率在 85%以上,筛选出一种催化剂进行催化剂重复使用性能
    研究,使用 18次后,催化活性未见明显下降,苯乙酸的收率基本维持在 85%左右。
    本文运用红外光谱对催化反应使用前后的催化剂结构进行了表征,发现P——Ph伸缩
    振动明显加强,估计是催化剂在多次催化反应过程中配位了更多的PPh3,并提出初
    步的催化机理构想。
     论文在实验的基础上,首次运用亚磷酸和聚乙烯毗咯烷酮oVP)对前面制备的催
    化效果较好的催化剂进行进一步改性尝试,制备了3种用亚磷酸或PVP改性的多胺
    乙基磷酸一(亚)磷酸氢错包膜氧化物的新型载体,3种表面部分活性N——H二苯磷
    甲基化的负载络合配体以及3种相应的过渡金属负载络合肥催化剂。将制得的催化
    剂运用于催化氯苦我基化反应制备苯乙酸的催化性能研究,均有良好的催化活性。
We can use the hydrogenation, oxidation, especially the carbonylation including hydroformylation catalyzed by transition-metal homogeneous phase complex catalyst to product thousands of chemical products. This is a type of the most promising catalytic reaction for developing the green-chemical 'atomic economy' reaction. The separation, recovery and reuse of these transition-metal catalyst are the biggest obstacle, at the same time , these are the research focus in the field of organic catalyst in recent years. At present, one way of resolving the problem is the or heterogenization of the homogeneous catalysis, namely, loading to maintain the functional advantage of the original homogeneous phase catalyst and reduce or eradicate the draining of the transition metal to realize the reuse of catalyst and reduce the cost of production. The reaction is easily operated and it can easily utilized in the process of industrialization to improve economic benefit and reduce the pollution of the environment. Moreover, af
    ter the process of the homogeneous phase complex catalyst, 'effect of polymer' and 'microenvironment effect' would improve the catalytic ability of the catalyst.
    Zirconium hydrogen phosphate, Zirconium hydrogen phosphite and o zirconium phosphonate are a kind of fine stratified material, with the fixed sandwich and bigger surface area, water-insoluble and organtic-dissolvent and having the ability of withstanding acidity and alkalinity, a higher chemical stability, thermal stability and mechanical strength. The typical a -Zirconium hydrogen phosphate, zirconium phosphonate and mixed zirconium(phosphate -phosphonate) have hundreds m2/g surface area, and the distance of the
    
    
    interpass can be modified through absorption, insertion, intercalation, fostoon, supportance or bonding connection with a certain size of organic group and then introduce the different active groups or active center on the basis of well-stabile framework of a -Zirconium hydrogen phosphate to produce ionic sieve of different purpose, catalyst and catalytic carrier. Our research group have eerily carried out the research in the field of mixed zirconium (phosphate-phosphonate) functionally in our country and we first put the result of the research of organtic-inorgantic mixed zirconium phosphate catalyst functionally into the research of the transition metal supported complex catalyst. We first prepare a serious of mixed zirconium (phosphate -phosphonate) catalyst carriers having organic lateral chain with coordinating group such as O, N, P and so on, including organic lateral chain with amine derivatives, multiamine derivatives, amino acid derivatives, the mixed zirconium (phosphate-phosphonate) catalyst carrier of the organic with Ph2P-N group derivatives and Ph2P-CH2-N group derivatives and relevant transition-metal palladium catalyst. This supported complex catalyst has highest catalytic activities in hydrogenation and a certain activity of carbonylation and the better effect of reuse.
    The reactive center of the heterogeneous catalytic reaction mainly lies in the contacted space between the catalytic surface and dissolvent and bottom, so the functional groups having catalytic effect on the surface of catalyst are the main active center in the catalytic reaction. To make use of the catalytic effect of the functional groups, we should try our best to put the functional groups into the surface of catalyst.
    The author use the olyaminoethylphosphonic acid as the organic phosphoric acid original materials offering organic lateral chain including N and TiO2 and ZrO2 as elementary carriers, and envelop the zirconium (polyaminoethylposphonate-phosphate) on the surface of the metal oxides powder. We firstly prepare 14 TiO2 with different coating ratio and 4 ZrO2 carriers which surface coated by zirconium(polyaminoethyiposphonate-phosphate). On the process of the synthesis of the original materials of polyaminoethylposphonate, we attempt to use 31P NMR and 13C NMR to monitor this process and explain the rationality of the preparation of pol
引文
[1] Dines, MB;Dingcomo, P M.Derivated lamellar Phosphates and Phosphonates of M(Ⅳ)Ions[J] Inorg Chem 1981, 20:92。
    [2] Clearfield A, Thakur D S.Zirconium and Titanium Phasphate as Catalysts[J].Appl Catal, 1986, 26:1
    [3] 田布浩三著。赵君生,张嘉郁译 新型固体酸、固体碱及其催化反应。北京:化学工业出版社,1992年11月第一版:1—12
    [4] D.Thakur, A.Clearfield, Cyclohexanol Dehydration over Zirconium Phosphate of Varying Crystallinity[J].J.Catal., 1981, 69(1):230
    [5] K.Segawa, Kinoshita, Makio.Structure and Catalytic Acitivity of Zirconium Phosphate[J].Shokubai 1985, 27(4):244.
    [6] K.Sagawa, Y. Kurusu, Y. Nakayuma, M.Kinoshita, Charaterization of Crystalline Zirconium Phosphates and Their Isomerization Activities.[J].Catal., 1985, 94:491.
    [7] T. Hattori, A.Ishiguro, Y. Murakami, Acidity of Crystalline Zirconium Phosphate [J]. Inorg. Nucl. Chem., 1978, 40(6): 1107.
    [8] A.Clearfield D.S.Thakur, The Activities of Zirconium Phosphates in Relation to Their Activities in the Dehydration of Cyclohexanol, J. Catal, 1980, 65(1), 185.
    [9] Clearfield A, Thakur D S.Zirconium and Titanium Phasphate as Catalysts[J].Appl Catal, 1986, 26:1.
    [10] Dians M. B., Digacomo P. M. Derivatized lamellar phosphates and phosphonates of M(Ⅳ) ions.[J] Inorg. Chem., 1981, 20:92-95
    [11] 傅相锴,罗必奎,雷庆英.磺化苯膦酸锆催化反应研究.[J]应用化学1991,8(5):6
    [12] Yang, C.;Clearfield, A.;The Preparation and Ion-Exchange Properties of Zirconium Sulfophosphonates. Reactive Polymer[J], Ion Exch Sorbents. 1987, (5):13
    [13] 傅相锴,罗必奎,雷庆英,.磺化苯膦酸锆催化反应研究[J].,应用化学,1991,8(5):6-9
    [14] 罗必奎、傅相锴.磺化甲苯膦酸锆的制备及催化反应研究[J].离子交换与吸附.1995,11(2):162-166.
    [15] 肖进兵,徐金锁,唐颐,高滋.层状苯膦酸锆的合成及磺化研究[J].高等学校化学学报,1998,19(7):1107
    [16] 罗必奎,傅相锴,雷庆英.α-磷酸氢锆-氯化铁复合物的制备和催化反应研究.离子交换与吸附1993,9(2):124-128.
    [17] 傅相锴,胡传义,温淑英,(苯膦酸—磷酸氢)锆—氯化铁复合物催化F—C烷基化反应研究,西南师范大学学报(自然科学版)1995(03)
    [18] 傅相锴,亢为,温淑英,邓传跃,无定形(磷酸氢—二苯基次膦酸)锆—氯化铁复合物催化烷基化反应[J],应用化学,1995(06)
    [19] 傅相锴,胡传义,温淑英.(苯膦酸-磷酸氢)锆-氯化铁复合物催化-烷基化反应研究[J].西南师范大学学报(自)1995,20(3):275-277.,
    [20] 傅相锴,温淑英等;无定型(磷酸氢—二苯基次膦酸)锆—氯化铁复合物催化F-C烷基化反应研究[J].应用化学,1995,12(6):47
    [21] Fu Xiangkai, Wen Shuying. Preparation of Zirconium (Benzyldiethylammonio-
    
    methyl-phosphonate Chloride) and Reactions[J], Synth. Commun, 1995, 25(16):2435
    [22] 傅相锴,罗必奎,新型三相催化剂-磷酸盐固载季铵盐ZPDBBC,科学通报.1992,37(7).:672
    [23] 傅相锴,温淑英,亢为,二丁胺甲基膦酸锆的苄基季胺化合物及其相转移催化作用,应用化学,1995(02):20
    [24] 曾仁权,龚成斌,傅棚锴,李龙芹,陈静蓉,二甲胺乙基膦酸钡新型固体碱催化剂的研究,分子催化,2000年01期,
    [25] 龚成斌,曾仁权,傅相锴,李龙芹,陈静蓉,N,N-二甲基胺乙基膦酸-磷酸氢锆为载体的新型固体碱研究,应用化学,2000年03期。()
    [26] 傅相锴,马学兵,温淑英等,物理化学学报,1996,12(12):1079
    [27] 马学兵、傅相锴,刘昌华等,离子交换与吸附,1998,14(1):74
    [28] 傅相锴,马学兵,刘昌华等,应用化学1997,14(1):74
    [29] 马学兵,傅相锴,龚成斌,含氮膦配体有机无机磷酸锆-钯络合物催化合成苯乙酸,西南师范大学学报(自然科学版),1998,23(02)
    [30] 马和珍,冯元良,我国苯乙酸技术现状与开发途径[J],化学工程,2000,28(4):46~47
    [31] 杨联雄.由苯乙酰胺合成苯乙酸[J].辽宁化工,1994,3:42-43
    [32] 杜敬星,应桃开,牺牲阳极法在电有机合成中的应用[J].化学通报,1993,2:30-33。
    [33] Souck Oumar, Troupel Michel and Perichon Jacques. Electrosynthesis of carboxylic acid from orgonic halides and carbon dioxide [J].Tetrahedron Lett. 1985, 26(12):1509~1512
    [34] 苯乙酸的电化学合成,精细石油化工,1999,5(3),36~39
    [35] Schoenberg A, Bartoletti Iand Heck P F. Palladium-catalyzed carboalkoxylation of aryl, benzyl and vinylic halides. [J]. Org. Chem., 1974, 39(23):3318~3326
    [36] Epstein R A, Yonkers N Y. Single phase carbonylation of aromatic halides to carboxylic acid salts. US 4713484, 1987
    [37] Urata E, Hu Nan-Xing, Maekawa H et al. Transition metal complex catalyzed carbonylation of organic halides in the presence of molecular sieves instead of base. Tetrahedron lett., 1991, 32(36):4733~4736
    [38] Cavinato G and Toniolo L. Palladim-catalyzed carbonylation of benzyl alcohol derivatives to phenylacetic acid derivatives [J], Mol. Catal. 1993, 78:131~142
    [39] a)Woell JB and Alper H. Synthesis of esters by Rh(Ⅲ)catalyzed borate ester-benzylic bromide carbonyltion reactions. Tetrahedron lett., 1984, 25(35):3791~3794; b)Alper H, Hamel N, Smith D JH and Woell JB. Iodide ion promotion of benzyl chloride-borate ester carbonylation reactions. Tetrahedron lett., 1985, 26(19):2273~2274; c)Buchan C, Hamel N, Woell JB and Alper H. Rh(Ⅲ)-catalyzed carbonyltion reactions of halide and ethers. Tetrahedron lett., 1985, 26(47):5743~5746; d)Buchan C, Hamel N, Woell J B and Alper H. Mono-and Bi-metallic catalyzed formate-halide carbonylation. J.Chem. Soc. Chem. Commun., 1986, 167; e)Woell J B, Fergusson S B and Alper H. Rhodium and palladium catalyzedcarbonylation reactions with titanium and zirconium alkoxides. J. Org. Chem, 1985, 50(12):2134~2136
    [40] 增田昭夫,三谷洋,奥坚治,山崎康男.Synthesis of phenylacetic acid in the reaction of
    
    benzyl alcohol with carbon monoxidecatalyzed by rhodium complex, 日本化学会,1982,2:249~256
    [41] Imamoto T, Kusumoto T and Yokoyama M. The conversion of benzyl alcohols into phenylacetic acid derivatives by cobalt carbonyl catalyzed carbonylation. Bull. Chem. Soc. Jpn., 1982, 55(2):643~644
    [42] a)Cassar L, Foa M and Gardano A. The use of phase-transfer catalysis in palladium-catalyzed carbonylation of organic halides. J. Organomet. Chem., 1976, 121:C55~C56; b)Cassar L and Foa M. Phase-transfer catalysis in cobalt-catalyzed carbonylation of benzyl halides. J. Organomet. Chem., 1977, 134:C15~C16
    [43] Alper H and Abbayes H D. Phase-transfer catalyzed organometallic chemistry. The cobalt carbonyl catalyzed carbonylation of halides.[J]. Organomet. Chem, 1977, 134:C11~C14. 1988, 2(2):79~85.
    [44] 金子林,王亚权,夏志高等.Co_2(CO)_8催化的相转移氯苄羰化反应动力学研究[J].分子催化,1988,2(2):79~85.
    [45] Hu Yulei, Wang Jin-xian and Cui Wenfeng. Carbonylation of benzyl halides using (Ph_3P)_2CoCl_2 under phase transfer, catalysis.[J] Syn. Commun. 1994, 24(12):1743~1748.
    [46] Gambrotta S and Alper H. Phase transfer catalysis using cobalttricarbonyl nitrosyl.[J]. Organomet. Chem., 1981, 212:C23~C26
    [47] 张善言,肖森,冉鸣等,在相转移下苄基氯经钯催化羰化合成苯乙酸[J].分子催化,1987,1(2):115~119
    [48] Khan M M Taqui, Halligudi S B and Abdi S H R. Carbonylation of benzyl chloride to phenylacetic acid and its ester using water-suluble Ru(Ⅲ)-EDTA complex catalyst.[J]. Mol. Catal., 1988, 44:179~181
    [49] a]Okano T, Uchida I, Nakagaki T et al. Carbonylation of benzyl chloride catalyzed by watersoluble palladium phosphine complex in a two-phase system.[J]. Mol.Catal., 1989, 54:65~71. b)Okano T, Hayashi T and Kiji J. Synthesis of phenylacetic acid via carbonylation of benzyl chloride in the presence of a water-soluble complex [PdCl_2{PPh_2(m-C_6H_4SO_3Na)}_2]and surfactants undertwo-phase conditions[J]. Bull. Chem. Soc. Jpn., 1994, 67:2339~2341
    [50] Kohlpaintner C W and Beller M. Palladiun-catalyzed carbonylation of benzyl chloride to phenylacetic acids-a new two-phase process. [J]. Mol. Catal. A:Chem., 1997, 116:259~267
    [51] Yamasaki K, Uchimoto T, Kakuta N and Ueno A. Development of an immobilized rhodium catalyst for carbonylation of benzyl alcohol. J. Mol. Catal. 1988, 48:21~23
    [52] 万伯顺,廖世键,徐筠,余道容,双重负载钯催化剂高选择性地催化氯苄羰基化生成苯乙酸甲酯[J],分子催化,1999,13(3):209~211
    [53] 含氮膦配体有机无机磷酸锆-钯络合物催化合成苯乙酸,马学兵,傅相锴,龚成斌西南师范大学学报(自然科学版)1998年02期。
    [54] 陈文山,傅相锴,马学兵,李龙芹,陈静蓉;新型负载络合催化剂ZBDPPEDAEPA/TiO_2/Pd催化羰化反应研究[J].分子催化,2001,15(6):447
    [55] Horiguchi M, Kandatsu M. Nature (London), 1959, 134, 901
    
    
    [56] Digiacomo P M, Dines M B, Parziale V E. Eur pat appl 10857(1980)
    [57] 许临晓,陶凤岗,于同隐,超声波辐射下芳基叔膦的断裂反应[J]。高等化学学报,1998,9(1)
    [58] Fawcett J, Hoye P A T, Kemmitt R D W, Law D J, et al. Synthesis of Bis(phosphinomethyl)amines via Bis(hydroxymethyl)phophonium Salts. Isolation of 9, 9-Bis(hydroxymethyl)-9-phophoniabicyclo [3.3.1] nonane Hydrogensulfate and Chloride Salts, and the Crystal Structure of [PPh_2(CH_2OH)_2]~+ Cl~- and [(C_6H_11)_2PCH_2]_2NCHMePh[J]. J Chem Soc. Dalton Trans, 1993, 2563~2568
    [59] 傅相锴,马学兵,龚成斌,李龙芹,陈静蓉,活性基团的空间分布对混合磷酸锆-钯催化剂羰化反应催化活性的影响[J],西南师范大学学报(自)2000(04)
    [60] 龚成斌,马学兵,傅相锴,et al,分子催化,1999,13(5);327
    [61] 傅相锴、温淑英、马学兵,Pat.CN 1257869A,2000
    [62] 亚磷酸氢锆/聚乙烯吡咯烷酮/钯催化剂的催化加氢性能,傅相锴、马学兵、温淑英,应用化学,1998,15(1):17~21
    [63] Marco Foa and Franco Francalanci. Recent Developmaents in Cobalt-catalyzed Carbonyslation[J].Journal of Molecular Catalysis,1987(41):89-107.
    [64] 刘俯芳,邱祖民,郑典模,严进,氯苄经钯络合催化常压羰基化合成苯乙酸[J].化工催化剂与甲醇技术.2000,5:17~19
    [65] 张善言,蒲定波,氯苄经八羰基二钴催化双羰基化合成苯丙酮酸[J].天然气化工.1990,2:20~24
    [66] 燕远勇,金子林,钯络合物催化芳基卤化物合成a-酮酰胺的研究[J].精细石油化工,1993,1:27~29
    [67] 朱道亚,金子林,钴络合物催化的有机卤化物的双羰化反应[J],石油化工,1991,20(11):792~799
    [68] 氯苄单羰基化和双羰基化的比较,肖慧萍,邱祖民,郑典模,严进,内蒙古工业大学学报,2001,20(4):272~279
    [69] 氯苄单羰基化和双羰基化的比较,肖慧萍,邱祖民,郑典模,严进,内蒙古工业大学学报.2001,20(4):272~279 1.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700