用户名: 密码: 验证码:
大麦杂种优势及其相关分子标记开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步了解大麦杂种优势的机理及遗传规律,开发与大麦强优势相关的分子标记,促进大麦杂种优势的应用,本研究以扬州大学大麦研究所选育的10个核质互作不育系(A)及其相应保持系(B)和11个恢复系(R)为材料,于2009年与2010年分别按4×2和8×9配制F1杂种播种于扬州大学农学院试验田,2011年按8×6配制Fl杂种分别播种于方强农场、上海农场和扬州大学农学院试验田3个试验点,植株成熟后随机取竞争株考种,考种性状包括株高、穗下节间长、穗长、单株穗数、每穗粒数、千粒重、单株粒重和单株干重,分析各性状的杂种优势表现和稳定性及配合力效应。利用改进的大麦cDNA-AFLP技术分析4×2杂交种与其亲本间的基因表达差异,对可能与杂种优势相关的差异谱带进行回收测序分析;基于差异谱带的序列信息开发大麦杂种优势表现相关的分子标记,并利用8×9和8×6试验对分子标记的选择效果进行了评估。结果表明:
     (1)利用大麦cDNA-AFLP技术分析了4×2试验中8个杂种与其亲本间的基因表达差异性,256对引物共扩增出8538条带,其中杂种与亲本差异谱带为3971条,占46.52%;杂交大麦与亲本间基因表达主要有共同表达型(111)、P1表达型(100)、P2表达型(001)、F1表达型(010)、P2F1表达型(011)、P1F1表达型(110)和P1P2表达型(101)七种类型,其中后6种类型为杂种亲本差异表达类型,在不同组合间的比例具有明显差异。综合分析差异谱带类型与杂种优势后,对23个可能与大麦杂种优势相关的TDFs进行回收并BLAST分析,23个片段依据功能可分为三类:第一类为参与植株的生长发育调控的主要功能蛋白,第二类主要涉及信号传导和能量传输,第三类为未知功能或新发现的转录本片段。
     (2)杂交大麦8个性状普遍存在中亲优势,但超优亲优势仅存在少部分组合中。8×9和8×6两个试验的120个杂种8个性状的显著中亲优势的组合出现率为57.60%,其中正向显著的组合占88.24%;显著超优亲优势组合出现率为25.94%。组合间和性状间的杂种优势具有显著差异,其中株高、穗下节间长和穗长、每穗粒数和千粒重5个性状的显著中亲优势组合出现率较高,分别为94.2%、84.2%、66.7%、62.5%和67.5%,单株穗数、单株粒重和单株干重3个性状的显著中亲优势组合出现率较低,仅为17.5%、25.0%和37.5%,穗下节间长、穗长和千粒重3个性状的超优亲优势出现率较高,分别为59.2%、41.7%和59.2%,每穗粒数、单株穗数、单株粒重和单株干重4个产量性状的超优亲优势出现率均低于10%;株高性状没有出现显著的超优亲优势组合;大麦杂种的超优亲优势与组合棱型具有密切的关系,异棱型杂交种的显著超优亲优势组合出现率高于同棱型杂交种。综合各性状,A1×R3、A1×R10、A2×R9、A2×R10、A6×R3等组合为强优势组合。
     (3)8×6试验中的48个杂交大麦在方强农场、上海农场和扬州大学农学院试验田3个试验点共调查了株高、穗下节间长、穗长、单株穗数、每穗粒数、千粒重和单株粒重7个性状,7个性状在3个试验点的中亲优势和超优亲优势平均出现率分别为36.81%和8.23%;不同环境下杂种优势的出现率具有明显差异,方强农场、上海农场和扬州大学3个点的显著中亲优势出现率分别为12.76%、32.03%和51.04%,超优亲优势的出现率分别为2.86%、2.86%和15.89%。杂交大麦主要性状的超优亲优势在3个试验点之间也具有差异,部分组合仅在单个或两个试验点的超优势优势达显著水平。
     (4)21个亲本各性状上的GCA效应方差在8×6和8×9试验中均达到显著水平,大部分性状的SCA效应方差也达到显著水平;相同亲本不同性状的配合力效应不同;两个试验中相同亲本的GCA和相同组合间的SCA也存在差异。依据不同性状的GCA和SCA方差对亲本进行聚类分析,能有效地对亲本的利用价值进行评价。
     (5)基于回收谱带的序列或其同源序列信息,共设计开发了23对与杂种优势相关的分子标记。通过8×9和8×6两个试验进行验证,共有4对标记对产量性状的杂种优势的筛选效果较好,分别是TDF5-P、TDF6-P、TDF10-P和TDF12-P。4对标记的对千粒重性状强优势组合筛选的特异度变幅为43.48%~73.68%,敏感度变幅为50.00%~78.95%;对单株粒重性状强优势组合筛选的特异度变幅为5.26%~56.52%,敏感度变幅为33.330%~100%。
In order to further understand mechanisms of barley heterosis and develop molecular markers related to barley heterosis, ten CMS sterile lines (A) and their respective maintainer lines (B) and eleven restore lines (R) were used as parent materials in this study. Hybrids produced by4×2and8×9were planted in experiment fields of Yangzhou University in2009and2010, respectively. And hybrids produced by8×6were planted in Fangqiang Farm, Shanghai Farm and experiment fields of Yangzhou University in2011. After maturity, competitive plants were choosed from every block randomly. And the traits height (PH), spike length excluding awns (SL), inter-node length (IL), spikes per plant (SP), kernels on main spike (KMS), kilo-grain weight (KW), kernel weight per plant (KWP) and dry matter weight per plant (DWP) were investigated. Then heterosis and its stability of hybrids and combining ability in every trait were analysed. The different express profiles between4×2hybrids and their parents were analysed by barley modified cDNA-AFLP technology. Then the transcript-derived fragments TDFs related to barley heterosis were recovered and sequenced. Based on the sequence information, the heterosis-relative molecular markers were developed. Then the effects of markers were estimated by8×9and8×6. The results showed that:
     (1) The different express profiles of eight hybrids and their parents in experiment I were analysed by barley cDNA-AFLP technology, total8538distinct bands were detected, among which3971(46.52%) bands was different between hybrids and their parents. Seven gene expression types were observed between hybrids and their parents, which included bands detected in hybrid and two parents ('111'type), band only detected in female parent ('100'type), band only detected in male parent ('001'type), band only detected in hybrid ('010'type), bands detected in female parent and hybrid ('110'type), bands detected in male parent and hybrid ('011'type) and bands detected in two parents ('101'type). Among the seven expression types, the last six types represented the differential gene expression between hybrid and its parents. After conjoint analyzing of different express fragments and barley heterosis, twenty three TDFs possibly related to barley heterosis was recovered and analyzed. Based of the exact or predicted function, the twenty-three TDFs were classified into three categories. First category was TDFs with functions to regulate barley growth and development. Second category was the TDFs involved in signal transduction and energy transfer. And the third category was unknown TDFs and no homology sequences TDFs.
     (2) Mid-parents heterosis was ubiquity among eight traits, but over-better-parent heterosis was only in some crosses. For all120hybrids in experiment II and III, the occurrence rate of significant mid-parents heterosis was57.60%. Among the significant mid-parents heterosis crosses, the ccurrence rate of positively significant Hm crosses was88.24%. However, the occurrence rate of significant over-better-parent heterosis was only25.94%. The heterosis was different between crosses and traits. Among the different traits, the occurrence rates of significant Hm corsses in PH, IL, SL, KMS and KW were higher, which were94.2%,84.2%,66.7%,62.5%and67.5%, respectively. While the occurrence rates of significant Hm corsses in SP, KWP and DWP were only17.5%,25.0%and37.5%. The occurrence rates of significant Hb crosses in IL, SL and KW were higher, which were59.2%,41.7%and59.2%, respectively. While the occurrence rates of significant Hb crosses in other triats were all lower than10%. The hybrids from the parents with different row type generated more significant heterosis over better parent than that from the parents with the same row type. For all traits, crosses such as A1×R3, A1×R10, A2×R9, A2×R10and A6×R3and so on were superior crosses.
     (3) Forty eight hybrids in experiment Ⅲ were planted three experiment fields Fangqiang Farm, Shanghai Farm and Yangzhou University, respectively. Then PH, SL, IL, SP, KMS, KW and KWP of hybrids and their parents were investigated and heterosis was analysed. For all traits, the occurrence rates of significant Hm and Hb in three sites were36.81%and8.23%, respectively. However, the occurrence rates were different between three sites. The occurrence rates of significant Hm were12.76%,32.03%and51.04%, respectively. And the occurrence rates of significant Hb were2.86%,2.86%and15.89%, respectively. Besides that, the degrees of heterosis were also different between three sites. The Hm of some corsses were only significant in one site or two sites.
     (4) For experiment Ⅱ and Ⅲ, the GCA variances in all traits and SCA variances of most traits were significant in twenty one parents. For one parent, the combining abilities were different among different traits. And the combining abilities were different betweent the two experiments. Based on GCA and SCA variances, the twenty one parents were clustered. And it is effective to estimate the use value of parents by this cluster method.
     (5) Based on the original sequence and homologous sequence information, twenty three molecular markers were developed. After estimation, four markers with better choosing effect were gained, which were TDF5-P, TDF6-P, TDF10-P and TDF12-P. The range of specificity of four markers to choose KW was43.48%~73.68%and the range of sensitivity was50.00%~78.95%. And the range of specificity of four markers to choose KWP was5.26%~56.52%and the range of sensitivity was33.33%~100%.
引文
[1]李春霞.玉米杂种优势利用模式及品种情况分析[J].玉米科学.2002,10(1):26-28.
    [2]王国胜,陈举林,侯玮,等.玉米杂种优势类群划分与杂种优势模式研究进展[J].现代农业科技.2011(3):87-89.
    [3]Vasal S K, Srinivasan G, Crossa J, et al. Heterosis and combining ability of CIMMYT's subtropical and temperate early maturity maize germplasm[J]. Crop Sci.1992,32:884-990.
    [4]曾三省.中国玉米杂交种的种质基础[J].中国农业科学.1990,23(4):1-9.
    [5]吴景锋.我国主要玉米杂交种种质基础评述[J].中国农业科学.1983,16(2):1-8.
    [6]王懿波,王振华,王永普,等.中国玉米主要种质杂种优势群的划分及其改良利用[J].华北农学报.1998(1):75-81.
    [7]张世煌.玉米的杂种优势群和杂种优势模式[J].作物杂志.1998(S1):84-85.
    [8]袁力行,傅骏骅,M Warburton.等.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究[J].遗传学报.2000,27(8):725-733.
    [9]袁力行,张世煌.玉米遗传多样性与杂种优势群研究[J].中国农业科学.2000,33(C00):9-14.
    [10]金益.玉米杂种优势关系的研究[J].东北农业大学学报.2011,42(4):1-7.
    [11]姚文华,谭静,陈洪梅,等.玉米杂种优势类群的研究进展[J].玉米科学.2006,14(5):30-34.
    [12]王建军,雍洪军,张晓聪,等.12个外来玉米群体与我国主要种质配合力效应和杂种优势分析[J].作物学报.2012(12):2170-2177.
    [13]徐正进,陈温福,张文忠,等.北方粳稻新株型超高产育种研究进展[J].中国农业科学.2004,37(10):1407-1413.
    [14]杨守仁,赵纪书.籼粳稻杂交问题之研究[J].农业学报.1959,10(4):256-268.
    [15]袁隆平.水稻的雄性不孕性[J].科学通报.1966(4):185-188.
    [16]罗闰良.水稻杂种优势利用的成就与展望[J].湖南农业科学.2002(z1):11-14.
    [17]石明松.晚粳自然两用系选育及应用初报[J].湖北农业科学.1981(7):1-3.
    [18]石明松,石新华,王艮华,等.湖北光敏感核不育水稻的发现及利用研究[J].武汉大学学报.1987,HPGMR专刊(2-6):16.
    [19]赵步洪,奚岭林,杨建昌,等.两系杂交稻茎鞘物质运转与籽粒充实特性研究[J].西北农林科技大学学报(自然科学版).2004,32(10):9-14,19.
    [20]计划课题交流年会.“863”计划中试开发项目“两系法杂交水稻新组合试验试种和示范”1999年汇总报告[R].,2000.
    [21]曾千春,周开达,朱祯,等.中国水稻杂种优势利用现状[J].中国水稻科学.2000,14(4):243-246.
    [22]袁隆平.杂交水稻的育种战略设想[J].杂交水稻.1987(1):1-3.
    [23]Sernyk R, Stefansson B.Heterosis in summer rape (Brassica napus L.)[J]. Can J Plant Sci.1983,63:407-413.
    [24]Grant L, Beversdorf W D. Heterosis and combining ability eslimates in spring-planted oilseed rape(Brassica napus L.)[J]. Can J Genet Cylol.1985,27:472-478.
    [25]傅廷栋.杂交油菜的育种与应用[M].武汉:湖北科学技术出版社,1995.
    [26]李殿荣.甘蓝型油菜三系选育初报[J].陕西农业科学.1986(1):26-29.
    [27]潘涛,曾凡亚,吴书惠,等.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究[J].中国油料.1988(3):7-10.
    [28]李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用[J].上海农业学报.1985(2):1-12.
    [29]叶邦兴,唐海明.棉花杂种优势利用的研究进展与发展思路[J].江西农业学报.2007,19(10):47-49.
    [30]冯纯大,张金发,刘金兰,等.棉花雄性不育研究进展[J].棉花学报.1998,10(4):169-177.
    [31]黄观武,张东铭,李中泉,等.棉花隐性核基因雄性不育在杂交种中的应用[J].中国农业科学.1981,14(1):5-11.
    [32]靖深蓉,邢朝柱,袁有禄,等.棉花抗虫核不育系的培育研究[J].中国农业科学.1998(4):84-86.
    [33]唐海明,陈金湘,熊格生,等.棉花雄性不育系的研究现状及展望[J].中国棉花.2006(3):6-8.
    [34]张天真,靖深蓉,金林,等.杂种棉选育的理论与实践[M].北京:科学出版社,1998:74-78.
    [35]廖雪,朱东生.棉花杂种优势利用的回顾与展望[J].江西棉花.2009(5):7-10.
    [36]Meyer V. Male sterility from G. harknessii[J]. Heredity.1975,66:23-27.
    [37]俞志华,王学德.棉花细胞质雄性不育的研究及改良[J].棉花学报.1999(5):268-274.
    [38]张金发,孙济中,刘金兰.棉花杂种优势的研究和利用[J].棉花学报.1994(3):135-139.
    [39]Stewart J. Observations on fertility reatoration in D8 CMS cotton[C].1995.
    [40]黄观武,苟云高,张东铭,等.棉花核不育的二级繁殖及利用[J].西南农业学报.1992(1):7-13.
    [41]宇文璞,宇文纲,乔志卫,等.棉花不育系对温度反应研究初报[J].中国棉花.1990(2):19-20.
    [42]余筱南,陈金湘,李瑞莲,等.棉花温敏雄性不育系的选育与应用研究简报[J].棉花学报.2003(6):380-381.
    [43]张小全,朱伟,吕有军.棉花杂种优势利用途径研究进展[J].种子.2008(6):39-42.
    [44]Rajendran T P, Venugopalan M V, Praharaj C S. Cotton research towards sufficiency to Indian textile industry[J]. The Indian Journal of Agricultural Sciences.2005,75(11):699-708.
    [45]Bruce A. The Mendelian theory of heredity and the augmention of vogor[J]. Science.1910,32(827):627-628.
    [46]Keeble F, Pellew C. The mode of inheritance of stature and flowering time in peas (Pisum sativum)[J]. Journal of Genetics.1910,1(1):47-56.
    [47]Jones D F. Dominance of Linked Factors as a Means of Accounting for Heterosis[J]. Genetics.1917,2(5): 466-479.
    [48]Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics.1995,140(2):745-754.
    [49]杨加付,饶立兵,陈海鹏,等.花椰菜F2花球性状杂种优势的预测[J].安徽农业科学.2002,30(3):424-425.
    [50]Abdelkhalik A F, Shishido R, Nomura K, et al. QTL-based analysis of heterosis for grain shape traits and seedling characteristics in an indica-japonica hybrid in rice (Oryza sativa L.)[J]. Breeding Science.2005,55(1): 41-48.
    [51]Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis[J]. Plant Cell.2003,15(10): 2236-2239.
    [52]Shull G H. The composition of a field of maize[J]. Journal of Heredity.1908,4(1):296-301.
    [53]East E M. Inbreeding in Corn[J]. Rep. Conn. Agric. Exp.1908:419-428.
    [54]Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics.1992,132(3):823-839.
    [55]孙其信,倪中福,陈希勇,等.冬小麦部分基因杂合性与杂种优势表达[J].中国农业大学学报.1997,2(2).
    [56]Mitchell-Olds T. Interval mapping of viability loci causing heterosis in Arabidopsis[J]. Genetics.1995,140(3): 1105-1109.
    [57]Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield[J]. Genetics.2001,158(4):1737-1753.
    [58]Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes[J]. Proc Natl Acad Sci U S A.2003,100(15):9055-9060.
    [59]庄杰云,樊叶杨,吴建利,等.超显性效应对水稻杂种优势的重要作用[J].中国科学(c辑:生命科学).2001,31(2):106-113.
    [60]庄杰云,樊叶杨,吴建利,等.杂交水稻中超显性效应的分析[J].遗传.2000,22(4):205-208.
    [61]余四斌,李建雄,徐才国,等.上位性效应是水稻杂种优势的重要遗传基础[J].中国科学c辑:生命科学.1998,28(3).
    [62]Allard R W. Genetic basis of the evolution of adaptedness in plants[J]. Euphytica.1996,92(1):1-11.
    [63]Cheverud J M, Routman E J. Epistasis and its contribution to genetic variance components[J]. Genetics.1995, 139(3):1455-1461.
    [64]Bomblies K, Lempe J, Epple P, et al. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants[J]. PLoS biology.2007,5(9):e236.
    [65]Rieseberg L H, Sinervo B, Linder C R, et al. Role of gene interactions in hybrid speciation:evidence from ancient and experimental hybrids [J]. SCIENCE-NEW YORK THEN WASHINGTON-.1996:741-744.
    [66]Vazquez J F, Sanchez-Monge E. Correlations, epistasis, and heterosis of plant height and internode length in barley [J]. Genome.1987,29(4):532-536.
    [67]赵彦宏,朱军,徐海明,等.基于QTL定位的水稻有效穗数杂种优势预测[J].中国水稻科学.2007,21(4):350-354.
    [68]Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci U S A.1997,94(17):9226-9231.
    [69]Mei H W, Li Z K, Shu Q Y, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations[J]. Theor Appl Genet.2005,110(4):649-659.
    [70]Liao C Y, Wu P, Hu B, et al. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number[J]. TAG Theoretical and Applied Genetics.2001,103(1):104.
    [71]曹立勇,占小登,庄杰云,等.水稻产量性状的QTL定位与上位性分析[J].中国农业科学.2003,36(11):1241-1247.
    [72]张启发.水稻杂种优势的遗传基础研究[J].遗传.1998(S1):3-4.
    [73]Malmberg R L, Held S, Waits A, et al. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse[J]. Genetics.2005,171(4):2013-2027.
    [74]向道权,黄烈健,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展[J].中国农业大学学报.1999,4(Z1):1-7.
    [75]Aastveit K. Studies on quantitative characters and quantitative inheritance in barley[M]. Mariendals boktr., 1961.
    [76]Aastveit K. Heterosis and Selection in Barley[J]. Genetics.1964,49(1):159-164.
    [77]朱新霞,朱一超,艾尼江,等.中棉所12及其选系配制的4个杂交棉幼苗期基因差异表达[J].作物学报.2009,35(9):1637-1645.
    [78]Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅰ. Biomass and grain yield[J]. Genetics.2001,158(4):1737-1753.
    [79]Luo L J, Li Z K, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅱ. Grain yield components[J]. Genetics.2001,158(4):1755-1771.
    [80]Ge X, Chen W, Song S, et al. Transcriptomic profiling of mature embryo from an elite super-hybrid rice LYP9 and its parental lines[J]. BMC Plant Biol.2008,8:114.
    [81]Tsaftaris A S, Kafka M. Mechanism of heterosis in crop plants [J]. Journal of Crop production.1997,1(1): 95-111.
    [82]Tsaftaris S A. Molecular aspects of heterosis in plants[J]. Physiologia plantarum.1995,94(2):362-370.
    [83]胡建广,赵相山,刘军,等.玉米苹果酸脱氢酶基因的分离与结构分析[J].植物学报.1999,41(1):40.
    [84]杨金水.杂种优势机理探讨[M].北京:中国农业出版社,1996,1-12.
    [85]Wu L M, Ni Z F, Meng F R, et al. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents[J]. Mol Genet Genomics.2003,270(3):281-286.
    [86]Guo M, Rupe M A, Zinselmeier C, et al. Allelic variation of gene expression in maize hybrids[J]. Plant Cell. 2004,16(7):1707-1716.
    [87]Springer N M, Stupar R M. Allelic variation and heterosis in maize:how do two halves make more than a whole?[J]. Genome Res.2007,17(3):264-275.
    [88]邢俊杰,成志伟,杨剑,等.利用基因芯片技术分析水稻杂种优势的分子机理[J].杂交水稻.2005,20(4):59-61.
    [89]Wei G, Tao Y, Liu G, et al. A transcriptomic analysis of superhybrid rice LYP9 and its parents[J]. Proc Natl Acad Sci U S A.2009,106(19):7695-7701.
    [90]Xiong L Z, Xu C G, Saghai Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique[J]. Molecular and General Genetics MGG.1999,261(3):439-446.
    [91]Wright S. Evolution and the genetics of populations;[M].1 ed. Chicago:University Chicago Press,1968.
    [92]鲍文奎.机会与风险--40年育种研究的思考[J].植物杂志.1990,4:4-5.
    [93]Schwartz D. Genetic studies on mutant enzymes in maize Ⅰ:synthesis of hybrid enzymes by heterozygotes[J]. Proc Natl Acad Sci.1960,46(9):1210-1215.
    [94]Schwartz D. Genetic Studies on Mutant Enzymes in Maize.Ⅵ. Elimination of Allelic Isozyme Variation by Glyceraldehyde Treatment[J]. Genetics.1965,52(6):1295-1302.
    [95]Schwartz D. Genetic studies on mutant enzymes in maize, Ⅱ. on the mode of synthesis of the hybrid enzymes[J]. Proc Natl Acad Sci.1962,48(5):750-756.
    [96]Schwartz D. Genetic Studies on Mutant Enzymes in Maize.Ⅲ. Control of Gene Action in the Synthesis of Ph 7.5 Esterase[J]. Genetics.1962,47(11):1609-1615.
    [97]Schwartz D. Genetic Studies on Mutant Enzymes in Maize,Ⅴ. in vitro Interconversion of Allelic Isozymes[J]. Proceedings of the National Academy Of Sciences Of The United States Of America.1964,52(2):222-226.
    [98]Schwartz D. Genetic Studies on Mutant Enzymes in Maize.Ⅳ. Comparison of Ph 7.5 Esterases Synthesized in Seedling and Endosperm[J]. Genetics.1964,49(3):373-377.
    [99]朱英国,张为国.杂交水稻苗期同工酶与杂种优势关系的研究[J].作物学报.1987,3(2):89-96.
    [100]孙国荣,朱鹏,刘文芳,等.谷氨酰胺合成酶活性与水稻杂种优势预测[J].武汉植物学研究.1994,12(2):149-153.
    [101]易琼华,师素云,杨荣度,等.酯酶同工酶在水稻三系育种中应用的探讨[J].江苏农业科学.1981(2):22-25.
    [102]李继耕,杨太兴,曾孟潜.同工酶与玉米杂种优势研究[J].遗传.1979,1(3):8-11.
    [103]徐乃瑜,王许莲.小麦杂种优势与同工酶谱分析的初步研究[J].湖北农业科学.1982,12:4-8.
    [104]刘文芳,吴文瑜,肖翊华.杂交水稻及三系在发育过程中的酯酶同工酶比较研究[J].武汉植物学研究.1987(3):267-274.
    [105]郑稚莺,王守德,饶湖生,等.酯酶同工酶与杂交水稻杂种优势的相关性[J].东北农学院学报.1987(2):98-105.
    [106]许如根,黄志仁,吕超,等.大麦杂种优势与苗期酯酶同工酶的相关性研究[J].麦类作物学报.1999(6):35-37.
    [107]邓鸿德,王桂元,周宪.农作物杂种优势的预测研究Ⅱ.水稻杂种优势的酯酶同工酶谱类型、互补酶谱分析和人工杂合酶谱[J].湖南农业科学.1984(3):1-5.
    [108]邓鸿德,王桂元.论水稻杂种优势与酯酶同工酶谱[J].杂交水稻.1986(1):42-46.
    [109]俎桂芹,孙国荣,万青林,等.水稻苗期几种酶活性及生理性状与杂种优势的早期预测研究[J].黑龙江农业科学.1992(4):6-10.
    [110]朱鹏,孙国荣,肖翊华,等.MDH和GDH活性与水稻杂种优势预测[J].武汉大学学报(自然科学版).1991(4):89-94.
    [111]张爱民,黄金龙,王明理,等.T型杂种小麦亲本数量性状遗传距离与杂种优势的关系[J].北京农业大学学报.1985,11(4):136-143.
    [112]蔡健,兰伟.AFLP标记与水稻杂种产量及产量杂种优势的预测[J].中国农学通报.2005,21(4):39-43.
    [113]蔡健,兰伟.利用AFLP分子标记预测水稻杂种优势[J].作物学报.2005(4):526-528.
    [114]Lee M, Godshalk E B, Lamkdy K R, et al. Association of restriction fragment length polymorphisms among maize inbreeds with agronomic performances of their cross[J]. Crop Science.1989,29(4):1067-1071.
    [115]Smith O S, Smith J S C, Bowen S L, et al. Similarities among a group of elite maize inbreds as measured by pedigree, grain yield, grain yield heterosis, and RFLPs[J]. Theoretical and Applied Genetics.1990,80(6):833.
    [116]张培江,才宏伟,袁平荣,等.RFLP标记水稻遗传距离及其与杂种优势的关系[J].杂交水稻.2001,16(2):16-20.
    [117]张培江,才宏伟,李焕朝,等.RAPD分子标记水稻遗传距离及其与杂种优势的关系[J].安徽农业科学.2000,28(6):697-700.
    [118]赵庆勇,朱镇,张亚东,等.SSR标记遗传距离与粳稻杂种优势的相关性分析[J].中国水稻科学.2009,23(2):141-147.
    [119]黄光文,欧立军,陈觉梁,等.水稻ISSR标记遗传距离与杂种优势的相关性研究[J].杂交水稻.2010(S1):326-331.
    [120]李荣改,孟祥祯,王玉珍,等.水稻遗传距离与杂种优势、杂种产量的关系[J].河北农业大学学报.1993,16(1):13-19.
    [121]朱作峰,孙传清,姜廷波,等.水稻品种SSR与RFLP及其与杂种优势的关系比较研究[J].遗传学报.2001,28(8):738-745.
    [122]Dudley J W, Saghai-Maroof M, Rufener G K. Molecular Markers and Grouping of Parents in Maize Breeding Programs[J]. Crop Science.1991,31(3):718-723.
    [123]Godshalk E B, Lee M, Lamkey K R. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses[J]. Theor Appl Genet.1990,80:273-280.
    [124]袁力行,傅骏骅,张世煌,等.利用RFLP和SSR标记划分玉米自交系杂种优势群的研究[J].作物学报.2001,27(2):149-156.
    [125]吴敏生,戴景瑞.AFLP标记与玉米杂种产量、产量杂种优势的预测[J].植物学报.2000,42(6):600-604.
    [126]吴敏生,王守才,戴景瑞.RAPD分子标记与玉米杂种产量优势预测的研究[J].遗传学报.1999,26(5):578-584.
    [127]徐美兰,金正勋,李晓光,等.7个粳稻SSR和SRAP分子标记遗传距离比较及其与产量性状杂种优势的关系[J].分子植物育种.2009,7(6):1084-1092.
    [128]Melchinger A E, Lee M, Lamkcy K R. Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbreds[J]. Crop Science.1990,30:1033-1040.
    [129]倪先林,张涛,蒋开锋,等.SSR分子标记与水稻杂种优势的相关性研究[J].安徽农业科学.2009,37(23):10913-10916.
    [130]Zhang Q, Zhou Z, Yang G, et al. Molecular marker heterozygosity and hybrid performance in indica and japonica rice[J]. TAG Theoretical and Applied Genetics.1996,93(8):1218.
    [131]Xiao J, Li J, Yuan L, et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers[J]. TAG Theoretical and Applied Genetics.1996,92(6):637.
    [132]罗小金,贺浩华,彭小松,等.利用SSR标记分析水稻亲本间遗传距离与杂种优势的关系[J].植物遗传资源学报.2006,7(2):209-214.
    [133]Melchinger A E, Boppenmaier J, Dhillon B S, et al. Genetic diversity for RFLPs in European maize inbreds[J]. TAG Theoretical and Applied Genetics.1992,84(5):672.
    [134]Bernardo R. Relationship between single-cross performance and molecular marker heterozygosity [J]. Theoretical and Applied Genetics.1992,83(5):628.
    [135]Zhang Q F, Gao Y J, Yang S H, et al. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites[J]. Theoretical and Applied Genetics.1994,89(2):185.
    [136]Zhang Q F, Gao Y J, Maroof M A S, et al. Molecular divergence and hybrid performance in rice[J]. Molecular Breeding.1995,1(2):133.
    [137]Romagnoli S, Maddaloni M, Livini C, et al. Relationship between gene expression and hybrid vigor in primary rot tips of young maize (Zea mays L.) plantlets[J]. Theor Appl Genet.1990,80:769-775.
    [138]吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达[J].作物学报.2001,27(3):339-342.
    [139]Tsaftaris A S, Polidoros A N. Studying the expression of genes in maize parental inbreds and their heterotic and nonheterotic hybrids[C]. Italy:1993.
    [140]吴利民,倪中福,王章奎,等.小麦杂种及其亲本苗期叶片家族基因差异表达及其与杂种优势关系的初步研究[J].遗传学报.2001,28(3):256-266.
    [141]倪中福,孙其信.普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究[J].中国农业大学学报.2000,5(1):1-8.
    [142]Rogers S O, Bendich A J. Heritability and Variability in Ribosomal RNA Genes of Vicia faba[J]. Genetics. 1987,117(2):285-295.
    [143]程宁辉,杨金水,高燕萍,等.玉米杂种一代与亲本基因表达差异的初步研究[J].科学通报.1996,41(5):451-454.
    [144]张小蒙,肖宁,张洪熙,等.水稻基因差异表达与杂种优势的关系分析[J].中国农业科学.2012,45(7):1235-1245.
    [145]王章奎,倪中福,孟凡荣,等.小麦杂交种及其亲本拔节期根系基因差异表达与杂种优势关系的初步研究[J].中国农业科学.2003,36(5):473-479.
    [146]田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J].科学通报.2002,47(18):1412-1416.
    [147]Tian Z Y, Dai J R. Relationship between differential gene expression patterns in functional leaves of maize inbreds & hybrids at spikelet differentiation stage and heterosis[J]. Yi Chuan Xue Bao.2003,30(2):154-162.
    [148]Xiong L, Yang G, Xu C, et al. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross[J]. Molecular Breeding.1998,4:129-136.
    [149]张义平,陈学峰,等.红莲优6号杂交水稻与亲本三系不同发育时期幼苗叶片基因表达差异分析[J].武汉植物学研究.2003,21(1):27-30.
    [150]张转,薛伟,王象坤,等.利用基因渗入系研究水稻杂种优势与基因差异表达的关系[J].农业生物技术学报.2005,13(6):691-697.
    [151]Chen X, Li M, Shi J, et al. Gene expression profiles associated with intersubgenomic heterosis in Brassica napus[J]. Theor Appl Genet.2008,117:1031-1040.
    [152]Okumura N, Naodo-Kishi N. Plant Mol Biol.1994(25):705-719.
    [153]印莉萍,祁晓廷,刘祥林,等.缺铁诱导玉米根cDNA文库的构建及铁胁迫基因(fdr3)的筛选和鉴定[J].科学通报.2000,45(1):44-48.
    [154]Lisitsyn N, Lisitsyn N, Wigler M, et al. Cloning the differences between two complex genomes[J]. SCIENCE-NEW YORK THEN WASHINGTON-.1993,259:946.
    [155]Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA[J]. Nucleic acids research.1994,22(25):5640-5648.
    [156]朱玉贤,张翼凤.用cDNA差式分析法克隆受GA抑制的豌豆基因[J].中国科学:C辑.1997,27(003):253-257.
    [157]Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proceedings of the National Academy of Sciences.1996,93(12):6025-6030.
    [158]Liang P, Averboukh L, Pardee A B. Distribution and cloning of eukaryotic mRNAs by means of differential display:refinements and optimization[J]. Nucleic Acids Res.1993,21(14):3269-3275.
    [159]张君,王丕武,闫冬生,等.大豆杂交种及其亲本苗期叶片基因差异表达与杂种优势的关系[J].西北农林科技大学学报(自然科学版).2010(2):91-100.
    [160]Velculescu V E, Zhang L, Vogelstein B, et al. Serial analysis of gene expression[J]. Science-AAAS-Weekly Paper Edition.1995,270(5235):484-486.
    [161]Yamamoto M, Wakatsuki T, Hada A, et al. Use of serial analysis of gene expression (SAGE) technology[J]. Journal of immunological methods.2001,250(1-2):45-66.
    [162]Matsumura H, Nirasawa S, Terauchi R. Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE)[J]. The Plant Journal.2002,20(6):719-726.
    [163]Schupp J M, Zinnamon K, Schmidt T, et al. Analysis of tissue global gene expression diversity of soybean using SAGE[C]. Califonia:2002.
    [164]Keim P. SAGE analysis of soybean immature cotyledon gene expression[C]. Califonia:1999.
    [165]Mitchell T K, Dean R A, Donofrio N, et al. Whole genome analysis of pathogen-host recognition and subsequent responses in the rice blast patho-system[C]. Califonia:2003.
    [166]Cheung V G, Morley M, Aguilar F, et al. Making and reading microarrays[J]. Nat Genet.1999,21(1 Suppl): 15-19.
    [167]Kehoe D M, Villand P, Somerville S. DNA microarrays for studies of higher plants and other photosynthetic organisms[J]. Trends Plant Sci.1999,4(1):38-41.
    [168]Fodor S P, Read J L, Pirrung M C, et al. Light-directed, spatially addressable parallel chemical synthesis[J]. Science.1991,251(4995):767-773.
    [169]Pease A C, Solas D, Sullivan E J, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis[J]. Proc Natl Acad Sci U S A.1994,91(11):5022-5026.
    [170]Schena M, Shalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science.1995,270(5235):467-470.
    [171]Bachem C W, van der Hoeven R S, de Bruijn S M, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development[J]. Plant J.1996,9(5):745-753.
    [172]曹蕾,林明,王育娜,等.水稻叶片cDNA-AFLP选择性扩增反应体系的优化[J].山地农业生物学报.2008,27(3):189-194.
    [173]宋欣,杨文鹏,赵德刚.玉米双低频酶cDNA-AFLP体系的建立[J].玉米科学.2008,16(2):12-15.
    [174]李剑峰,张跃强,樊哲儒,等.小麦叶片cDNA-AFLP扩增反应体系的优化[J].新疆农业科学.2010,47(3):489-494.
    [175]张新忠,吕亮杰,吕超,等.大麦cDNA-AFLP技术体系的优化及其应用[J].麦类作物学报.2012,32(4):633-639.
    [176]黄河,王顺利,曹华雯,等.甘菊cDNA-AFLP反应体系的优化[J].生物技术通报.2009(11):108-113.
    [177]林建丽,张一卉,李利斌,等.大白菜杂交种和亲本之间基因表达差异分析[J].中国蔬菜.2012(12):22-29.
    [178]Bachem C W B, Oomen R J F J, Visser R G F. Transcript Imaging with cDNA-AFLP:A Step-by-Step Protocol[J]. Plant Molecular Biology Reporter.1998,16(2):157.
    [179]Money T, Reader S, Qu L J, et al. AFLP-based mRNA fingerprinting[J]. Nucleic Acids Research.1996, 24(13):2616-2617.
    [180]Habu Y, Fukada-Tanaka S, Hisatomi Y, et al. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence[J]. Biochem Biophys Res Commun.1997,234(2):516-521.
    [181]Suneson C A. A MALE STERILE CHARACTER IN BARLEY A New Tool for the Plant Breeder[J]. Journal of Heredity.1940,31(5):213-214.
    [182]Schooler A B. A form of male sterility in barley hybrids[J]. Journal of Heredity.1967,58(5):207-211.
    [183]Ahokas H. Cytoplasmic male sterility in barley[J]. Acta Agriculturae Scandinavica.1979,29(3):219-224.
    [184]黄志仁,许如根,周美学,等.大麦核质互作雄性不育三系的选育和杂种优势研究[J].大麦科学.1999(1):7-9.
    [185]韩海,刘凤珍,栗仲兴,等.大麦核不育的研究[J].大麦科学.1995(4):7-8.
    [186]王前和,程鹏飞.大麦雄性不育及其杂种优势利用研究初报[J].湖北农业科学.1991(11):14-16.
    [187]孙东发,赵玲.大麦光温敏雄性不育材料PTGMB2、PTGMB6基本特性初报[J].华中农业大学学报.1997(3):35-37.
    [188]张宗华,余国东,谭昌华,等.光温敏核不育大麦C54S通过鉴定[J].大麦科学.1997(4):50.
    [189]何瑞锋,章志宏.大麦光温敏雄性不育系的基本特性研究[J].武汉大学学报:自然科学版.2000,46(4):492-494.
    [190]张明生,张坚勇,蒋小平,等.大麦杂种优势利用研究的现状和趋势[J].江西农业学报.1998(4):82-86.
    [191]孙东发,徐廷文,蒋华仁,等.大麦核质互作雄性不育系88BCMS的选育及其遗传特性研究[J].中国农业科学.1995(2):31-36.
    [192]周美学,黄志仁,许如根,等.大麦利用雄性不育系配制杂种的优势研究[J].大麦科学.1995(1):3-4.
    [193]李承道,刘玉芳,马俊虎,等.大麦产量及其构成因素杂种优势研究初报[J].大麦科学.1992(1):13-15.
    [194]黄志仁.六棱大麦杂种优势与配合力的研究[J].作物学报.1984(2):123-131.
    [195]林佩霞,王蕴波,何立宗.四棱大麦杂种优势与配合力的研究[J].吉林农业大学学报.1989,11(2):26-31.
    [196]王邦治.大麦性状遗传和F1代杂种优势初探[J].甘肃农业科技.1988(1):9-10.
    [197]徐阿炳,裴洪平,朱睦元,等.八个大麦品种的杂种优势与配合力的研究[J].杭州大学学报(自然科学版).1986,13(3):340-346.
    [198]杜春光,李正玮,何立人,等.大麦杂种优势与基因效应分析[J].西南农业大学学报.1991(2):75-80.
    [199]张国荣,马俊虎,杜永芹,等.核质互作型大麦杂种优势研究初报[J].上海农业学报.1996,12(4):5-8.
    [200]Yasuda S, Hayashi J. heterosis in stem length of wild barley, Hordeum spontaneum[J]. Barley Genetics Newslette.1988,18(1):52-53.
    [201]李承道,黄培忠.大麦节间长度的杂种优势及基因效应分析[J].浙江农业学报.1993,5(3):158-161.
    [202]林亚康,俞志隆.大麦β-淀粉酶的杂种优势与相关研究[J].杭州大学学报(自然科学版).1991(2):203-210.
    [203]黄祖六,祝丽,许如根,等.大麦开颖性状的遗传分析Ⅱ.大麦开颖性状的杂种优势及配合力[J].麦类作物学报.2007(1):30-34.
    [204]刘维正.冬、春啤酒大麦杂种优势及亲子相关的初步研究[J].大麦科学.1993(4):3-6.
    [205]许如根,黄志仁,周美学,等.杂交大麦主要农艺性状及产量性状中亲优势的分析研究[J].大麦科学.1997(1):5-7.
    [206]Xu R G, Lv C, Zhu L, et al. Studies on the Heterosis of Barley (Hordeum vulgare L.) I.Superiority of Hybrid F1 from Mid-Parent or over Better-Parent[J]. Acta Agronomica Sinica.2004,30(7):668-674.
    [207]许如根,吕超,缪丽霞,等.大麦杂种优势利用研究Ⅲ.大麦异棱型和同棱型F_1杂种的杂种优势特征[J].作物学报.2005,31(12):1537-1543.
    [208]曾千春,周开达,朱祯,等.中国水稻杂种优势利用现状[J].中国水稻科学.2000,14(4):243-246.
    [209]司洪华,陈志斌,吴敬伟,等.中国玉米杂种优势研究综述[J].安徽农业科学.2006,34(4):644-645.
    [210]Ge X, Chen W, Song S, et al. Transcriptomic profiling of mature embryo from an elite super-hybrid rice LYP9 and its parental lines[J]. BMC Plant Biol.2008,8:114.
    [211]莫惠栋,李志民.增广NCⅡ设计和遗传模型测验[J].作物学报.1991,17(1):1-9.
    [212]许如根,吕超,祝丽,等.大麦杂种优势利用研究——I.F 1杂种的离中亲优势和超优亲优势[J].作物学报.2004(7):668-674.
    [213]Sun Q, Wu L, Ni Z, et al. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross[J]. Plant Science.2004,166:651-657.
    [214]Wang Z, Ni Z, Wu H, et al. Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat (Triticum aestivum L.)[J]. Theor Appl Genet.2006,113(7):1283-1294.
    [215]Wei G, Tao Y, Liu G, et al. A transcriptomic analysis of superhybrid rice LYP9 and its parents[J]. Proc Natl Acad Sci U S A.2009,106(19):7695-7701.
    [216]Springer N M, Stupar R M. Allelic variation and heterosis in maize:how do two halves make more than a whole?[J]. Genome Res.2007,17(3):264-275.
    [217]牛兆国.水稻杂种优势利用现状及发展对策[J].现代农业科技.2010(24):93-94.
    [218]卢良恕.中国大麦学[M].北京:中国农业出版社,1996.
    [219]张宏根,孔宪旺,朱正斌,等.粳稻三系亲本的性状特征与杂种优势分析[J].作物学报.2010,36(5):801-809.
    [220]杨代刚,马雄风,周晓箭,等.陆地棉配合力与杂种优势、遗传距离的相关性分析[J].棉花学报.2012,24(3):191-198.
    [221]倪先林,张涛,蒋开锋,等.杂交稻特殊配合力与杂种优势、亲本间遗传距离的相关性[J].遗传.2009,31(8):849-854.
    [222]刘新芝,思扬,杨太兴,等.我国50个常用玉米自交系的遗传分析及利用[J].作物杂志.1990(3):11-12.
    [223]杨克昌,陈洪梅,赵自仙,等.几个玉米骨干自交系主要性状的配合力分析[J].玉米科学.2000,8(3):37-39,50.
    [224]许如根.大麦主要性状的杂种优势与遗传分析[D].扬州:扬州大学,2005.
    [225]莫惠栋.P×q交配模式的配合力分析[J].江苏农学院学报.1982:51-57.
    [226]莫惠栋.P×q交配模式的配合力分析(续)[J].江苏农学院学报.1982:53-57.
    [227]黄志仁,周美学,黄友圣,等.江浙沪啤酒大麦品种的配合力研究[J].大麦科学.1989(2):19-24.
    [228]孙东发,赵玲,徐廷文.不同类型栽培大麦主要农艺性状的配合力及其稳定性研究[J].华中农业大学学报.1997(4):22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700