用户名: 密码: 验证码:
嗜热土壤脱氮芽孢杆菌NG80-2降解苯环化合物的蛋白组学研究和维氏气单胞菌B565基因组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,石油污染越来越多地受到人们的关注。在石油的复杂成分中,单环烷烃,主要是BTEX化合物(苯、甲苯、乙苯和二甲苯)以及可溶的组分,成为了污染地下水的主要污染物和威胁之一。石油中的芳香族成分经过一系列的微生物的氧化还原等作用后使得污染水域内经常检测到芳香酸类的中间代谢物,如苯甲酸,邻、间、对-甲基苯甲酸等。而且,单环芳香化合物几乎在所有生物体内大量地存在,因为他们是芳香族氨基酸(苯丙氨酸、色氨酸和酪氨酸)转化过程中的重要产物。芳香族化合物是在自然界中除了糖结构外分布最为广泛的化合物,不仅源于高等植物的木质素的解聚过程,而且还因为在制药、化学和石油工业中发生的事故和产生的副产物等释放过程所造成。芳香有机废物因为其苯环的高热稳定性导致的长时期难以被降解的特性,以及他们对人类产生的急性致癌、致诱变和致畸等危害性而引起高度重视。因此,在近二十年里苯环族芳香烃的代谢途径的研究也受到了人们很大程度地关注。
     嗜热土壤脱氮芽孢杆菌NG80-2是一株分离于中国大港油田地层水中的兼性厌氧、嗜热、可降解长链烷烃的革兰氏阳性菌株。前期的基因组学分析发现,NG80-2可能存在四组不同的苯环化合物代谢基因簇,分别为GTNG_1888-GTNG_1899(苯甲酸降解基因簇)、GTNG_1919-GTNG_1930(苯乙酸降解基因簇)、GTNG_2973-GTNG_2993(4-羟基苯乙酸降解基因簇)、GTNG_3150-GTNG_3164(邻氨基苯甲酸降解基因簇),这暗示着NG80-2可能具备降解丰富苯环化合物的能力。在本研究中,NG80-2编码的四组不同苯环化合物的基因簇通过生物信息学和蛋白组学相结合的方法被验证,它们分别是苯甲酸(苯甲酰辅酶A途径)、苯乙酸(苯乙酰辅酶A途径)、4-羟基苯乙酸(3,4-二羟基苯乙酸途径)和邻氨基苯甲酸(3-羟基邻氨基苯甲酸途径)降解途径。数据表明,这些催化第一步激活过程、环氧化和开环过程的酶往往会被所预测的苯环化合物特异地诱导,而负责下游途径的酶却表现出了较为广泛的底物特异性。另外,NG80-2的这些苯环化合物降解基因簇还编码着一些新颖的降解酶,分别为苯甲酰辅酶A环氧酶、3,4-二羟基苯乙酸-2,3-双加氧酶等。在苯甲酸降解基因簇中存在着一个paaX的同源体,在NG80-2通过苯甲酸培养的过程中起到正调控因子的作用。除了NG80-2这些苯环化合物降解酶被证明外,在NG80-2代谢这些苯环化合物的过程中,糖酵解的过程被下调了,糖异生的途径表现出上调的趋势。此外,在苯乙酸为唯一碳源的条件下,乙醛酸旁路的GTNG_583(异柠檬酸裂合酶)和GTNG_1384(苹果酸合酶G)均有明显的上调现象,这与苯乙酸代谢过程中产生大量的乙酰辅酶A作为碳源利用密不可分,因为一分子的苯乙酸可产生2分子的乙酰辅酶A和琥珀酰辅酶A。本项目通过蛋白组学方法对NG80-2中多种苯环化合物降解途径进行了验证,也说明该嗜热菌株因其具备降解丰富苯环化合物的能力而存活在复杂的油层环境中。
     维氏气单胞菌是可以经常在环境、临床和食物中发现的革兰氏阴性、杆形细菌。气单胞菌属中的致病菌可引起免疫缺陷病人一系列包括创伤感染、腹泻和败血病等多种疾病。维氏气单胞菌同时也是引起鱼类出血性败血症的主要病原菌,给鱼类生产造成重大经济损失。维氏气单胞菌B565分离于中国天津的池塘淤泥沉积物中。在前期的研究中发现,该菌可通过产生的几丁质酶来控制真菌或者粘体动物引起的相关疾病。
     在本研究中,维氏气单胞菌B565的全基因组序列被报道并且将其与两株已报道的气单胞属的嗜水气单胞菌ATCC7966与杀鲑气单胞菌A449菌株的全基因组序列进行对比分析发现了两步进化过程。在维氏气单胞菌B565的全基因组序列中发现了5个几丁质酶基因和一些可能的毒力因子,包括溶血因子、RTX蛋白、黏附因子、鞭毛和甘露糖敏感血凝素(MSHA)等。通过将B565与已报道的两个同属的致病菌的基因组比较分析发现,该属致病菌株的毒力因子是通过两步独立的过程获得的,即一些毒力因子在很早的时间就从他们的同源祖先继承下来,另一些则可能从其他细菌通过横向转移的方式获得。
I
     Increasing attention has been directed towards crude-oil pollution in recent years. Among the complex chemicals in crude oil, mono-aromatic hydrocarbons, mainly the BTEX group (benzene, toluene, ethyl benzene and xylene), most soluble constituents, tend to be one of the dominant pollutants and serious threats in contaminated groundwater. Aromatic acids, metabolic intermediates such as benzoic acid, o-, m-,/>-toluic acids, frequently detected in the contaminated aquifer indicated a series of active microbial-mediated oxidation/reduction on the aromatic hydrocarbon components. Furthermore, mono-aromatics are produced in large amounts during the conversion of aromatic amino acids in nearly all living organisms, including phenylalanine, tryptophan and tyrosine. Next to glucosyl structures, aromatics are most widely distributed in nature, not simply resulting from lignin depolymerization of higher plants, but the release from the accidents and by-products in pharmaceutical, chemical and petroleum industries. Aromatic organic wastes are of great concern for their long-term persistence due to the high thermodynamic stability of the benzene moiety, and their acute carcinogenic, mutagenic, and teratogenic risks to public health. Therefore, considerable efforts have been devoted to understanding the fate of the aromatic hydrocarbons and their various metabolic pathways in the past two decades.
     Geobacillus thermodenitrificans NG80-2is a Gram-positive, facultative thermophilic, long-chain alkane-degrading bacterium isolated from an oil reservoir in China. Previous analysis of the NG80-2genome revealed the presence of four distinct aromatic catabolic gene clusters predicted for benzoate (via benzoyl-CoA, GTNG_1888-GTNG_1899), phenylacetate (via phenylacetyl-CoA, GTNG_1919-GTNG_1930),4-hydroxyphenylacetate (via3,4-dihydroxyphenylacetate, GTNG2973-GTNG_2993),and anthranilate (via3-hydroxyanthranilate, GTNG_3150-GTNG_3164),indicating the ability of NG80-2to utilize diverse aromatic compounds.In this study, these gene clusters and pathways for the degradation of benzoate (via benzoyl-CoA), phenylacetate (via phenylacetyl-CoA),4-hydroxyphenylacetate (via3,4-dihydroxyphenylacetate) and anthranilate (via3-hydroxyanthranilate) were confirmed using combined in silico analysis and proteomics approaches. It was found that synthesis of the enzymes responsible for the initial activation, ring oxidation and ring cleavage reactions were generally induced specifically by their respective substrates, while many of the enzymes catalyzing downstream reactions exhibited broader substrate specificities. Novel genes encoding benzoyl-CoA epoxidase and3,4-dihydroxyphenylacetate2,3-dioxygenase, were proposed. A paaX homologue in the benzoate gene cluster serves as a positive regulator of benzoate degradation. Downregulation of the glycolysis pathway, along with upregulation of the gluconeogenesis pathway were detected in association with the utilization of the aromatics. Moreover, the glyoxylate bypass was upregulated in the phenylacetate-cultured NG80-2cells as shown by the increased synthesis of isocitrate lyase (GTNG_583) and malate synthase G (GTNG_1384), indicating the utilization of acetyl-CoA as the sole carbon source, which is produced in excess (2copies of acetyl-CoA and1succinyl-CoA per phenylacetate). This novel proteomics analysis confirmed the presence of multiple metabolic pathways for aromatic compounds in NG80-2, which is highly advantageous to the survival of this thermophilic bacterium under reservoir conditions.
     Ⅱ
     Aeromonas veronii is a Gram-negative, rod-shaped bacterium commonly found in the environmental, clinical, and food samples. The pathogens in the genus Aeromonas can cause diseases ranging from wound infections and diarrhoea to septicaemia in immune compromised patients.A. veronii is also the causative agent of bacterial hemorrhagic septicemia in fish, which is a major economic problem in the fish-farming industry. A. veronii strain B565was isolated from aquaculture pond sediment in Tianjin, China. In a separate study, it was found to be able to produce chitinase which can be used to control fungal or Myxozoa-related diseases.
     In this study, the complete genome sequence of B565was presented here and compared with2published genome sequences of the pathogenic strains in Aeromonas genus, which are A.hydrophila ATCC7966and A.sa/monicida A449.B565encodes5 chitinase genes and some putative virulence factors, such as hemolysins, RTX protein, adhesion factor, flagella, and mannose-sensitive hemagglutinin (MSHA).The result represents an independent step-wise acquisition of virulence factors of pathogenic strains in this genus:some virulence genes were inherited long time ago from their common ancestors, while most of the other weapons can be acquired quickly from other related species by lateral transfer.
引文
[1]Clark, C.R., et al. Comparative dermal carcinogenesis of shale and petroleum-derived distillates. Toxicol Ind Health,1988,4(1):11-22.
    [2]Clark, C.R., et al. Comparative acute toxicity of shale and petroleum derived distillates. Toxicol Ind Health,1989,5(6):1005-16.
    [3]Claireaux, G. and F. Davoodi. Effect of exposure to petroleum hydrocarbons upon cardio-respiratory function in the common sole (Solea solea). Aquat Toxicol,2010,98(2):113-9.
    [4]Cermak, J.H., et al. Toxicity of petroleum hydrocarbon distillates to soil organisms. Environ Toxicol Chem,2010,29(12):2685-94.
    [5]Atlas, R.M. and R. Bartha. Fate and effects of polluting petroleum in the marine environment. Residue Rev,1973,49(0):49-85.
    [6]Dooley, A.E. Toxicity of petroleum product additives. Arch Environ Health,1963,6(0):324-8.
    [7]Mazzeo, D.E., et al. BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ,2010,408(20):4334-40.
    [8]Costa, A.S., et al. Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresour Technol,2012,105(0):31-9.
    [9]Botello, A.V., S. Villanueva, and G. Diaz. Petroleum pollution in the Gulf of Mexico and Caribbean Sea Rev Environ Contam Toxicol,1997,153(0):91-118.
    [10]Balkis, N., A. Aksu, and M.S. Ersan. Petroleum hydrocarbon contamination of the Southern Black Sea Shelf, Turkey. Environ Sci Pollut Res Int,2012,19(2):592-9.
    [11]Al-Hassan, J.M., et al. Petroleum hydrocarbon pollution in sharks in the Arabian Gulf. Bull Environ Contam Toxicol,2000,65(3):391-8.
    [12]Megharaj, M., et al. Bioremediation approaches for organic pollutants:a critical perspective. Environ Int,2011,37(8):1362-75.
    [13]Paliwal, V., S. Puranik, and H.J. Purohit. Integrated perspective for effective bioremediation Appl Biochem Biotechnol,2012,166(4):903-24.
    [14]Saier, M.H., Jr. Beneficial bacteria and bioremediation J Mol Microbiol Biotechnol,2005,9(2):63-4.
    [15]Alexander, M. and R.C. Loehr. Bioremediation review. Science,1992,258(5084):874.
    [16]Shannon, M.J. and R. Unterman. Evaluating bioremediation: distinguishing fact from fiction. Annu Rev Microbiol,1993,47(0):715-38.
    [17]Clifton, J.H. Amortization of Nonconforming Uses in Pennsylvania:A Possible Remedy for a Zoning Headache. Dick. L. Rev.,1974,79(0):235.
    [18]Rosenzweig, R.L. Curative Amendment Procedure in Pennsylvania: The Landowner's Challenge to the Substantive Validity of Zoning Restrictions, The. Dick. L. Rev.,1975,80(0):43.
    [19]Perelo, L.W. Review:In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater,2010,177(1-3):81-9.
    [20]Patten, D.M. Intra-industry environmental disclosures in response to the Alaskan oil spill:a note on legitimacy theory. Accounting, Organizations and Society,1992,17(5):471-475.
    [21]Bombach, P., et al. Current approaches for the assessment of in situ biodegradation Appl Microbiol Biotechnol,2010,86(3):839-52.
    [22]Lessard, R.R., et al. Bioremediation application in the cleanup of the1989Alaska oil spill. ASTM Special Technical Publication,1995,1235(0):207-207.
    [23]McCarty, P.L. Bioengineering issues related to in situ remediation of contaminated soils and groundwater. Basic Life Sci,1988,45(0):143-62.
    [24]Jain, R.K. and G.S. Sayler. Problems and potential for in situ treatment of environmental pollutants by engineered microorganisms. Microbiol Sci,1987,4(2):59-63.
    [25]张甲耀and李静.生物修复技术研究进展.应用与环境生物学报,1996,2(002):193-199.
    [26]Pieper, D.H. and W. Reineke. Engineering bacteria for bioremediation Curr Opin Biotechnol,2000,11(3):262-70.
    [27]Watanabe, K. Microorganisms relevant to bioremediation Curr Opin Biotechnol,2001,12(3):237-41.
    [28]Watanabe, K., H. Futamata, and S. Harayama. Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek,2002,81(1-4):655-63.
    [29]Hooker, B.S. and R.S. Skeen. Intrinsic bioremediation:an environmental restoration technology. Curr Opin Biotechnol,1996,7(3):317-20.
    [30]Jorgensen, K.S. In situ bioremediation Adv Appl Microbiol,2007,61(0):285-305.
    [31]Diplock, E.E., et al. The role of decision support for bioremediation strategies, exemplified by hydrocarbons for in site and ex situ procedures. Methods Mol Biol,2010,599(0):201-15.
    [32]Davis, J.B. and D.M. Updegraff. Microbiology in the petroleum industry. Bacteriol Rev,1954,18(4):215-38.
    [33]da Silva, A.C., et al. Bioremediation of marine sediments impacted by petroleum. Appl Biochem Biotechnol,2009,153(1-3):58-66.
    [34]Carrera-Martinez, D., et al. Microalgae response to petroleum spill:an experimental model analysing physiological and genetic response of Dunaliella tertiolecta (Chlorophyceae) to oil samples from the tanker Prestige. Aquat Toxicol,2010,97(2):151-9.
    [35]Carrera-Martinez, D., et al. Adaptation of microalgae to a gradient of continuous petroleum contamination Aquat Toxicol,2011,101(2):342-50.
    [36]Carberry, J.B. and J. Wik. Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated by petroleum. J Environ Sci Health A Tox Hazard Subst Environ Eng,2001,36(8):1491-503.
    [37]雷光伦.微生物采油技术的研究与应用.石油学报,2001,22(2):56-61.
    [38]窦启龙,et al.微生物采油技术的研究进展及展望.天然气地球科学,2004,15(5):559-563.
    [39]王惠,卢渊,and伊向艺.国内外微生物采油技术综述.大庆石油地质与开发,2003,22(005):49-52.
    [40]裴雪林and赵金献.微生物采油技术在国内外的研究现状及实例.断块油气田,1997,4(005):61-66.
    [41]王修垣.微生物提高石油采收率.微生物学通报,1999,26(5):384-385.
    [42]易绍金.微生物提高石油采收率发展现状及展望.石油与天然气化工,1994,23(3):149-153.
    [43]Beckman, J. Action of bacteria on mineral oil. Ind. Eng. Chem., News Ed.,1926,4(0):10.
    [44]Zobell, C.E. and C.W. Grant. Bacterial Utilization of Low Concentrations of Organic Matter. J Bacteriol,1943,45(6):555-64.
    [45]Ash, C., et al. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Letters in applied microbiology,1991,13(4):202-206.
    [46]Rainey, F.A., D. Fritze, and E. Stackebrandt. The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by16S rDNA analysis. Fems Microbiology Letters,1994,115(2-3):205-11.
    [47]Wisotzkey, J.D., et al. Comparative sequence analyses on the16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol,1992,42(2):263-9.
    [48]Heyndrickx, M., et al. A Polyphasic Reassessment of the Genus Aneurinibacillus, Reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al.1996) as Aneurinibacillus thermoaerophilus comb, nov., and Emended Descriptions of A. aneurinilyticus corrig., A. migulanus, and A. thermoaerophilus. International journal of systematic bacteriology,1997,47(3):808-817.
    [49]McMullan, G., et al. Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochem Soc Trans,2004,32(Pt2):214-7.
    [50]Dufresne, S., et al. Sulfobacillus disulfidooxidans sp. nov.,a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. Int J Syst Bacteriol,1996,46(4):1056-64.
    [51]Touzel, J.P., et al. Thermobacillus xylanilyticus gen. nov., sp. nov.,a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol,2000,50Pt1(0):315-20.
    [52]Nicolaus, B., et al."Bacillus thermoantarcticus" sp. nov., from Mount Melbourne, Antarctica:a novel thermophilic species. Polar Biology,1996,16(2):101-104.
    [53]Manachini, P.L., et al. Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol,2000,50Pt3(0):1331-7.
    [54]Nazina, T.N., et al. Occurrence and geochemical activity of microorganisms in high temperature, water-flooded oil fields of Kazakhstan and Western Siberia. Geomicrobiology Journal,1995,13(3):181-192.
    [55]Nazina, T., et al. Taxonomic study of aerobic thermophilic bacilli:descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th International journal of systematic and evolutionary microbiology,2001,51(2):433-446.
    [56]Ahmad, S., et al. Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium Int J Syst Evol Microbiol,2000,50Pt2(0):517-23.
    [57]Fortina, M.G., et al. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al.2000) comb. nov. International journal of systematic and evolutionary microbiology,2001,51(6):2063-2071.
    [58]Sung, M.H., et al. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol,2002,52(Pt6):2251-5.
    [59]Banat, I.M., R. Marchant, and T.J. Rahman. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol,2004,54(Pt6):2197-201.
    [60]Schaffer, C, et al. Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. International journal of systematic and evolutionary microbiology,2004,54(6):2361-2368.
    [61]Maugeri, T.L., et al. A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst Appl Microbiol,2001,24(4):572-87.
    [62]Nazina, T.N., et al. Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Systematic and applied microbiology,2005,28(1):43-53.
    [63]Obojska, A., et al. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol,2002,68(4):2081-4.
    [64]Bonch-Osmolovskaya, E.A., et al. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Applied and environmental microbiology,2003,69(10):6143-6151.
    [65]Euzeby, J. and B. Tindall. Status of strains that contravene Rules27(3) and30of the Bacteriological Code. Request for an Opinion International journal of systematic and evolutionary microbiology,2004,54(1):293-301.
    [66]Nazina, T.N., et al. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. International journal of systematic and evolutionary microbiology,2004,54(6):2019-2024.
    [67]Marchant, R., et al. The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol,2002,4(10):595-602.
    [68]Rahman, T.J., R. Marchant, and I.M. Banat. Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochem Soc Trans,2004,32(Pt2):209-13.
    [69]Wang, L., et al. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles,2006,10(4):347-56.
    [70]李晓敏.大肠杆菌氧胁迫适应性蛋白质组学,O-抗原研究和嗜热菌NG80-2醛脱氢酶分子生物学研究.天津:南开大学,2010:
    [71]Hamamura, N. and D.J. Arp. Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. Fems Microbiology Letters,2000,186(1):21-6.
    [72]Liu, X., et al. The nos gene cluster from gram-positive bacterium Geobacillus thermodenitrificans NG80-2and functional characterization of the recombinant NosZ. Fems Microbiology Letters,2008,289(1):46-52.
    [73]Li, L., et al. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN:unveiling the long-chain alkane hydroxylase. J Mol Biol,2008,376(2):453-65.
    [74]Feng, L., et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A,2007,104(13):5602-7.
    [75]Liu, X., et al. Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans NG80-2. Microbiology,2009,155(Pt6):2078-85.
    [76]Liu, X., et al. Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2. Microbiology,2010,156(Pt2):589-95.
    [77]Li, X., et al. Characterization of a broad-range aldehyde dehydrogenase involved in alkane degradation in Geobacillus thermodenitrificans NG80-2. Microbiological Research,2010,165(8):706-12.
    [78]Li, Y., et al. Proteomics analysis of aromatic catabolic pathways in thermophilic Geobacillus thermodenitrificans NG80-2. J Proteomics,2012,75(4):1201-10.
    [79]Watkinson, R.J. and P. Morgan. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation,1990,1(2-3):79-92.
    [80]van Beilen, J.B., et al. Diversity of alkane hydroxylase systems in the environment. Oil&gas science and technology,2003,58(4):427-440.
    [81]程守强,et a1.烷烃降解基因alk研究进展.中国生物工程杂志,2004,24(3):30-34.
    [82]Grishchenkov, V., et al. Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochemistry,2000,35(9):889-896.
    [83]Whyte, L., et al. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soilsl. FEMS microbiology ecology,2002,41(2):141-150.
    [84]Koike, K., et al. Regiospecific internal desaturation of aliphatic compounds by a mutant Rhodococcus strain Appl Environ Microbiol,1999,65(12):5636-8.
    [85]Lee, N.R., et al. Physical structure and expression of alkBA encoding alkane hydroxylase and rubredoxin reductase from Pseudomonas maltophilia. Biochem Biophys Res Commun,1996,218(1):17-21.
    [86]Fennewald, M., et al. Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon J Bacteriol,1979,139(3):940-52.
    [87]Fennewald, M. and J. Shapiro. Regulatory mutations of the Pseudomonas plasmid alk regulon J Bacteriol,1977,132(2):622-7.
    [88]May, S.W. and A.G. Katopodis.[1] Hydrocarbon monooxygenase system of Pseudomonas oleovorans. Methods in enzymology,1990,188(0):3-9.
    [89]Markovetz, A. and R.E. Kallio. Subterminal oxidation of aliphatic hydrocarbons by microorganisms. Critical Reviews in Microbiology,1971,1(2):225-237.
    [90]Wentzel, A., et al. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol,2007,76(6):1209-21.
    [91]Maeng, J.H., et al. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. Journal of bacteriology,1996,178(13):3695-3700.
    [92]Spormann, A.M. and F. Widdel. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria Biodegradation,2000,11(2):85-105.
    [93]Widdel, F. and R. Rabus. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology,2001,12(3):259-276.
    [94]Tani, A., et al. Thermostable NADP(+)-dependent medium-chain alcohol dehydrogenase from Acinetobacter sp. strain M-1:purification and characterization and gene expression in Escherichia coli. Appl Environ Microbiol,2000,66(12):5231-5.
    [95]Diaz, E., et al. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev,2001,65(4):523-69.
    [96]Baek, K.H., et al. Effects of crude oil, oil components, and bioremediation on plant growth J Environ Sci Health A Tox Hazard Subst Environ Eng,2004,39(9):2465-72.
    [97]Borole, A.P., et al. The potential for intrinsic bioremediation of BTEX hydrocarbons in soil/ground water contaminated with gas condensate. Appl Biochem Biotechnol,1997,63-65(0):719-30.
    [98]Balachandran, C., et al. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp.(ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol,2012,112(0):83-90.
    [99]Cajthaml, T., et al. Bioremediation of PAH-contaminated soil by composting:a case study. Folia Microbiol,2002,47(6):696-700.
    [100]Yamada, M., et al. Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm. Mar Pollut Bull,2003,47(1-6):105-13.
    [101]Hawthorne, S.B., et al. PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation Environ Sci Technol,2001,35(22):4577-83.
    [102]赵渝.芳香烃生物降解途径蛋白质组学研究.上海:华东师范大学,2007:
    [103]杨征军.卤代多环芳烃类有机污染物的QSPR/QSRR研究.湘潭:湖南科技大学,2007:
    [104]瞿福平and张晓健.氯代芳香化合物的生物降解性研究进展.环境科学,1997,18(2):74-78.
    [105]尹萍and杨彦希.微生物降解硝基芳香烃及其在环境保护中的应用.环境科学,1998,19(6):79-83.
    [106]金赞芳and陈英旭.环境的PAHs污染及其生物修复技术研究进展.农业环境保护,2001,20(002):123-125.
    [107]Lopez, J., R. Iturbe, and L.G. Torres. Washing of soil contaminated with PAHs and heavy petroleum fractions using two nonionic [correction] and one ionic surfactant:effect of salt addition J Environ Sci Health A Tox Hazard Subst Environ Eng,2004,39(9):2293-306.
    [108]Teles, M., M. Pacheco, and M.A. Santos. Physiological and genetic responses of European eel (Anguilla anguilla L.) to short-term chromium or copper exposure-Influence of preexposure to a PAH-like compound. Environ Toxicol,2005,20(1):92-9.
    [109]Han, Y., et al. Reproductive hormones in relation to polycyclic aromatic hydrocarbon (PAH) metabolites among non-occupational exposure of males. Sci Total Environ,2010,408(4):768-73.
    [110]Seruto, C., Y. Sapozhnikova, and D. Schlenk. Evaluation of the relationships between biochemical endpoints of PAH exposure and physiological endpoints of reproduction in male California Halibut (Paralichthys californicus) exposed to sediments from a natural oil seep. Mar Environ Res,2005,60(4):454-65.
    [111]Barret, M., et al. PAH fate during the anaerobic digestion of contaminated sludge:Do bioavailability and/or cometabolism limit their biodegradation? Water Res,2010,44(13):3797-806.
    [112]Tabak, H.H. and R. Govind. Bioavailability and biodegradation kinetics protocol for organic pollutant compounds to achieve environmentally acceptable endpoints during bioremediation Ann N Y Acad Sci,1997,829(0):36-61.
    [113]Gescher, J., et al. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J Bacteriol,2006,188(8):2919-27.
    [114]Gescher, J., et al. Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. J Bacteriol,2002,184(22):6301-15.
    [115]Grishin, A.M., et al. Structural and functional studies of the Escherichia coli phenylacetyl-coa monooxygenase complex. J Biol Chem,2011,286(12):10735-43.
    [116]Rather, L.J., et al. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J Biol Chem,2010,285(27):20615-24.
    [117]Teufel, R., et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A,2010,107(32):14390-5.
    [118]Matsumoto, Y., et al. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nat Struct Mol Biol,2012,19(2):238-45.
    [119]Kim, I.C. and P.J. Oriel. Characterization of the Bacillus stearothermophilus BR219phenol hydroxylase gene. Appl Environ Microbiol,1995,61(4):1252-6.
    [120]Dong, F.M., et al. Molecular cloning and mapping of phenol degradation genes from Bacillus stearothermophilus FDTP-3and their expression in Escherichia coli. Appl Environ Microbiol,1992,58(8):2531-5.
    [121]Prieto, M.A., E. Diaz, and J.L. Garcia. Molecular characterization of the4-hydroxyphenylacetate catabolic pathway of Escherichia coli W:engineering a mobile aromatic degradative cluster. J Bacteriol,1996,178(1):111-20.
    [122]Mendez, V., et al. The Homogentisate and Homoprotocatechuate Central Pathways Are Involved in3-and4-Hydroxyphenylacetate Degradation by Burkholderia xenovorans LB400. PLoS One,2011,6(3):e17583.
    [123]Teufel, R., et al. Studies on the mechanism of ring hydrolysis in phenylacetate degradation:a metabolic branching point. J Biol Chem,2011,286(13):11021-34.
    [124]Gescher, J., et al. Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii:studies on the non-oxygenolytic ring cleavage enzyme. Mol Microbiol,2005,56(6):1586-600.
    [125]Ismail, W. Benzoyl-coenzyme A thioesterase of Azoarcus evansii: properties and function Arch Microbiol,2008,190(4):451-60.
    [126]Hasegawa, Y., et al. A novel degradative pathway of2-nitrobenzoate via3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7. Fems Microbiology Letters,2000,190(2):185-90.
    [127]Bouchez, M., et al. Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation,1999,10(6):429-35.
    [128]Hwang, S. and T.J. Cutright. Effect of expandable clays and cometabolism on PAH biodegradability. Environ Sci Pollut Res Int,2003,10(5):277-80.
    [129]Techer, D., et al. Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation:an in vitro study. Sci Total Environ,2011,409(20):4489-95.
    [130]Sellers, T.A. and J.R. Yates. Review of proteomics with applications to genetic epidemiology. Genet Epidemiol,2003,24(2):83-98.
    [131]Patel, P.S., et al. A review of proteomics in cancer research Asian Pac J Cancer Prev,2005,6(2):113-7.
    [132]Rosenthal, A. Editorial overview. Genomics and proteomics. Curr Opin Mol Ther,1999,1(6):669-70.
    [133]Monti, M., et al. Functional proteomics. Clin Chim Acta,2005,357(2):140-50.
    [134]Kim, H., et al.2D gel proteomics:an approach to study age-related differences in protein abundance or isoform complexity in biological samples. Methods Mol Biol,2007,371(0):349-91.
    [135]Betts, J.C. and M.A. Smith. Proteomics. Methods Mol Med,2001,54(0):315-34.
    [136]Lau, E., et al. Combinatorial use of offline SCX and online RP-RP liquid chromatography for iTRAQ-based quantitative proteomics applications. Mol Biosyst,2011,7(5):1399-408.
    [137]Liu, X., et al. Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom,2007,18(7):1249-64.
    [138]Tong, W., et al. Identification of proteins in complexes by solid-phase microextraction/multistep elution/capillary electrophoresis/tandem mass spectrometry. Anal Chem,1999,71(13):2270-8.
    [139]Link, A.J., et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol,1999,17(7):676-82.
    [140]Mouradian, S. Lab-on-a-chip:applications in proteomics. Curr Opin Chem Biol,2002,6(1): 51-6.
    [141]Schasfoort, R.B. Proteomics-on-a-chip:the challenge to couple lab-on-a-chip unit operations. Expert Rev Proteomics,2004,1(1):123-32.
    [142]Nelson, R.W., D. Nedelkov, and K.A. Tubbs. Biosensor chip mass spectrometry:a chip-based proteomics approach Electrophoresis,2000,21(6):1155-63.
    [143]Granvogl, B., M. Ploscher, and L.A. Eichacker. Sample preparation by in-gel digestion for mass spectrometry-based proteomics. AnalBioanal Chem,2007,389(4):991-1002.
    [144]Westermeier, R. and R. Marouga. Protein detection methods in proteomics research Biosci Rep,2005,25(1-2):19-32.
    [145]Patton, W.F. A thousand points of light:the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis,2000,21(6):1123-44.
    [146]Ong, S.E. and M. Mann. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol,2005,1(5):252-62.
    [147]Elliott, M.H., et al. Current trends in quantitative proteomics. J Mass Spectrom,2009,44(12):1637-60.
    [148]Coombs, K.M. Quantitative proteomics of complex mixtures. Expert Rev Proteomics,2011,8(5):659-77.
    [149]Mallick, P. and B. Kuster. Proteomics:a pragmatic perspective. Nat Biotechnol,2010,28(7):695-709.
    [150]Englbrecht, C.C. and A. Facius. Bioinformatics challenges in proteomics. Comb Chem High Throughput Screen,2005,8(8):705-15.
    [151]Chambers, G., et al. Proteomics:a new approach to the study of disease. J Pathol,2000,192(3):280-8.
    [152]Stubberfield, C.R. and M.J. Page. Applying proteomics to drug discovery. Expert Opin Investig Drugs,1999,8(1):65-70.
    [153]Nilsson, C.L. Bacterial proteomics and vaccine development. Am J Pharmacogenomics,2002,2(1):59-65.
    [154]Il Kim, S., J.S. Choi, and H.Y. Kahng. A proteomics strategy for the analysis of bacterial biodegradation pathways. Omics-a Journal of Integrative Biology,2007,11(3):280-294.
    [155]Kahng, H.Y., et al. Enhanced detection and characterization of protocatechuate3,4-dioxygenase in Acinetobacter lwoffii K24by proteomics using a column separation Biochem Biophys Res Commun,2002,295(4):903-9.
    [156]Krayl, M., et al. Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics,2003,3(8):1544-52.
    [157]Lee, K.A., et al. Protein profiling and identification of modulators regulated by human papillomavirus16E7oncogene in HaCaT keratinocytes by proteomics. Gynecol Oncol,2005,99(1):142-52.
    [158]Santos, P.M., D. Benndorf, and I. Sa-Correia. Insights into Pseudomonas putida KT2440response to phenol-induced stress by quantitative proteomics. Proteomics,2004,4(9):2640-2652.
    [159]Singh, O.V. Proteomics and metabolomics:the molecular make-up of toxic aromatic pollutant bioremediation Proteomics,2006,6(20):5481-92.
    [160]Zhao, B. and C.L. Poh. Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics,2008,8(4):874-81.
    [161]Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72(0):248-54.
    [162]Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227(5259):680-5.
    [163]Tulchin, N., L. Ornstein, and B.J. Davis. A microgel system for disc electrophoresis. Anal Biochem,1976,72(0):485-90.
    [164]Sparnins, V.L. and P.J. Chapman. Catabolism of L-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria. J Bacteriol,1976,127(1):362-6.
    [165]Ummadi, M. and B.C. Weimer. Tryptophan catabolism in Brevibacterium linens as a potential cheese flavor adjunct Journal of Dairy Science,2001,84(8):1773-1782.
    [1]吴同垒,et al.维氏气单胞菌研究进展.中国兽药杂志,2011,45(7):41-44.
    [2]杨正时.气单胞菌属分类学研究进展.中国人兽共患病杂志,1990,6(001):49-52.
    [3]曲芬,et al.气单胞菌不同种的流行及耐药性.中国抗感染化疗杂志,2004,4(005):302-305.
    [4]宋振辉,et al.维氏气单胞菌的分离鉴定及系统进化分析.中国兽医杂志,2011,47(001):23-25.
    [5]Ashbolt, N.J. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology,2004,198(1-3):229-38.
    [6]Grobner, S., et al. Severe diarrhoea caused by Aeromonas veronii biovar sobria in a patient with metastasised GIST. Pol J Microbiol,2007,56(4):277-9.
    [7]Cui, H., S. Hao, and E. Arous. A distinct cause of necrotizing fasciitis:Aeromonas veronii biovar sobria. Surg Infect,2007,8(5):523-8.
    [8]Sanchez-Cespedes, J., et al. Development of imipenem resistance in an Aeromonas veronii biovar sobria clinical isolate recovered from a patient with cholangitis. J Med Microbiol,2009,58(Pt4):451-5.
    [9]Sreedharan, K., R. Philip, and I.S. Singh. Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. Dis Aquat Organ,2011,94(1):29-39.
    [10]李伟and印莉萍.基因组学相关概念及其研究进展.生物学通报,2000,35(011):1-3.
    [11]Gagarinova, A. and A. Emili. Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Mol Biosyst,2012,8(6):1626-38.
    [12]陈竺,et al.人类基因组计划的机遇和挑战:Ⅰ.从结构基因组学到功能基因组学.生命的化学,1998,18(5):5-13.
    [13]Morozova, O. and M.A. Marra. Applications of next-generation sequencing technologies in functional genomics. Genomics,2008,92(5):255-64.
    [14]Milano, I., et al. Novel tools for conservation genomics:comparing two high-throughput approaches for SNP discovery in the transcriptome of the European hake. PLoS One,2011,6(11):e28008.
    [15]Margulies, M., et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437(7057):376-80.
    [16]Bentley, D.R., et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature,2008,456(7218):53-9.
    [17]Li, H. and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics,2010,26(5):589-95.
    [18]Zhou, Z., et al. Derivation of Escherichia coli O157:H7from its O55:H7precursor. PLoS ONE,2010,5(1):e8700.
    [19]Ferenci, T., et al. Genomic Sequencing Reveals Regulatory Mutations and Recombinational Events in the Widely Used MC4100Lineage of Escherichia coli K-12. J Bacteriol,2009,191(12):4025-9.
    [20]Watnick, P.I., K.J. Fullner, and R. Kolter. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol,1999,181(11):3606-9.
    [21]Seshadri, R., et al. Genome sequence of Aeromonas hydrophila ATCC7966T: jack of all trades. J Bacteriol,2006,188(23):8272-82.
    [22]Reith, M.E., et al. The genome of Aeromonas salmonicida subsp. salmonicida A449:insights into the evolution of a fish pathogen BMC Genomics,2008,9(0):427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700