用户名: 密码: 验证码:
Cr(Ⅲ)-有机酸配合物的氧化及其在土壤中的吸附迁移性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬是一种过渡金属元素,特殊的理化性质使其成为工业生产和人民生活的重要原料。但含铬三废(废气、废水、废渣)的不合理排放,使环境铬污染问题日益突出。铬在环境中主要以Cr(Ⅵ)和Cr(Ⅲ)两种形态存在,Cr(Ⅲ)还原性弱,毒性小,易被土壤吸附;而Cr(Ⅵ)溶解性强,毒性大,迁移性大,对环境有严重的危害。目前对铬的污染治理主要集中在对Cr(Ⅵ)的还原方面。小分子有机酸是C(Ⅵ)还原的一类常用还原剂,并且在土壤中广泛存在,但在还原过程中,小分子有机酸易和还原产物Cr(Ⅲ)形成配合物,使得Cr(Ⅲ)在土壤中的吸附性大大降低。然而,土壤中Cr(Ⅲ)有可能再被氧化为Cr(Ⅵ)重新进入土壤,应该引起更多的关注。氧化锰矿物是目前唯一可知的能氧化Cr(Ⅲ)的天然氧化剂,也是Cr(Ⅲ)氧化为Cr(Ⅵ)的重要途径。另一个Cr(Ⅲ)转变为Cr(Ⅵ)的可能途径是光化学氧化。由于Cr(Ⅲ)-有机酸配合物的形成使得Cr(Ⅲ)在土壤中的吸附性大大降低,提高了Cr(Ⅲ)被氧化为Cr(Ⅵ)的危害,所以研究Cr(Ⅲ)-有机配合物的氧化及其在土壤中的吸附和迁移性很重要。为此,本文选择了三种常用的有机酸:柠檬酸、酒石酸和苹果酸,以实验室合成的Cr(Ⅲ)-有机酸配合物为模型,系统地研究了Cr(Ⅲ)-有机酸在环境中的氧化及吸附和迁移行为。本论文共分三部分:
     第一部分:实验室制备出水钠锰矿(8-MnO2),同时也制备和纯化了Cr(Ⅲ)-柠檬酸(Cr(Ⅲ)-cit)和Cr(Ⅲ)-酒石酸(Cr(Ⅲ)-tar)配合物,通过批次实验研究了不同条件下δ-MnO2对Cr(Ⅲ)-柠檬酸和Cr(Ⅲ)-酒石酸配合物的氧化。结果表明,较低pH和较高浓度的δ-MnO2能促进Cr(Ⅵ)的产生。pH主要通过影响Cr(Ⅲ)-柠檬酸和Cr(Ⅲ)-酒石酸配合物的存在形态来影响反应。NO3-、Cl-和SO42-三种离子对氧化有轻微的促进作用。P043-因和Cr(Ⅲ)形成更稳定的CrP04抑制了氧化,NH4+可能因电离产生的NH3和Cr(Ⅲ)形成[Cr(NH3)6]3+配离子促进了氧化。氧化过程中Cr(Ⅲ)-柠檬酸/酒石酸的氧化量随着反应温度的升高而增加。两种体系的氧化过程均可以分为两段,开始阶段反应迅速,符合一级动力学方程;第二阶段反应平缓,符合零级动力学规律。在所有反应情况中,Cr(Ⅲ)-柠檬酸/酒石酸的氧化量均低于自由态Cr(Ⅲ),但随着反应的继续,氧化量持续增加;Cr(Ⅲ)-酒石酸的氧化量高于Cr(Ⅲ)-柠檬酸,预示着后者的稳定性大于前者。
     第二部分:本部分以苹果酸和Cr(Ⅲ)为原料,实验室合成并纯化了Cr(Ⅲ)-苹果酸配合物(Cr(Ⅲ)-mal),并对其在不同pH条件下的存在形态进行了高效液相色谱(HPLC)检测和分析。通过批次实验研究了在光照条件下Cr(Ⅲ)-苹果酸配合物氧化释放Cr(Ⅵ)的行为机理。结果表明Cr(Ⅲ)和苹果酸以2:3的配比形成配合物,配合物在pH6.0-12.0范围内主要是以[Cr2(Ⅲ)-mal3]和[Cr2(Ⅲ)-mal3-OH]两种形态存在,在pH8.0和pH12.0时,[Cr2(Ⅲ)-mal3-OH2]2和[Cr2(Ⅲ)-mal3-OH3]3分别开始出现并共存于溶液中。它们的光氧化活性顺序依次推理为:[Cr2(Ⅲ)-mal3-OH3]3->[Cr2(Ⅲ)-mal3-OH2]2->[Cr2(Ⅲ)-mal3-OH]->[Cr2(III)-mal3]。增加光照强度以及温度、pH的升高都可以促进配合物光氧化释放Cr(Ⅵ);Cr(Ⅲ)-苹果酸配合物通过金属-配体电子转移(LMCT)方式产生的Cr(Ⅱ)和·OH是Cr(Ⅵ)生成的先决条件,H202的添加增加了·OH的数量,有效促进了Cr(Ⅵ)的产生;但由光照作用释放的苹果酸会对Cr(Ⅵ)进行还原,只有在pH>7.0时,Cr(Ⅲ)-苹果酸才表现为氧化,整个氧化过程遵循初始阶段为一级动力学反应和后半段为零级动力学反应。
     第三部分:实验室合成了Cr(Ⅲ)-酒石酸/苹果酸配合物,通过批次实验研究了它们在红壤、黄棕壤和黑土中的吸附和迁移性。研究表明:在pH4.0、25℃时,Cr(Ⅲ)-酒石酸/苹果酸在三种土壤中的吸附均随土液比的增加而增加,但远小于土壤对自由Cr(Ⅲ)的吸附。在pH为4.0、6.5和9.0时,pH对Cr(Ⅲ)-酒石酸在三种土壤中的吸附几乎没有影响,而对Cr(Ⅲ)-苹果酸影响较小,两者在三种土壤中的吸附均遵循红壤>黄棕壤>黑土的规律,且Cr(Ⅲ)-苹果酸大于Cr(Ⅲ)-酒石酸。去除有机质后,三种土壤对Cr(Ⅲ)-酒石酸/苹果酸的吸附均增加,但对Cr(Ⅲ)-苹果酸的吸附仍大于Cr(Ⅲ)-酒石酸。在淋溶液初始pH为4.0、6.5和9.0时,Cr(Ⅲ)-酒石酸在土壤中的迁移受pH影响较小,而Cr(Ⅲ)-苹果酸在pH9.0时产生沉淀,受pH影响较大。Cr(Ⅲ)-苹果酸在三种土壤中的迁移性均小于Cr(Ⅲ)-酒石酸,而两者在黄棕壤和黑土中的迁移性均大于红壤。
Chromium(Cr), a transition metal element, is an important material in industrial production and people's lives because of its special physical and chemical properties. However, chromium pollution has become increasingly serious due to the unreasonable emissions of chromium-containing wastes (waste gas, waste water, waste residue). Cr(Ⅲ) and Cr(Ⅵ) are the two mainly forms that exist in environment. Cr(Ⅲ) has low reductivity, weak toxicity and is easily adsorbed by soil, while Cr(Ⅵ) is highly soluble, toxic and mobile, posing serious environmental hazards. As a result, reduction of Cr(Ⅵ) has become the focus on the management of Cr pollution. Small molecular organic acids, which are ubiquitous in soil, are common reductants for Cr(Ⅵ), but the formation of complex betweenCr(Ⅲ), a reduction product, and small molecular organic acid reduces the adsorption of Cr(Ⅲ) by soils. However, more attention should be paid on the reoxidation of reduced Cr(Ⅲ) to Cr(Ⅵ) which will re-enter into the soil. Manganese oxides are known to be the only one type of nature oxidants resulting in transformation of Cr(Ⅲ) to Cr(Ⅵ) in soils, and it is an important pathway for Cr(Ⅲ) oxidation to Cr(Ⅵ). Another important pathway for Cr(Ⅲ) transformation to Cr(Ⅵ) is photo-oxidation. As the formation of Cr(Ⅲ)-organic acids greatly reduces the adsorption of Cr(Ⅲ) by soils, which virtually enhanced the hazards of Cr(Ⅲ) oxidation to Cr(Ⅵ). Therefore, it is important to study the oxidation of Cr(Ⅲ)-organic acid and its adsorption and mobility in soils. In this study, three common small molecular organic acids were selected to synthesize the Cr(Ⅲ)-organic complexes as models in order to systematically investigate the oxidation, adsorption and mobility of Cr(Ⅲ)-organic complexes in soils. The dissertation includes three parts.
     In part Ⅰ:Cr(Ⅲ)-citrate (Cr(Ⅲ)-cit) and Cr(Ⅲ)-tartrate (Cr(Ⅲ)-tar) complexes were synthesized and purified, and then their stability in the presence of δ-MnO2were further investigated in batch experiments under different conditions to predict the potential oxidation behaviors of Cr(Ⅲ)-organic acid complexes in environments. Lower pH and higher concentration of δ-MnO2markedly enhanced the production of Cr(Ⅵ).The reaction was primarily affected by pH in a way of the forms of Cr(Ⅲ)-cit and Cr(Ⅲ)-tar affected by pH. Three anions, NO3-、Cl-and SO42-had a little positive promotion role in the oxidation of Cr(Ⅲ)-cit and Cr(Ⅲ)-tar in comparison with control. Ammonium ion significantly improved the oxidation of Cr(Ⅲ)-cit and Cr(Ⅲ)-tar by the formation of [Cr(NH3)6]3+, but phosphate ion demonstrated an opposite effect due to form more stable CrPO4. The oxidation amounts of Cr(Ⅲ)-cit and Cr(Ⅲ)-tar increased with the temperature increasing during the process. The oxidation process of Cr(Ⅲ)-cit and Cr(Ⅲ)-tar over δ-MnO2could be divided into two phases. At the initial phase, a relatively rapid reaction obeyed to first-order model, and then was followed by a very slow one with a characteristic of zero-order. The results indicated that although the rates and extents of Cr(Ⅲ)-cit and Cr(Ⅲ)-tar oxidation by δ-MnO2were much lower than those of aqueous Cr(Ⅲ),Cr(Ⅵ) could be gradually released through the whole reaction. It is observed that in the all cases the extent of Cr(Ⅲ)-cit oxidation was lower than Cr(Ⅲ)-tar. Thus, it is concluded that the stability of Cr(Ⅲ)-cit was higher than Cr(Ⅲ)-tar.
     In part Ⅱ:Cr(Ⅲ)-malate complex(Cr(Ⅲ)-mal) was synthesized and purified and its species in different pHs were analyzed by High Performance Liquid Chromatography (HPLC). Batch photo-oxidation experiments were conducted to reveal the potential pathway of Cr(Ⅲ) to Cr(VI). The results indicated that in Cr(Ⅲ)-malate complex the chelating molar ratio of Cr(Ⅲ) and malic acid was2:3.[Cr2(Ⅲ)-mal3] and [Cr2(Ⅲ)-mal3-OH]-are the two main species of complex at pH6.0-12.0,[Cr2(Ⅲ)-mal3-OH2]2-and [Cr2(Ⅲ)-mal3-OH3]3-appeared and then coexisted in solution at pH8.0and pH12.0, respectively. The photo-oxidation activity was speculated in this order:[Cr2(Ⅲ)-mal3-OH3]3->[Cr2(Ⅲ)-mal3-OH2]2->[Cr2(Ⅲ)-mal3-OH]->[Cr2(Ⅲ)-mal3]. Higher pH, temperature and stronger light intensity promoted the conversion process. Cr(Ⅱ) and·OH, two intermediates, produced through a ligand-metal charge-transfer(LMCT) path of Cr(Ⅲ)-malate complex were the two pre-condition for Cr(Ⅵ) production. The introduction of H2O2, considered as a direct source of hydroxyl radicals (·OH) with irradiation, markedly enhanced the yield of Cr(Ⅵ). But the malic acid released from the photoexcitation could reduce Cr(Ⅵ), and the oxidation of Cr(Ⅲ)-malate complex took place only at pH>7.0. The photo-oxidation of Cr(Ⅲ)-malate complex obeyed to first-order kinetics at the initial stage of the reaction and then a zero-order one was followed.
     In part Ⅲ:Cr(Ⅲ)-tar and Cr(Ⅲ)-mal complex were synthesized and purified and batch experiments were conducted to investigate their adsorption and mobility in red soil, yellow-brown soil and chernozem. The results indicated that the adsorption of Cr(Ⅲ)-tar and Cr(Ⅲ)-mal by the three soils increased with the soil concentration(ratio of soil to solution by weight) increasing at pH4.0and25℃, but far less than that of free Cr(Ⅲ)-under the same condition. Almost no effect of pH in a range of4.0to9.0on the adsorption of Cr(Ⅲ)-tar by the three soils was found, but a weak role of pH in adsorption of Cr(Ⅲ)-mal occurred. The adsorption of both Cr(Ⅲ)-tar and Cr(Ⅲ)-mal by the three soils was in the order:red soil>yellow-brown soil>chernozem, and the adsorption amount of Cr(Ⅲ)-mal was larger than that of Cr(Ⅲ)-tar. The adsorption of both Cr(Ⅲ)-tar and Cr(Ⅲ)-mal by the three soils increased when the organic matter was removed from the soils. The adsorption amount of Cr(Ⅲ)-mal, however, was still higher than that of Cr(Ⅲ)-tar. The mobility of Cr(Ⅲ)-tar in the three soils was slightly affected by pH when the initial pHs of leaching solution were4.0,6.5and9.0. In contrast, Cr(Ⅲ)-mal was greatly affected by pH and precipitation occurred in Cr(Ⅲ)-malate solution at pH9.0. The mobility of Cr(Ⅲ)-mal in the three soils is weaker than that of Cr(Ⅲ)-tar. The mobility of Cr(Ⅲ)-tar/mal in yellow-brown soil and chernozem is stronger than that in red soil.
引文
白利平,王业耀.铬在土壤及地下水中迁移转化研究综述[J].地质与资源,2009,18(3):144-147
    蔡宏道.环境污染与卫生检测[M].人民卫生出版社,1981,67-72
    柴立元,王云燕,邓荣.水环境中铬的存在形态及迁移转化规律[J].工业安全与环保,2006,8(32):1-3
    曹仁林.土壤添加铬对农作物生长及铬残留量的影响[J].中国环境科学,1988,2:27-33
    仓龙,周东美,邓昌芬.柠檬酸和EDTA对Cr(Ⅵ)在黄棕壤和红壤上吸附行为的影响[J].农业环境科学学报,2004,23(4):710-713
    常文越,陈晓东,王磊.土著微生物修复铬(Ⅵ)污染土壤的条件实验研究[J].环境保护科学,2007,33(1):42-44
    陈传红.21世纪初期中国环境保护与生态建设科技发展战略研究[M].北京:中国环境科学出版社,2001
    陈怀满.土壤-植物系统工程中的重金属污染[M].科学出版社,1996:154-157
    陈静生,张国梁,穆岚.土壤对六价铬的还原容量初步研究[J].环境科学学报,1997,17(3):334-339
    陈维新.农业环境保护[M].中国农业出版社,2000,141-145
    陈英旭,何增耀,吴建平.外源铬在土壤中的形态转化[J].农业环境保护,1995,14(3):105-110
    陈英旭,骆永明,朱永官,等.土壤中铬的化学行为研究[J].土壤学报,1994,31(1):77-85.
    陈英旭,朱荫湄,袁可能,等.土壤中铬的化学行为研究Ⅰ:几种矿物对Cr(Ⅵ)的吸附作用[J].浙江农业大学学报,1990,16(2):119-124
    陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究[J].环境科学学报,1993,13(1):45-50
    陈英旭,朱祖祥,何增耀.有机络合态Cr在土壤植物系统中的污染行为[J].应用生态学报,1994,5(2):187-189
    陈英旭,朱祖祥,何增耀.土壤、矿物对Cr(Ⅵ)吸附机制的研究[J].农业环境保护,1993,12(4):150-152
    戴儒南.Cr(Ⅲ)的潜在氧化途径及其机理研究[D].南京农业大学,2010
    丁园,刘继东,史蓉蓉,等.石灰石对酸性红壤pH值的影响[J].南昌航空工业学院学报(自然科学版),2003,17(4):51-53
    董长勋,兰叶青,潘根兴.几种晶形氧化锰对C(Ⅲ)氧化作用的研究[J].哈尔滨商业大学学报(自然科学版),2006,22(6):44-47
    房兴堂,张彩荣,陈宗方.有机铬的研究进展及应用前景[J].饲料与畜牧,1998,(5):15-17
    龚慧.光照下低分子量有机酸(或醇)对Cr(Ⅵ)的还原作用研究[D].南京农业大学,2009
    郭观林,周启星.镉在黑土和棕壤中吸附行为比较研究[J].应用生态学报,2005,16(12):2403-2408
    郭琦.土壤-植物系统中的铬[J].广州化工,2005,5(33):38-40
    韩怀芬,黄玉柱,金漫彤.铬渣水泥固化及固化体浸出毒性研究[J].环境污染治理技术与设备,2002,3(7):9-12
    韩怀芬,黄玉柱,金漫彤.铬的固化/稳定化研究[J].环境污染与防治,2002,24(4):199-200
    韩怀芬,蒲凤莲,裘娟萍.生物法修复铬污染土壤的研究[J].能源环境保护,2003,17(2):7-9
    何凤娇.无机化学(Ⅱ)[M].北京:科学出版社,2001:214
    何怀平,谭欣,马红钦,等.TiO2光催化膜的应用研究[J].天津师范大学学报(自然科学版),2002,22(1):186-188
    黄启飞,高定,丁德蓉.垃圾堆肥对铬污染土壤的修复机理研究[J].土壤与环境,2001,110(3):176-180
    黄瑞农主编.环境土壤学[M].高等教育出版社,1997
    纪柱.铬污染土壤的修复[J].无机盐工业,2008,40(2):47-50
    江澜,王小兰.铬的生物作用及其污染治理[J].重庆工商大学学报,2004,21(4):325-327
    井文涌.当代世界环境[M].中国环境科学出版社,2002
    兰叶青,田超主编.无机化学[M].中国农业出版社,2009
    李爱琴,夏诗坂.环境中的铬[J].内蒙古科技与经济,1998,2:16-17
    李彩霞,丁光月,樊彩梅.Photo-Fenton反应处理各种难降解有机废水的研究进展[J].山西化工,2008,26(5):102-105
    李琛.有机酸还原六价铬反应动力学及其影响因素研究[D].南京农业大学,2003
    李成保,季国亮.恒电荷土壤和可变电荷土壤动电性质的研究Ⅱ-阴离子吸附和pH的影响[J].2000,37(1):62-67
    李芳.新型有机铬配合物的合成、降血糖活性及毒性研究[D].江苏大学,2012
    李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律[J].工业安全与环保,2005,31(3):31-33
    李静萍,杜亚利.铬对人体的作用[J].甘肃科技,2003,19(12):118-119
    李琳.多相光催化在水污染治理中的应用[J].环境科学进展,1994,2(6):23-31
    李明玉,熊林,陈芸芸,等.光/电/化学催化降解水中酸性大红3R染料的研究[J].中国科学B辑化学,2005,35(2):144-150
    李天然.土壤环境化学[M].北京:高等教育山版社,1996:126-213
    李雄.铬渣的细菌解毒工艺研究[D].中南大学,2007
    梁斌,兰洁,兰叶青.苦杏仁酸、苹果酸、乳酸对Cr(Ⅵ)还原作用的比较[J].环境科学学报,2007,27(8):1326-1330
    梁爱琴,匡少平,白卯娟.铬渣治理与综合利用[J].中国资源综合利用,2003,1:15-18
    刘冬碧,贺纪正,刘凡,等.中南地区几种土壤的表面电荷特性Ⅲ-土壤的电荷量,电荷零点(PZC)和净电荷零点(PZNC)[J].土壤学报,1999,36(36):362-368
    刘桂秋,冯雄汉,谭文峰,等.几种土壤铁锰结核对Cr(Ⅲ)的氧化动力学特性.华中农业大学学报[J],2002,21(5):450-454
    刘桂秋,刘凡,谭文峰.几种土壤锰结核对Cr(Ⅲ)的氧化与锰矿物类型[J].土壤与环境.2002,11(3):241-244
    刘桂秋,张鹤飞,刘凡,等.不同土壤锰结核对Cr(Ⅲ)的氧化比较[J].陕西师范大学学报(自然科学版).2003,31(3):110-114
    刘国光,丁雪军,张学治.光催化氧化技术的研究现状及发展趋势[J].环境污染治理技术与设备,2003,8(4):65-69
    刘俊渤,吴景贵,刘景华.纳米Fe2O3光催化还原Cr(Ⅵ)的研究[J].吉林农业大学学报,2005,27(1):83-85,91
    刘卫国,新申,刘明华.制革工业中铬污染及防治[J].皮革科学与工程,2001,11(3):1-6
    刘云惠,魏显有,王秀敏,等.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20
    陆昌森,马世豪,张忠祥.污水综合排放标准详解[M].北京:中国标准出版社,1991:55-56
    罗凡,吴峰,邓南圣,等.铁(Ⅲ)-羧酸配合物对水溶性染料的光化学脱色动力学的比较研究[J].环境科学与技术,1998,2:1-4
    罗勤慧,沈孟长,丁益,等.Cr(Ⅲ)离子在水溶液中的状态[J].中国科学,B辑,1986,(2):137-145
    罗阳,贺晓光,杨军,等.HPLC法测定贺兰山东麓酿酒葡萄中苹果酸含量[J],安徽农业科学,2011,39(33):20541-20542.20545
    马宏瑞,李桂菊.制革污泥污染土壤中Cr(Ⅲ)和氮的释放[J].农业环境科学学报,2004,23(1):136-139
    马宏瑞,李桂菊,章川波,等.施用制革污泥土壤中铬的形态和生物有效性[J].环境科学,2001,22(3):70-73
    马云龙,曾清如,胡浩,等.低分子有机酸对土壤中重金属的解吸及影响因素[J].土壤通报,2008,6(39):1419-1423
    《三废治理与利用》编委会.三废治理与利用[M].冶金工业出版社,1995,131-156
    盛海彦.青海黄土母质发育的土壤对Cr(Ⅲ)吸附量的初步研究[J].2005,23(6):35-38
    史载锋,范益群,徐南平,等.不同光源对光催化降解亚甲基蓝的影响[J].南京化工大学学报,2000,22(1):31-34
    汤克勇.环境中的铬与铬的生理意义[J].皮革科学与工程,1996,6(3):4145
    汤克勇.铬的污染源及其危害[J].皮革科学与工程,1997,7(1):33-37
    汤心虎,韦朝海,龙保根,等.稀水溶液中Cr(Ⅵ)的光催化还原研究[J].环境化学,2006,25(1):20-23
    田晓芳.不同类型土壤对有机酸还原六价铬影响作用研究[D].南京农业大学,2009
    王代芝.铬渣和含铬废水的处理综述[J].辽宁化工,2004,33(10):616-619
    王夔.生命科学中的微量元素[M].北京:中国计量出版社,1992,355
    王立军,章中.土壤水介质中Cr(Ⅵ)和Cr(Ⅲ)形态的转化[J].环境科学,1982,3(4):38-41
    王绍文.重金属废水治理技术[M]..北京:冶金工业出版社,1993
    王威,刘东华,蒋悟生,侯文强.铬污染地区环境对植物生长的影响[J].农业环境保护,2002(3):257-259
    王晓萍.茶根分秘物有机酸的分析研究报告[J].茶叶科学,1994,14(1):17-22
    汪小勇,张超兰,姜文.污染土壤的修复技术研究进展[J].安徽农业科学,2005,33(1):128-129
    王亚军,朱琨,王进喜,等.腐殖酸对铬在砂质土壤中吸附行为的影响研究[J].安全与环境学报,2007,7(5):42-47.
    下应红,陈武勇,辜海彬.葡萄糖和没食子酸与Cr(Ⅵ)氧化还原反应动力学特性比较研究[J].中国皮革,2005,34(3):30-32
    王媛,柴瑞涛,李楠,等.水钠锰矿的合成[J].吉林大学学报(理学版),2009,47(3):614-617
    吴峰,朱凡,邓南圣.铁(Ⅲ)-柠檬酸盐配合物光解引发橙黄Ⅱ的脱色[J].应用化学,2004,21(6):546-550
    吴淑杭,周德平,吕卫光,等.硫酸盐还原菌修复铬(Ⅵ)污染土壤研究[J].农业环境科学学报,2007,26(2):27-30
    夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76
    徐明芳,陈心满,徐开强,等.光催化反应器中光降解重金属Cr(Ⅵ)的研究[J].现代化工,2005,25(3):30-33
    徐仁扣,季国亮,蒋新.低分子量有机酸对高岭石中铝释放的影响[J].土壤学报,2002,3(39):334-340
    许友泽,成应向,向仁军.铬污染土壤修复技术研究进展[J].2010,5:127-129
    薛尤嘉.不同土壤对铬和镉吸附能力的比较[J].绿色科技,2012,(4):192-193
    杨红敏,俞从正,谢海,等.关于羟基自由基氧化三价铬问题的研究[J].皮革与化工,209,3(26):1-5
    杨俊香,兰叶青.硫化物还原Cr(Ⅵ)的反应动力学研究[J].环境科学学报,2005,25(3):356-360
    易秀.黄_土类土对铬、砷的净化机理及地下水防污安全埋深的研究[D].长安大学,2003
    易秀,李五福.黄土性土壤中铬(Ⅵ)砷(V)交互作用及钙镁对其吸附的影响[J].西北农业学报,2005,14(3):33-36
    易勇.高浓度铬对风眼莲的伤害及膜脂过氧化作用的影响[J].环境科学,1993,14(3):60-61
    张宝莉主编.农业环境保护[M].化学工业出版社,2002,176
    张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(8):239-250
    张亚丽,沈其荣,王兴兵.猪粪和稻草对铬污染黄泥土生物活性的影响[J].植物营养与肥料学报,2002,8(4):488-492
    张义资.三价铬和六价铬对大麦害效应的比较[J].中国环境科学,1997,17(6):565-568
    赵振新.六价铬径门摄入的动物慢性毒性买验研究[J].环境与健康杂志,1988,2:28-30
    钟良康,方波.活性炭吸附色泽测定燃料废水中六价铬[J].中国卫生检验杂志,2002,12(2):78
    周东美,郑春荣,陈怀满,等.镉与柠檬酸、EDTA在几种典型土壤中交互作用的研究[J].土壤学报,2002,39(1):29-36.
    周加祥,刘铮.铬污染土壤修复技术研究进展[J].环境污染治理技术与设备.2000,1(4):52-55
    周启星.铬(Ⅵ)和酚对作物幼苗联合毒性的模拟研究[J].浙江大学学报(自然科学版),1996,30(增):113-119
    Amacher M C, Baker D E. Redox reactions involving Chromium, Plutonium and Manganese in soils[J].Institute for Research on Land and Water Resources,1982:166-170
    Apte A D, Tare V, Bose P. Extent of oxidation of Cr(Ⅲ) to Cr(Ⅵ) under various conditions pertaining to natural environment [J]. Journal of Hazardous Materials, B 2006,128:164-174
    Artiole J, Wallance H F. Effect of crushed limestone barrier of Cr attenuation in soil [J]. Journal of Environmental Quality,1979,8(4):503-509
    Bartlett R J.Chromium Cycling in Soils and Water:Links, Gaps and Methods [J]. Environmental Health Perspectives,1991,92:17-24
    Bartlett R, Kimble, J. Behavior of Chromium in soil Ⅰ:Trivalent froms[J]. Journal of Environmental Quality,1976,5:379-383
    Bartlett R J, Kimble J M. Behavior of chromium in soils Ⅱ. Hexavalent form [J]. Journal of Environmental Quality,1976b,5:383-386
    Bartlett R J, James B R. Behavior of chromium in soils Ⅲ. Oxidation [J]. Journal of Environmental Quality,1979,8(1):31-35
    Blowes D, Ptacek C, Jambor J. In-situ remediation of chromate contaminated groundwater using permeable reactive walls [J]. Environmental Science and Technology,1997,31:3348-3357
    Bruce R, James. Iron catalyzed Photochemical Reduction of Chromium(Ⅵ) by Oxalate and Citrate in solution [J]. Environmental Science and Technology,1997,31:160-170
    Burge I J, Hug S J. Influence of organic ligands on chromium(Ⅵ) reduction by iron[J]. Environmental Science and Technology,1998,32:2092-2099
    Cainelli G, Cardillo G. Chromium Oxidations in Organic Chemistry [J]. Springer Verlag:Berlin,1984: 118-128
    Candela M P, Martinez J M, Macia R T. Chromium (Ⅵ) Removal with Activated Carbons[J]. Water Research,1995,29:2174-2180
    Cao X H, Guo J, Mao J D, Lan Y Q.Adsorption and mobility of Cr(Ⅲ)-organic acid complexes in soils[J].Journal of Hazardous Materials.2011,192:1533-1538
    Chaney R. Plant uptake of inorganic waste constituents.In:Parr. J. Land Treatment of Hazardous Wastes [J]. Noyes Data Corporation, Park Ridge, New Jersey, USA,1983,50-76.
    Chattopadhayay B, Datta S, Chattergi A, Mukhopadhyay S K. The environmental impact of waste chromium of tanney agglomerates in the East Calcutta Wetland Ecosystem [J]. Journal of the Society of Leather Technologists and Chemists,1999,84:94-100
    Chen D, Ray A K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis[J]. Chemical Engineering Science.2001,56,1561-1570
    Chen N, Lan Y Q, Wang B, Mao J D. Reduction of Cr(Ⅵ) by organic acid in the presence of Al(Ⅲ)[J]. Journal of Hazardous Materials,2013,260:150-158
    Chen Y X, Chen Y Y, Liu Q. Factors Affecting Cr(Ⅲ) Oxidation by manganese oxides[J]. Pedosphere, 1997,7(2):185-192
    Ciesla P, Karocki A, Stasicka Z. Photoredox behavior of the Cr-EDTA complex and its environmental aspects [J]. Journal of Photochemistry and Photobiology,2004,162:537-544
    Cotton F A, Wilkinson G. Advanced inorganic chemistry 4th ed [M]. John Wiley & Sond, New York. 1980
    Dai, R., Liu, J., Yu, C., Sun, R., Lan, Y., Mao, J. A comparative study of oxidation of Cr(Ⅲ) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere.2009,76:536-541.
    Dai, R., Yu, C., Gou, J., Lan, Y., Mao, J. Photoredox pathways of Cr(Ⅲ)-tartrate complexes and their impacting factors, Journal of Hazardous and Materials.2011,186:2110-2116.
    Dai, R., Yu, C., Liu, J., Lan, Y., Deng, B. Photo-oxidation of Cr(Ⅲ)-citrate complexes forms harmful Cr(Ⅵ). Environmental Science and Technology.2010,44:6959-6964.
    David E C, Scott F, Nathan S, Rajesh K S, Brent M. P, Timothy S M. Reduction of Cr(Ⅵ) under acidic conditions by the facultative Fe(Ⅲ)-reducing bacterium Acidiphilium cryptum. Environmental Science and Technology,2007,41:146-152
    Deng B, Stone A. Surface-catalyzed chromium(Ⅵ) reduction:reactivity comparisons of different organic reductants and different oxide surfaces [J]. Environmental Science and Technology,1996, 30:2484-2494
    Deng B, Stone, A T. Surface-catalyzed Chromium (Ⅵ) reduction:the TiO2(Ⅵ)-Mandelic acid system [J]. Environmental Science and Technology,1996(a),30:463-472
    Eary L E, Davis A. Geochemistry of an acidic chromiumsulfate plume [J]. Applied Geochemistry,2007, 22:357-369.
    Eary L E, Rai D. Kinetics of chromium(Ⅲ) oxidation to chromium(Ⅵ) by reaction with manganese dioxide [J]. Environmental Science and Technology,1989,21:1187-1193
    Elovitz M S. Fish W. Redox Extraction of Cr(Ⅵ) and substituted phenols:kinetic investigation[J]. Environmental Science and Technology,1994,28:2161-2169
    Faust B C, Zepp R G. Photochemistry of aqueous iron(Ⅲ)-polycarboxylate complexes:roles in the chemistry of atmospheric and surface waters [J]. Environmental Science and Technology,1993,  (27):2517-2522
    Fendorf S, Sparks D. Mechanisms of chromium (Ⅲ) sorption on silica. Effect of reaction conditions [J]. Environmental Science and Technology,1994,28(2):290-297
    Fendorf S E, Zasoski R J, Burau R G. Competing Metal iron influnences on chromium(Ⅲ) oxidation by birnessite [J]. Soil Science Society of America Journal,1993,57:1508-1515
    Feng X H, Zhai L M, Tan W F, et al. The controlling effect of pH on oxidation of Cr(Ⅲ) by manganese oxide minerals [J]. Journal of Colloid Interface Science,2006,298:258-266
    Fernandez-Pazos M T, Garrido-Rodriguez B, et al. Cr(Ⅵ) adsorption and desorption on soils and biosorbents[J]. Water Air and Soil pollution,2013,224:1366-1371
    Gong C R, Donahoe R J. An experimental study of heavy metal attenuation and mobility in sandy loam soils [J]. Applied Geochemistry,1997,12:243-254.
    Haran R, Popov B, Zheng G, et al. Development of a new electrokinetic technique for decontamination of hexavalent chromium from low surface charged soils[J]. Environmental Progress and Sustainable Energy,1996,15(3):166-172.
    Hoigne J, Zuo Y, Nowell L. Photochemical reactions of in atmospheric waters:Role of dissolved iron species [C].//Helz G R, Zepp R G, Crosby D G (Eds.):Aquatic and Surface Photochemistry. Lewis Publishers Boca Raton:CRC Press,1994,75-84
    Hug S J, Laubscher H, Burge I J. Iron(Ⅲ) catalyzed photochemical reduction of chromium(VI) by oxalate and citrate in aqueous solutions [J]. Environmental Science and Technology,1997,31: 160-170
    James B R, Bartlett R J. Behavior of chromium in soils Ⅴ. Fate of organically complexed Cr(Ⅲ) added to soil [J]. Journal of Environmental Quality,1983a,12(2):169-172
    James B R, Bartlett R J. Behavior of chromium in soils Ⅶ. Adsorption and reduction of hexavalent form [J]. Journal of Environmental Quality,1983,12 (2):177-181
    Jane T K, Young D R. Chromium speciation in municipal wastewaters and seawater [J]. J. Water Pollut. Controll Fed.,1978,50:2327-2336
    Jiang D J, Li Y, Wu Y, Zhou P, Lan Y Q, Zhou L X. Photocatalytic reduction of Cr(Ⅵ) by small molecular weight organic acids over schwertmannite[J].Chemosphere,2012,89:832-837
    Johnson C A, Xyla A G. The oxidation of chromium(Ⅲ) to chromium(Ⅵ) on the surface of manganite (γ-MnOOH) [J]. Geochimica and Cosmochimica Acta,1991,55:2861-2866
    Johnson J, Vance C and Allan D.Phosphorus Deficiency in Lupinus albus[J]. Plant Physiology,1996, 112:31-41
    Jones D. Organic acids in the rhizosphere:a critical review[J]. Plant and Soil,1998,205:25-44
    Jones D L, Darrah P R, Kochian L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake[J]. Plant and soil,1996,180:57-66
    Khalil L B, Rophael M W, Mourad W E. The removal of the toxic Hg salts from water by photocatalysis [J].Applied Catalysis B:Environmental,2002,36:125-130
    Kimbrough D E, Cohen Y, Winer A M. A Critical Assessment of Chromium in the Environment [J]. Critical Reviews in Environmental Science and Technology,1999,29:1-46
    Kim C. Lan Y, Deng B. Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction[J]. Geochemical Journal,2007,41:397-405.
    Kim C, Zhou Q H, Deng B L, et al. Chromium (Ⅵ) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics [J]. Environmental Science and Technology,2001,35:2219-2225
    Kramer U, Cotter-Howells J D, Charnock J M, et al. Free histidine as a metal chelat or in plants that accumulate nickel[J]. Nature,1996,379:635-638
    Lan Y, Deng B, Kim C, et al. Influence of soil minerals on chromium(Ⅵ) reduction by sulfide under anoxic conditions [J]. Geochemical Transactions,2007,8:4 doi:10.1186/1467-4866-8-4
    Lan Y, Kim C, Deng B, Thornton E C. Chromium(Ⅵ) reduction by sulfide under anaerobic conditions: Catalysis of elemental sulfur product.221th American Chemical Society National Meeting, San Diego, April 1-5,2001
    Landrot G, Ginder-Vogel M, Livi K, Fitts J P, Sparks D L. Chromium(Ⅲ) Oxidation by three poorly-crystalline manganese(Ⅳ) oxides.1. Chromium(Ⅲ)-Oxidizing Capacity. Environmental Science and Technology,2012,46(21):11601-11609
    Li Z, Yu W, Neretnieks L. Removal of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅲ) from sand by electromigration[J]. Journal of Hazardous Materials,1997,55:295-304
    Liu J, Duan C Q, Wang Y H, Zhu Y X, Zhang X H. Effects of chemical fertilizers on the Cr(Ⅲ) adsorption on paddy soil[J]. Water-Rock interaction,2007,1:611-614
    Liu J, Jin Z J, Zhang Q, You S H. Effects of chemical fertilizers on the Cr(Ⅵ) adsorption on paddy soil[J].CBEE,2009:proceedings of the 2009 international conference on chemical, biological and environmental engineering,2010:81-85
    Lytle C M, Lytle F M, Yang N, et al. Reduction of Cr(Ⅵ) to Cr(Ⅲ) by wetland plants:potential for in situ heavy metal detoxification [J]. Environmental Science and Technology,1998,32:3087-3093
    Malati M A, Sear A. Oxidations by manganese(Ⅲ)-Oxidation of chromium(Ⅲ) [J]. Polyhedron,1989,8: 1874-1875
    McKinley W S, Pratt R C, McPhillips L C. Cleaning up chromium [J]. Civil Engineering,1992,62(3): 69-71
    Meegoda J N. Practice Periodical of Hazardous, toxic, and radioactive waste[J]. Management,1999, 3(3):124-131
    Micera G, Dessl A J. Chromium adsorption by plant-roots and formation of long-lived Cr(Ⅴ) species-an ecological hazard[J]. Journal of Inorganic Biochemistry.1988,34:157-166
    Milacictt R, Stupar J. Fractionation and oxidation of chromium tanney waste and sewage sludg-amended soils [J]. Environmental Science and Technology,1995,29:506-514
    Murray K J, Tebo B M. Cr(Ⅲ) is ibdirectly oxidized by the Mn(Ⅱ)-oxidizing bacterium bacillus sp. Strain SG-1 [J]. Environmental Science and Technology,2007,41:528-533
    Naidu R, Harter R D. Effect of different organic acids on Cadmium sorption and extractability from soils[J].Soil Science Society of America Journal.,1998,62:644-650
    Nakayama E, Kuwamoto T, Tsurubo S, et al. Chemical speciation of chromium in seawater. Part 3. The determination of Chromium species [J]. Analytica Chimica Acta.,1981,130:401-404
    Nakayama E, Tiloro H, Kumsmoto T, et.al., Dissoved state of chromium in sea water[J]. Nature,1981, 290:768-770
    Nowack B, Lutzenkirchen J, Behra P, Sigg L, Modeling the adsorption of metal-EDTA complexes onto oxides [J]. Environmental Science and Technol,30 (1996) 2397-2405.
    Oscarson D W, Huang P M, Hammer U T. Oxidation and sorption of As by MnO2 as influenced by surface coationgs of iron and aluminum oxides and calcium carbonate [J]. Water, Air and Soil Pollution,1983,20:233-244
    Ou X X, Quan X, Chen S. Photocatalytic reaction by Fe(Ⅲ)-citrate complex and its effect on the photodegradation of atrazine in aqueous solution[J]. Journal of Photochemical and Photobiology, 2008,197:382-388
    Oze C, Bird D K, Fendorf S. Genesis of hexavalent chromium from natural sources in soil and groundwater [J]. Proceeding of the National Academy of Sciences. USA.,2007,104:6544-6549
    Palmer C D, Wittbrodt P R. Processes affecting the remediation of chromium-contaminated sites [J]. Environmental Health Perspectives,1991,92:25-40
    Pamukcu S, Weeks N, Wittle J. Electrochemical extraction and stabilization of selected inorganic species in porous media[J]. Journal of Hazardous Materials,1997,55(1-3):305-318.
    Pichtel J, Pichtel T M. Comparison of solvents for ex situ removal of chromium and lead from contaminated soil [J]. Environmental Engineering Science,1997,14(2):97-104
    Puzon G J, Tokala R K, Zhang H, David Y, Peyton B M, Xun L. Mobility and recalcitrance of organo-chromium(Ⅲ) complexes [J]. Chemosphere 2008,70:2054-2059
    Quan X, Tan H, Zhao Y. Detoxification of chromiumslag by chromate resistant bacteria [J].Journal of Hazardous Materials,1996,137:836-841
    Rai D, Zachara J M, Eary L E, et al. Geochemical behavior of chromium species [J]. No.EPRI-4544, Battelle, Pacific Northwest Laboratories, Washington.1986
    Reeves R D, Baker A J M, Brooks R R. Abnormal accumulation of trace metals by plants [J]. Mining Environmental Management,1995,9:4-8
    Ribeiro A B, Mateus E P, Ottosen L M. Electrodialytic removal of Cu, Cr, and As from Chromated Copper Arsenate-Treated Timber Waste [J]. Environmental Science and Technology,2000,34(5): 784-788
    Robert M, Robert W, Sharon K, et al. Coupled iron corrosion and chromate reductio:mechanisms for subsurface remediation [J]. Environmental Science and Technology,1995,29:1913-1922
    Ross D S, Bartlett R J. Evidence for non-microbial oxidation of manganese in soil [J]. Soil Science, 1981,132:153-160
    Ross D S, Sjogren R E, Bartlett R J. Behavior of chromium in soils and Cr(Ⅵ) toxicity to microorganisms [J]. Journal of Environmental Quality,1981,10:145-148
    Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots[J]. Annual Reviews in Plant Physiology and Plant Molecular and Biology,2001,52:527-560
    Schroeder D C, Lee G F. Potential transformations of chromium in natural waters [J]. Water Air Soil Pollution,1975,4:355-365
    Singh K P, Singh A K, Gupta S, Sinha S. Optimization of Cr(Ⅵ) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach [J]. Desalination 2011,270:275-284
    Smith W. Character and Significance of Forest Tree Root Exudates[J]. Ecology.1976,57,324-331
    Sparks D. Environmental Soil Chemistry[M], second ed, San Diego, Academic Press,2003:4-20
    Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—A review [J]. Geoderma,2001,99:169-198
    Stumm W, Morgan J J. Aquatic Chemistry [M]. Wiley-Interscience, New York.1970
    Sun J, Mao J D, Gong H, Lan Y Q. Fe(Ⅲ) photocatalytic reduction of Cr(Ⅵ) by low-molecular-weight organic acids with a-OH[J].Journal of Hazardous Materials,2009,168:1569-1574
    Thornton E C, Amdnette J E. Hydrogen sulfide gas treatment of Cr(Ⅵ) contaminated sediment samples from a plating-waste disposal site-implications for in situ-remediation [J]. Environmental Science and Technology,1999,33:4096-4101
    Thornton J S. Gas treatment of Cr(Ⅵ)-contaminated sediment samples from the North 60'spits of the chemical waste landfill [J]. PNNL-11634, Pacific Northwest National Laboratory, Richland, Washington,1997
    Tian X F, Gao X C, Yang F, Lan Y Q, Mao J D, Zhou L X.Catalytic role of soils in the transformation of Cr(Ⅵ) to Cr(Ⅲ) in the presence of organic acids containinga-OH groups[J]. Geoderma,2010, 159:270-275
    Vajpayee P, Rai U N, Ali M B, et al. Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent, Bull[J]. Environmental Contamination and Toxicology,2002,36(1):246-256.
    Vartika R, Poornima V. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defens e-system, nitrate reduction, proline level and eugenol content of OcimumtenuiflorumL [J]. Plant Science,2004,167(5):1159-1169.
    Weaver R M, Hochela M F, Ilton E S. Dynamic processes occurring at the Cr(Ⅲ) aq (y-MnOOH) interface:Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution [J]. Geochimica and Cosmochimica Acta,2002,66:4119-4132
    Westheimer F H. The mechanisms of chromic acid on Chromium(Ⅵ) biosorption and bioaccumulation oxidations [J]. Chemical Review,1949,45(3):419-451
    William E. Influence of organic ligands on Cr desorptionfrom hydroxy-Cr intercalated montmorillonite [J]. Chemosphere,2004,54(8):1071-1077
    Wilkin R T, Su C M, Ford R G, et al. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier [J]. Environmental Science and Technology,2005,39: 4599-4605
    Wittbrodt P R, Palmer C D. Reduction of Chromium(Ⅵ) in the presence of excess soil fulvic acid [J]. Environmental Science and Technology,1995,29:255-263
    Wu X Y, Fang L, Xu W D, Zhao J L, Yang L Q. Anti-hyperglycemic Activity of Chromim(Ⅲ) malate complex in Alloxan-induced diabetic rats[J]. Biological Trace Element Research.2011,43: 1031-1043
    Wu Y, Deng B, Xu H, Kornishi H. Chromium(Ⅲ) oxidation coupled with microbially mediated Mn(Ⅱ) oxidation [J]. Journal of Geomicrobiology,2005,22:161-170
    Xu R, Xiao S, Zhao A, et al. Effectof Cr(Ⅵ) anions on adsorption and desorption behavior of Cu(Ⅱ) in thecolloidal systems of two authentic variable charge soils [J]. Journal of Colloid Interface Science, 2005,284(1):22-29.
    Yang F, Guo J, Dai R N, Lan Y Q. Oxidation of Cr(Ⅲ)-citrate/tartrate complexes by δ-MnO2: Production of Cr(Ⅵ) and its impact factors[J]. Geoderma,2014,213:10-14
    Yu L J, Shukla S S, Dorris K. L, et al. Adsorption of chromium from aqueous solutions by maple sawdust [J]. Journal of Hazardous Materials,2003, B100:53-63.
    Yurkow E J, Hong J, Min S, et al. Photochemical reduction of hexavalent chromium in glycerol containing solutions [J]. Environmental Pollution,2002,117:1-3
    Zhang H. Light and Iron(Ⅲ)-induced oxidation of chromium(Ⅲ) in the presence of organic acids and manganese(Ⅱ) in simulated atmospheric water [J]. Atmospheric Environment,2000,34:1633-1640
    Zou Y, Hoigne J. Formation of hydrogen perodxide and depletion of oxalic acid in atmospheric water by photolysis of iron-oxalato complexes[J]. Environmental Science and Technology,1992,26: 1014-1022
    Zhong L Y, Yang J W. Reduction of Cr(Ⅵ) by malic acid in aqueous Fe-rich soil suspensions[J]. Chemosphere,2012,86:973-978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700