用户名: 密码: 验证码:
深海作业型ROV水动力试验及运动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋,孕育了各种神奇的生命,同时也是远没充分开发的各种资源宝库。而深海资源的勘探、开发、利用需要借助高科技的深海装备,如各种先进的潜水器(载人潜水器、遥控式潜水器和水下滑翔机等)及其作业系统,这些先进的海洋技术装备能够满足深度更大、范围更广、环境更复杂的海洋科考和作业使命。因此,开发我国自己的深海潜水器,对于缩短与发达国家的技术差距,并保证我国长期可持续发展具有重要的战略意义和历史意义。
     本文选题来源于国家高技术研究发展计划(863)海洋技术领域重点项目“4500米级深海作业系统”(批准号:2008AA092301),其目标是研制国内下潜深度最大的有缆遥控式潜水器。在课题组已有的设计资料基础上,围绕深海潜水器缩尺比模型的水动力试验、潜水器动力学建模及运动稳定性分析、运动控制器设计、推力控制分配策略、轨迹跟踪控制设计、基于海底信息的视景仿真平台的建立,采用试验测量、理论分析和数字仿真平台模拟相结合的方法进行研究和开发。
     所研究的4500米级深海作业型ROV具有开架式结构,其在主尺度、外形、水动力参数及作业使命等方面跟潜艇、自主式潜水器等水下运载器相比,存在很大差异,因此对其水动力特性和操纵性能要求有很大不同,在研究背景和内容上,本文的研究具有很强的现实意义和工程价值,具有前瞻性和开拓性,能够为该领域的深入研究奠定很好的应用基础。本文的主要研究内容包括:
     1.为了深入研究ROV的运动控制技术,建造了1:1.6的ROV缩尺比模型,通过VPMM和LAHPMM对模型进行了水池拖曳试验,采用最小二乘法对所测数据进行了分析,求出了相关的线性和非线性水动力系数,利用回归得到的阻力系数,计算了ROV在多种运动速度模式下的实艇阻力,阻力数值为潜水器的操纵性研究、仿真系统设计和样机试验提供了可靠的数据支持和保障。
     2.根据水动力试验结果,并通过合理的假设与简化,建立了潜水器的空间五自由度非线性数学模型,根据所测得的水动力系数以及ROV的实体尺寸,对其运动稳定性进行了分析,包括水平面、垂直面的静稳定性和动稳定性。
     3.为了克服脐带缆对ROV运动过程中的牵扯影响,本文初步探讨了ROV浮子作业模式,并给出了浮子作业模式下脐带缆近ROV端的缆线力分析与计算,通过计算结果可知,ROV受到的脐带缆干扰力的影响已不是很明显,这将为后续的运动控制算法选取以及控制器的设计带来很大便利。
     4.为了解决ROV的空间运动问题,特别地针对ROV系统的强耦合性、不确定性、非线性等问题,根据水动力试验建立的ROV非线性数学模型,设计了具有自适应性的多变量运动控制器,并运用数学规划思想研究了ROV的推力控制分配问题,进一步研究了ROV复杂的空间轨迹跟踪控制问题,如无法用简单的点、线描述轨迹,并且对ROV的姿态有所要求,设计了基于自适应Backstepping算法的ROV非线性轨迹跟踪控制器,并通过构造李雅普诺夫方程对该控制器的稳定性进行了证明,该控制器能够实现水平面二维和空间三维的轨迹跟踪,同时能够抑制海流的干扰作用,具有很强的鲁棒性。仿真结果表明,该控制器能够确保ROV运动系统在有限时间内收敛,跟踪性能良好,能够满足潜水器精确轨迹跟踪控制作业的需要。
     5.由于潜水器的高研发成本和海洋环境的复杂性,本文运用面向对象的可视化仿真技术,并结合数字海底信息系统,设计并开发了潜水器三维轨迹跟踪控制视景仿真平台。把面向对象技术引入到Petri网建模体系中,为ROV的软件控制系统设计了基于面向对象Petri网(OOPN)的形式化建模语言,并以此为理论指导设计来实现潜水器的动态控制系统软件。从操作员的使用角度和程序员的开发角度,为ROV的轨迹操控平台设计了良好的人机界面,操作员可以通过人机界面输入各类指令,并通过快捷键完成仿真系统的实时跟踪和管理。在Windows操作系统VC++6.0集成环境下,通过OpenGL图形开发库,搭建了该仿真平台,并进行了初步调试,获得了比较理想的模拟效果。
     本文的主要创新点概括如下:
     1.根据ROV的实际作业需求,设计了潜水器在特殊工况下的水动力试验,并研究了其水动力特性,包括定深定点转艏运动试验、低速域大漂角下的水平面斜拖运动试验,借助多元线性回归方法求得了潜水器在低速域大漂角工况下的高阶水动力系数,并建立了该工况下的水动力模型,为今后研究潜水器在特殊工况下的运动控制打下了基础。
     2.针对潜水器系统存在的非线性、强耦合性以及外界干扰的不确定性等问题,设计了基于自适应Backstepping算法的多变量鲁棒运动控制器,并运用Lyapunov稳定性理论,证明了当系统存在参数不确定性和未知有界外干扰时系统仍然具有局部渐近稳定性,以及跟踪误差的局部渐近收敛性。该控制器把潜水器控制系统作为一个整体来进行设计,而不是将系统进行解耦分别设计独立的子控制器,这一独特的设计能够充分利用各个子系统之间的耦合作用来提高整体系统的性能,同时能够保证整体系统的运动稳定性。通过与积分分离的PID控制器的对比仿真研究表明,所设计的多变量非线性运动控制器具有更好的控制品质和鲁棒性能。
     3.推进系统是潜水器运动控制系统的重要组成部分,其性能直接影响潜水器作业过程中的可靠性、安全性和稳定性,为了有效地将运动控制器解算出的期望控制量分配到各推进器上,并满足推进系统的物理约束条件,本文将数学规划中的原始对偶内点法运用到潜水器的推力控制分配中,并给出了全局收敛性的证明,该方法克服了求控制分配矩阵伪逆解的问题,并能够减少计算量,同时能够求得满足约束条件的最优解,使推力输出避免了过饱和问题的产生。
     论文最后对所作的研究内容进行了总结,并提出了未来的研究工作和方向。
     本文的研究成果不但可以应用到正在研发的深海有缆遥控式潜水器的实际作业中,另外,它对于AUV、HOV等水下运载器的研究和设计也都具有重要的理论指导意义和工程参考价值。
Ocean is the origins of human being, which contains fruitful natural resources andenergy. All kinds of underwater vehicles have been playing more important roles in deepsea resources exploration and exploitation. Among which, ROV (Remotely OperatedVehicle) has been applied in many fields, such as oceanographic survey, seafloor geographymapping, pipeline inspection and offshore structure protection. It has become an importantassistant tool to accomplish different underwater missions for the sustainable developmentof newly emerging ocean industry.
     This dissertation originates from4500m Deep Sea ROV Operating Systems, supportedby the National High Technology Research and Development Program (863, Grant No.2008AA092301). The research is inspired by abundant difficulties existing in operation,guidance and control of underwater vehicles in that they operate in some uncertain andhazardous environments. Based upon designing data obtained by the staffs, this researchsubject is concerned with nonlinear robust control design of the deep-sea work-class ROV,which includs hydrodynamics test of scaled model, mathematics modeling of a dynamicsystem, motion stability analysis, nonlinear robust motion controller design, thrust controlallocation algorithm and space trajectory tracking control.
     The hydrodynamic characteristics of open-framed ROV are distinguished from otherunderwater vehicles such as AUV, HOV and underwater glider, due to lots of differencesexisting in principal dimensions, configuration and general arrangement. The maincontributions of the present work are listed as follows:
     1. Accurate hydrodynamics coefficients measurement of ROV are significant for themaneuverability and control algorithm. Accordingly, the scaled model of ROV wasconstructed by1:1.6, and hydrodynamic tests were carried out through VPMM andLAHPMM. Resistances along longitudinal, transversal and normal axises under differentvelocity are figured out based on the real size of ROV, respectively. Linear and nonlinearhydrodynamic coefficients are figured out by using least square method.
     2. Nonlinear mathematical models with5DOF (Degree-of-Freedom) of ROV areestablished according to the hydrodynamic test results and motion hypothesis. Motionstabilities on both horizontal and vertical plane are analysed based on the coefficients,which are of great significance for the structure designing and parameter selections for the ROV systems.
     3. The external forces acted on ROV are analysed systematically. To weaken theumbilical cable influence on ROV, the design of buoyancy balls attached on the cableterminal is introduced for the coupling effects of umbilical cable and ROV. Through thisdesigning scheme, ROV has a better maneuverability and could be controlled more easilyboth in vertical and horizontal plane.
     4. The problem of spacial trajectory tracking control for ROV is addressed despite ofthe constant ocean currents and parametric modelling uncertainty. A nonlinear adaptivecontroller is presented that steers ROV move along a sequence of way-points consisting ofdesired positions in Earth coordinated system. The controller is first derived at thekinematic level, and then integrator self-adaptive method and backstepping algorithm arecombined to extend the kinetics case and to deal with model parameter uncertainty, finally,the stability of the closed-loop system trajectory is proved through using Lyapunovfunctions. Several simulation cases are discussed, and the results illustrates the robustnessof the proposed controller.
     5. The object oriented technology and Petri net(OOPN) are novelly adopted to designthe formalized model for the soft architecture of control systems, which enable the systemsto have a better extendability, hierarchical and coherence. The3D trajectory trackingcontrol simulation platform is developed by using virtual visual technology and digitalmodelling method, including chart data processing, seafloor condition generating, vehiclemodeling and trajectory tracking displaying. The platform can also be applied into manypractical fields, such as simulation research of seafloor environment, motion andmaneuvering simulation of underwater vehicle, debugging of control system andmanipulating training. It provides an effective approach for the R&D of underwatervehicle.
     The original works in the present dissertation can be summarized as following:
     1. Hydrodynamic tests are novelly designed and researched under special operatingconditions, including test of purely yawing motion on site, oblique towing test under lowspeed and large drift angle. The oblique towing tests are conducted through LAHPMM atdesignated low speed and the whole range drift angles. Multiple regression method isadopted to address the testing data and obtain the relating hydrodynamic coefficients. Anddynamics model is derived for the next phase of controller design.
     2. Nonlinear robust controller is proposed to force the5DOF overactuated ROV tomove according to the given control commands despite of the presence of environmentaldisturbances, strong coupling and uncertain physical parameters. The coupling design ofcontroller is accomplished by using the so-called block strict feedback form, and the controller synthesis is based on the adaptive strategy and backstepping algorithem. Thelocally asymptotically stability of the control system with system parameter uncertainties isproved by Lyapunov direct method, and the closed loop of tracking errors can be madearbitrarily small. The nonlinear numerical simulation results show the effectiveness androbustness of the proposed multivariable coupling control algorithm. Additionally, thesimulation results of the multivariable robust controller compared to the integrationseparated PID controller are given, which further proves the advantages of the novellydesigned control strategy.
     3. Propulsion system is critical not only in control system, but also in maneuveringapplications, since the consequences of loss of maneuverability maybe serious. Accordingly,thruster vector configuration is designed to overcome the singularity problems which cannot produce forces/moments in every direction, such as surge force, yaw moment. Theemployment of primal dual interior point method is presented for the thrust controlallocation technology. The control allocation algorithm is formulated as optimizationproblems, where the objective is to minimize the thrust output subjected to physicalconstraints. Logarithmic barrier functions are adopted to match the bound constraints tosolve this nonlinear programming problems. Furthermore, a global convergence of theproposed algorithm is analysed via the scheme of line search methods. The simulationresults demonstrate that the developed thrust control allocation algorithm can avoid theemergence of over saturation of thrust outputs compared to the pseudo inverse method.
     Last but not least, the main research contents of the dissertation are summarized, andthe future research direction is presented. The algorithms proposed in the dissertation cannot only be applied into ROV being developed, but embedded in other underwater vehiclessuch as AUV, HOV and underwater glider.
引文
[1]V Ratmeyer and V Rigaud. Europe's growing fleet of scientific deepwater ROW emerging demands for interchange, workflow enhancement and traimng[C]. Proceedings on IEEE OCEANS.2009. Bremen.1-6.
    [2]M Nakamura. W Koterayama. M. Inada. et al. Disk-type underwater glider for virtual mooring and field experiment[J]. International Journl of Offshore and Polar Engineering,2009.19(1):66-70.
    [3]J W Nicholson and A J Healey. The present state of autonomous underwater vehicle (AUV) applications and technologies[J]. Marine Technology Society Journal.2008,42(1):44-51.
    [4]T Inoue, T Katsui, H Murakami and K Takagi. Crawler system for the deep sea ROVs[J]. Journal of Marine Technology Society.2009,43(5):97-104.
    [5]T Salgado-Jimenez. J L Gonzalez-Lopez, L F Martinez-Soto et al. Deep water ROV design for the Mexican oil mdustry[C]. IEEE/MTS OCEANS,2010. Sydney,1-6.
    [6]Soung Jea Park. Tae Kyeong Yeu. Suk Min Yoon, et al. A study of sweeping coverage path planning method for deep sea manganese nodule mining robot[C]. IEEE/MTS OCEANS.2011. Seattle.1-5.
    [7]C R Barnes. Building the world's first regional cabled ocean observatory (NEPTUNE): realities, challenges and opportunities. IEEE/MTS OCEANS2008, Kobe.1-8.
    [E]S R Ramp, R E Davis. N E Leonard, et al. Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-Ⅱ) experiment in the Monterey Bay[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography.2009,56(3-5):68-86.
    [9]C R Barnes, M M R Best, and F R Johnson, et al. Challenges, benefits and opportunities in operating cabled ocean observatories: Perspectives from NEPTUNE Canada.2011IEEE Symposium on Underwater Technology (UT). and2011Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC),2011, Tokyo.1-7.
    [10]Bnan Bingham. David Mindell, Thomas Wilcox and Andy Bowen. Integratmg precision relative positioning into JASON/MEDEA ROV operations [J]. Marine Technology Society Journal,2006,40(1):80-89.
    [11]A D Bowen, D R Yoerger. L L Whitcomb, et al. Exploring the deepest depths:preliminary design of a novel light-tethered hybrid ROV for global science in extreme environments[J]. Marine Technology Society Journal,2004,38(2):92-101.
    [12]A D Bowen. D R Yoerger. C Taylor and M V Jakuba. The Nereus Hybrid Underwater Robotic Vehicle for Global Ocean Science Operations to11.000m Depth[C]. Proceedings on IEEE/MTS OCEANS Conference,20OE. Quebec City, QC,1-10.
    [13]James P Barry and Jun Hashimoto. Revisiting the challenger deep using the ROV Kaiko[J]. Marine Technology Society Journal.2009,43(5):1-2.
    [14]Kangsoo Kim and Tamaki Ura.3-Dimensional trajectory tracking control of an AUV"R-One Robot" considering current intexaction[C]. Proceedings of The12th International Offshore and Polar Engineering Conference.2002, Kitakyushu, Japan,277-2S3.
    [15]Igor Astrov and Boris Gordon. Multirate depth control of an AUV by neural network model reference controller for enhanced situational awareness[C].20115th International Symposium on Computational Intelligence and Intelligent Informatics.201l,Floriana,47-52.
    [16]Joshua Grady Graver. Underwater Gliders: Dynamics. Control, and Design[D]. Princeton University, USA.2005.
    [17]D A Pa ley. F Zhang, N E Leonard. Cooperative control for ocean sampling: The glider coordinated control system[J]. Control Systems Technology,2008, Vol.16:735-744.
    [18]C C Eriksen, T J Osse, R D Light, et al. Sea glider: a long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering,2001.26(4):424-436.
    [19]M J Perry. B S Sackmann. C C Enksen and C M Lee. Seaglider observations of blooms and subsurface Chlorophyll Maxima off the Washington coast[J]. Limnology and Oceanography,2008.53(5):2169-2179.
    [20]L Louis. Victor6000: design, utilization and first improvements[C]. Proceedings of13th International Offshore and Polar Engineering Conference.2003, Honolulu. Hawaii,7-14.
    [21](?)维成.“蛟龙”号载人潜水器关键技术研究与自主创新[J].船舶与海洋工程.2012.1:1-8.
    [22]Xie Junyuan. Xu Wenbo, Zhang Hua. et al. Dynamic modeling and investigation of maneuver characteristics of a deep sea maimed submarine vehicle [J]. China Ocean Engineering,2009.23(3):505-516.
    [23](?)维成,刘正元,徐(?).大型复杂工程系统设计的四要素法[J].中国造船.2008.49(2):1-12
    [24]胡(?),(?)维成,刘涛.大浓度载人潜水器钛合框架实验研究[J].船舶方学.2006.10(2):73-81.
    [25]LI Ye,PANG Yong-jie.WAN Lei,WANG Fang and LIAO Yu-lei. Stability analysis on speed control system of autonomous underwater vehicle [J]. China Ocean Engineering.2009,23(2):345-354.
    [26]孙(?),梁(?),万磊.一种开架式水下机器人控制技术的研究[J].四川大学学报(工程科学版),2008,40(2):147-153
    [27]李硕,曾俊宝,王越超.自治/遥控水下机器人北极冰下导航[J].机器人,2011.33(4):509-512.
    [2E]Kihun Kim. Joonyong Kim, Choi H.S. and Kyu-Yeul Lee. Woojae Seong. Estimation of hydro dynamic coefficients of a test-bed AUY-SNUUY I by motion test. OCEANS '02MTS/IEEE,2002. Korea. Vol.1:186-190.
    [29]A. Tyagi and D. Sen. Calculation of transverse hydro dynamic coefficients using computational fluid dynamic approach[J]. Ocean Engineering.2006. Vol.33:789- 809
    [30]庞永杰,杨路春,李宏伟,曹坤.潜体水动力导数的CFD计算方法研究[J].哈尔滨工程大学学报,2009,30(8):903-908.
    [31]李迎华,吴(?),张华.CFD动态风络技术在水下航行体(?)操纵运动(?)的应用研究[J].船舶力学,2010,14(10):1100-1108.
    [32]胡志强,林扬,谷海涛.水下机器人(?)类水动力数(?)计算方法研究[J].机器人,2007.29(2):145-150.
    [33]J P J Avila, N Maruyama and J C Adamowski. Hydrodynamic parameter estimation of ail open frame unmanned underwater vehicle[C]. Proceedings of the17th International Federation of Automatic Control. Seoul, Korea,2008,10504-10509.
    [34]马玲,(?)维成.载人潜水器水平(?)动力学模型系统(?)识[J].中国造船,2006,47(2):76-81.
    [35]Caccia M. Indiven G and Veruggio G. Modelling and identification of open-frame variable configuration underwater vehicles[J]. IEEE Journal of Oceanic Engineering,2000.25(2):227-240.
    [36](?)维成.马玲.潜水器设计中所要解决的水动力学问题[A].第九届全国水动力学学术会议(?).十二届全国水动力学研讨会文集.北京:海洋出版社,2009.
    [37]T. I. F. A. Ross and T. A. Johansen. Identification of underwater vehicle hydrodynamic coefficients using free decay tests[C]. IFAC Conference on Control Applications in Marine Systems, Ancona. Italy,2004.
    [38]Sadeghzadeh B and Mehdigholi H. Identification of underwater vehicle hydrodynamic coefficients using model tests. ASME2010International Mechanical Engineering Congress and Exposition. British Columbia. Canada.2010, Vol.8:165-173.
    [39]Sadeghzadeh Parapari B and self M, Mahdigholi H. Identification of underwater vehicle hydrodynamic coefficients using model tests[J]. International Journal of Maritime Technology.2012,7(14):31-43.
    [40]Mario A. Jordan. Jorge L. Bustamante. Edwin Kreuzer and Volker Schlegel. On-line identification of hydrodynamics in underwater vehicles[C]. Proceedings of the16th IFAC World Congress,2005, Czech Republic,1-6.
    [41]Zhao Lin, Zhu Yi. Tang Yanhong and Li Ming. Research on the coefficients identification of submarine training simulator based on particle swarm optimization[C]. IEEE International Symposium on Knowledge Acquisition and Modeling Workshop,200E, Wuhan,China,864-867.
    [42]Xiao Liang. Wei Li, Jianguo Liu, Linfang Su and Hui Li. Model identification for autonomous underwater vehicles based on maximum likelihood relaxation algorithm. Proceedings of the2010Second International Conference on Computer Modeling and Simulation. Washington, DC. USA, Vol.1.128-132.
    [43]Wai Leung Chan and Taesam Kang. Simultaneous determination of drag coefficient and added mass[J]. IEEE Journal of Oceanic Engineering.2011,36(3):422-430.
    [44]K. N. S.Suman, D. Nageswara Rao, H. N. Das and G.Bhanu Kiran. Hydrodynamic performance evaluation of an ellipsoidal nose for a high speed underwater vehicle [J]. Jordan Journal of Mechanical and Industrial Engineering,2010,4(5):641-652.
    [45]Nakamura M., Asakawa K., Hyakudome T., Kishima S., Matsuoka H. and Minami T. Study on hydrodynamic coefficients of underwater vehicle for virtual mooring [C].2011IEEE Symposium on Underwater Technology (UT), Tokyo. Japan,1-7.
    [46]Eng YH. Lau WS. Low E. and Seet GGL. Identification of the hydrodynamics coefficients of an underwater vehicle using free decay pendulum mot ion [C]. Proceedings of the International MultiConference of Engineers and Computer Scientists2008Vol Ⅱ,2008. Hong Kong.
    [47]Eng YH. Lau WS, Low E. and Seet GGL and CS Chin. Estimation of the hydrodynamics coefficient? of an ROV using free decay pendulum motion[J]. Engineering Letters.2009,16(3):1-6.
    [4E]Avila J P J. Adamcwski J C. Experimental evaluation of the hydrodynamic coefficients of a ROY through Monson' s equation[J]. Ocean Engineering,2011.38(17-18):2162-2170.
    [49]Juan Julca Avila. Kazuo Nishimoto. Claudio Mueller Sampaio and Julio C. Adamovvski. Experimental investigation of the hydrodynamic coefficients of a remotely operated vehicle using a planar motion mechanism[J]. Journal of Offshore Mechanics and Arctic Engineering.2012.134(2):1-6.
    [5Q]Zhaoli Wang. Yumin Su. Xiaofei Wang. Xianzhao Yu and Zaibai Qin. Experimental study on the hydrodynamics of a pectoral-fin propulsive system[C]. International Conference on Mechatronics and Automation.2009, Changchun. China.3336-3341.
    [51]Hyeong-Dong Kim. Seung-Woo Byun. Seung-Keon Lee, Joon-Young Kim, Taek Soo Jang and Choi H.S. Mathematical modeling and experimental test of Manta-type UUV[C].2011IEEE Symposium on Underwater Technology (UT), Tokyo. Japan,1-4.
    [52]Juan Pablo Julca Avila, Julio Cezar Adamowski. Newton Maruyama. Fabio Kawaoka Takase, Milton Saito. Modeling and Identification of an Open-frame Underwater Vehicle: The Yaw Motion Dynamics[J]. Journal of Intelligent&Robotic Systems Ocean Engineering-2012.66(1-2):37-56.
    [53]Zhiqiang Hu and Yang Lin. Computing the Hydrodynamic Coefficients of Underwater Vehicles Baaed on Added Momentum Sources[C]. Proceedings of the18th International Offshore and Polar Engineering Conference.2008.Vancouver, BC. Canada,451-456.
    [54]Amit Ray, S.N.Singh and V.Seshadri. Evaluation of linear and nonlinear hydrodynamic coefficients of underwater vehicles using CFD[C].28th International Conference on Ocean. Offshore and Arctic Engineering.2009. Honolulu. Hawaii, USA.257-265.
    [55]Maria L. Novais. Antonio J. Silva, Vishveshwar R. Mantha. Rui J. Ramos,Abel I. Rouboa. J. Paulo Vilas-Boas, Sergio R. Luis, Daniel A. Marinho. The effect of depth on drag during the streamlined glide: A three-dimensional CFD analysis[J]. Journal of Human Kinetics,2012, Vol.33:55-62.
    [56]Cheng Chin.Michael Lau. Modeling and testing of hydrodynamic damping model for a complex-shaped remotely-operated vehicle for control [J]. Journal of Marine Science and Application,2012,11(2):150-163.
    [57]陈(?)琪,颜开,史(?)君,(?),刘志勇.水下航行体水动力参数(?)能辨识方法研究[J].船舶力学.2007.11(1):40-46.
    [58]Yan der Veen P W J, Johansen T A, Serensen A J. Flanagan C and Toal D. Neural network augmented identification of underwater vehicle models, IFAC Symposium on Control Applications in Marine Systems, Ancona, Italy.2004.
    [59]G.Rajesh. S.K.Bhattacharyya. System identification for nonlinear maneuvering of large tankers using artificial neural network [J]. Applied Ocean Research,2008,30(4):256-263.
    [60]Bidyadhar Subudhia. Debashisha Jena. A differential evolution based neural network approach to nonlinear system identification[J]. Applied Soft Computing.2011.11(1):861-871.
    [61]O D Aidan. Handbook of PI and PID Controller Tuning Rules[M]. Imperial College Press:London,2006.
    [62]E. Z. Dong. Z. Q.Chen, Z. Z. Yuan. Control and synchronization of chaos systems based on neural network PID controller[J]. Journal of Jilin University (Engineering and Technology Edition),2007,37(3):646-650.
    [63]A. R. Julio. S. Roberto, B. Pedro. PI and PID auto-tuning procedure based on simplified single parameter optimization[J]. Journal of Process Control,2011,21(6): S40-851.
    [64]S Prabhakar, B Buckham. Dynamics Modeling and Control of a Variable Length Remotely Operated Vehicle Tether[C]. Proceedings of MTS/IEEE Oceans,2005, Washington. DC. USA,Vol.2,1255-1262.
    [65]S.P.Hou and C.C.Che all. PD control scheme for formation control of multiple autonomous underwater vehicles[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatromcs.2009. Singapore,356-361.
    [66]N H Tehrani, M Heidari, Y Zakeri. et al. Development. Depth Control and Stability Analysis of an Underwater Remotely Operated Vehicle (ROV)[C].2010Eth IEEE International Conference on Control and Automation,2010, Xiamen. China.1449-1456
    [67]Maziyah Mat Noh, Mohd Rizal Arshad and Rosmiwati Mohd Mokhtar. Depth and pitch control of USM underwater glider: performance comparison PID vs. LQR[J]. Indian Journal of Geo-Marine Sciences,2011.40(2):200-206.
    [6S]Liuji Shang. Shuo Wang. Min Tan. Fuzzy logic PID based control design for a biomimetic underwater vehicle with two undulating long-fins[C].2010IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).2010. Taipei, Taiwan, Chma,922-927.
    [69]Weijia Ma. Yongjie Pang. Chanjuan Jiang, Xin Du. Research on the optimization of PID control of remotely operated underwater vehicle[C].2011International Conference on Computer Science and Service System (CSSS).2011. Nanjing. China,3525-3528.
    [70]Enzeng Dong. Shuxiang Cnio. Xichuan Lin, Xiaoqiong Li and Yunliang Wang. A neural network-based self-turning PID controller of an autonomous underwater vehicle[C]. Proceedings of2012IEEE International Conference on Mechatromcs and Automation,2012, Chengdu, Chma,898-903.
    [71](?),(?)勤.张利军.等.(?)离散滑模预测的欠驱动AUV三维轨迹跟踪控制[J].控制与决策,2011,26(10):1452-1458.
    [72]Guan. C. and Pan. S. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters[J]. Control Engineering Practice-2008, Vol.16:1275-1284.
    [73]Wallace M. Bessa and Edwin Kreuzer. Sliding mode control of a remotely operated underwater vehicle with adaptive fuzzy dead-zone compensation[C].82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM),2011. Graz. Austria,802-804.
    [74]戴学丰,边信黔.6自由度水下机器人轨迹控制仿真研究[J].系统仿真学报,2001,13(3):368-375
    [75]Bessa,W.M.. Dutra. M.S., Kreuzer. E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller[J]. Robot. Auton. Syst.2008,56(8):670-677.
    [76]Kangwu Zhu and Lmyi Gu. A MIMO Nonlinear Robust Controller for Work-Class ROVs Positioning and Trajectory Tracking Control[C].2011Chinese Control and Decision Conference (CCDC).2011, Mianyang, China,2570-2575.
    [77]Wallace M. Bessa. Max S. Dutra and Edwin Kreuzer. Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system [J]. Journal of Intelligent Robot System.2010. Vol.58:3-16.
    [78]A. C. B. Chiella. C. H. E Santos and G. N. D. Nabeyama. Nonlinear control of underwater vehicle applied to inspect dams[C].12th Pan-American Congress of Applied Mechanics.2012,Spain.1-6.
    [79]Yang Hai and Ma Jie. Nonlinear control for autonomous underwater glider motion based on inverse system method[J]. Journal of Shanghai Jiaotong University (Science Edition.).2010.15(6):713-718.
    [80]Bing Sun and Daqi Zhu. A chattering-free sliding-mode control design and simulation of remotely operated vehicles[C].2011Chinese Control and Decision Conference (CCDC).2011. Mianvang, China,4181-41S6.
    [81]Antonelli, G.; Caeca vale. F.&Chiaverini, S. Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach. IEEE Trans, on Robotics and Automation.2004.20(3):594-602.
    [82]Do, K.D.: Pan. J.&. Jiang. Z.P. Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering.2004.31(16):1967-1997.
    [83]Jordan, M.A.&Bustamante, J.L. An adaptive control system for perturbed ROVs in discrete sampling missions with optimal-tune characteristics. Proceedings of IEEE46th Conference on Decision and Control.2007. New Orleans. USA,1300-1305.
    [84]Hoang N.Q. and Kreuzer E. Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: theory and expenments[J]. Control Engineering Practice.2007. Vol.15:411-419.
    [85]A. R. Marzbanrad, M. Eghtesad, R. Kamali.A robust adaptive fuzzy sliding mode controller for trajectory tracking of ROVs[C]. In Proceedings of CDC-ECE,2011. Orlando. FL. USA.2863-2870.
    [86]Kazuo Ishii and Tamaki Ura. An adaptive neural-net controller system for an underwater vehicle [J]. Control Engineering Practice,2000, Vol.8:177-184.
    [87]G Antonelli. S Chiaverini. N Sarkar. et al. Adaptive control of an autonomous underwater vehicle: experimental results on ODIN[J]. IEEE Transactions on Control Systems Technology,2001,9(5):756-765.
    [88]Jordan M A. and Bustamante J L. A Speed-Gradient Adaptive-Control with State/Disturbance Observer for Autonomous Subaquatic Vehicles. Proceedings of IEEE45th Conference on Decision and Control.2006. San Diego. USA,2008-2013.
    [89]Zool H. Ismail and Matthew W. Dunnigan. Adaptive robust tracking control of an underwater vehicle-manipulator system with sub-region and self-motion criteria[J]. Journal of Control and Intelligent Systems.2012.40(1):165-177.
    [90]Khanmohammadi S.. Alizadeh G. and Poormahmood M. Design of a fuzzy controller for underwater vehicles to avoid moving obstacles[C]. IEEE International Fuzzy Systems Conference,2007. London.1-6.
    [91]Kuinar G.V.N., Rao K.A.G.. Sobhan P.V.S. and Chowdary D.D. Robustness of fuzzy logic based controller for unmanned autonomous underwater vehicle[C]. IEEE Region10and the Third international Conference on Industrial and Information Systems.2008. Kharagpur,1-6.
    [92]Ayob S.M.. Azli N.A.and Salam, Z. PWM DC-AC converter regulation using a multi-loop single input fuzzy PI controller[J]. Journal of Power Electron,2009.9(1):124-131.
    [93]Perez T.. Smogeli N.. Fossen, T.I. and Sorensen A.J. An overview of the marine systems simulator (MSS): a Simulink toolbox for marine control systems[M]. Modelling Identification Control27.2006.259-275.
    [94]S. Tong and Y. Li. Observer-based fuzzy adaptive control for strict-feedback nonlinear sy sterna [J]. Fuzzy Sets and Systems,2009.160(12):1749-1764.
    [95]Bessa W M, Dutra M S and Kreuzer E. An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles[J]. Robotics and Autonomous Systems.2010,58(l):16-26.
    [96]J. Guo. F.C. Chiu and C.C. Huang. Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle[J]. Ocean Engineering,2003. Vol.30:2137-2155.
    [97]M.H. Saghafi, H. Kashani. N. Mozayani and G. R. Vossoughi. Developing a tracking algorithm for underwater ROY using fuzzy logic controller[C].5th Iranian Conference on Fuzzy Systems,2004,Tehran.17-25.
    [98]Amjad M.. Ishaque K.. Abdullah S.S. and Salam Z. An alternative approach to design a Fuzzy Logic Controller for an autonomous underwater vehicle[C].2010IEEE Conference on Cybernetics and Intelligent Systems (CIS),2010, Singapore,195-200.
    [99]Kashrf Ishaque, S. S. Abdullah. S. M. Ayob and Z. Salam. Single input fuzzy logic controller for unmanned underwater vehicle[J]. Journal of Intelligent Robot System,2010. Vol.59:87-100.
    [100]S.A.Salman. Screenatha A. Anavatti and T.Asokan. Adaptive fuzzy control of unmanned underwater vehicles[J]. Indian Journal of Geo-Manne Sciences.2011,40(2):168-175.
    [101]Chatchanayuenyong T. and Pamichkun M. Neural network based-time optimal sliding mode control for an autonomous underwater robot[J]. Mechatronics,2007. Vol.16:471-478.
    [102]Jihong Li, Panmook Lee. Seok Won Hong and Sang jeong Lee. Stable nonlinear adaptive controller for an autonomous underwater vehicle using neural networks[J]. International Journal of Systems Science,2007,38(4):327-337.
    [103]S. R. Pandian and N. A. Sakagaim. A neuro-fuzzy controller for underwater robot manipulators[C]. Proceedings of the11th International Conference on Control Automation Robotics and Vision.2010, Singapore.2135-2140.
    [104]A.Bagheri. T.Kanmi and N.Amanifard. Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers[J]. Applied Soft Computing.2010.10(3):908-9-18.
    [105]Fernandas J M M, Tanaka M C and Bessa W M. A Neural network based controller for underwater robotic vehicles[C].21st International Congress of Mechanical Engineering.2011, Natal. RN. Brazil.1-9.
    [106]A. Bagheri. N. Ainanifard. T. Karimi, M. H. Farahani, and S. M. Besarati. Adaptive neural network control of an underwater remotely operated vehicle (ROV)[C]. Proceedings of the10th WSEAS International Conference on COMPUTERS. Vouliagmem. Athens, Greece.2006.614-619.
    [107]Yang Shi. Weiqi Qian, Weisheng Yan and Jun Li. Adaptive depth control for autonomous underwater vehicles based on feedforward neural networks [J]. International Journal of Computer Science&. Applications.2007,4(3):107-118.
    [108]Xinqian Bian. Adaptive NN control system of bottom following for an underactuated AUV[C]. OCEANS '10MTS/IEEE Seattle.2010.1-6.
    [109]Guerrero G A. Garcia C F and Gilabert J. A biologically inspired neural network for navigation with obstacle avoidance in autonomous underwater and surface vehicles[C]. IEEE OCEANS'2011, Santander,1-8.
    [110]J H Li and P M Lee. Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle[J]. Ocean Engineering.2005.32(6):2165-2181.
    [111]A P Aguiar. A M. Pascoal. Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents [J]. International Journal of Control,2007,80(7):1092-1108.
    [112]L Lapierre and B Jouvencel. Robust nonlinear path-following control of an AUV[J]. IEEE Journal of Oceanic Engineering.200S.33(2):E9-102.
    [113]T. Shaocheng. C. Li, and Y. Li. Fuzzy adaptive observer backstepping control for MIMO nonlinear systems [J]. Fuzzy Sets and Systems,2009,160(19):2755-2775.
    [114]T. Shaocheng, X.-L. He, and H.-G. Zhang. A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control [J]. IEEE Transactions on Fuzzy Systems,2009,17(5):1059-1069.
    [115]Yuntao Han, Xiaojun Bi and Tao Bai. Dynamic inversion control based on backstepping for underwater high-speed vehicle[C].8th World Congress on Intelligent Control and Automation (WCICA).2010, Jinan, China.3868-3871.
    [116]K D Do. J Pan and Z P Jiang. Robust and adaptive path following for underactuated autonomous vehicles[J]. Ocean Engineering.2004,Vol.31:1967-1977.
    [117]Yintao Wang, Weisheng Yan. Bo Gao and Rongxm Cui. Backstepping-based path following control of an underactuated autonomous underwater vehicle[C]. Proceedings of the2009IEEE International Conference on Information and Automation,2009, Zhuhai/Macau, China.466-471.
    [118]GE Hui and JING Zhong-Liang. Weather optimal dynamic positioning control of fully actuated autonomous underwater vehicles with cuirent[J]. Journal of shanghai Jiaotong University (Science).2011,45(7):961-965.
    [119]M. Santhakumar. Proportional-Derivative Observer-Based Backstepping Control for an Underwater Manipulator. Mathematical Problem in Engineering.2011, Vol.2011:1-18.
    [120]F Y Bi, Y J Wei. J Z Zhang and W Cao. Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents [J]. Control Theory&Applications. IET,2010,4(11):2369-2380.
    [121]R. P. Kumar. A. Dasgupta and C.S. Kumar. Robust trajectory control of underwater vehicles using time delay control law[J]. Ocean Engineering,2007, Vol.34: S42849.
    [122]Roche. E., Sename. O.. and Simon. D. LPV/Hx varying sampling control for autonomous underwater vehicles[C]. In Proceedings of the IFAC SSSC,2010. Ancona. Italy,1-5.
    [123]Varner, S. Robust control of autonomous underwater vehicles[D]. Grenoble INP, France.2010.
    [124]Robert, D., Sename. O., and Simon, D. An Hx LPV design for sampling varying controllers: experimentation with a t inverted pendulum [J]. IEEE Transactions on Control Systems Tec biology,2010,18(3):741-749.
    [125]E. Roche. O. Sename. D. Simon and S. Varrier. A hierarchical varying sampling Hx control of an AUV[C]. The18th World Congress of the International Federation of Automatic Control (IFAC).2011, Milano. Italy,1-6.
    [126]熊华(?),边信黔,施小成.鲁林Hx滤波器在AUV驱向控制中的应用仿真[J].机器人,2005,27(6):526-529
    [127]M E West. Robust H-infnuty methos towards the control and navigation of autonomous underwater vehicles[D]. University of Hawai'i.2006.
    [128]Mohammad Pourmahinood Aghababa and Mohammd Esmaeel Akbari. A robust Hx speed tracking controller for underwater vehicles via particle swarm optimization[J]. International Journal of Scientific&Engineering Research,2011,2(5):1-7.
    [129]Masahiko Nakamura, Shojiro Ishibashi, Tadahiro Hyakudome. Hiroshi Yoshida and Taro Aoki. Field experiments on direction control of AUV MR-X1[C]. Proceedings of the21th International Offshore and Polar Engineering Conference, Hawaii, USA,2011,300-306.
    [130]Folcher J P. LMI-based anti-windup control for an underwater robot with propellers saturations[C]. Proceedings of the2004IEEE International Conference on Control Applications.2004. Taipei, China. Vol.1:32-37.
    [131]Chi P. Chen Z J. Zhou R, et al. Autonomous control reconfiguration of aerospace vehicle based on control effectiveness estimation[J]. Chinese Journal of Aeronautics.2007.20(5):443-451.
    [132]ALWI H. EDWARDS C H. Fault tolerant control using sliding modes with on-line control allocation[J]. Automatic a,2008,44(7):1859-1866.
    [133]LIAO F. LUM K Y. WANG J L. Constrained control allocation for linear systems with internal dynamics[C]//Proceedings of the17th World Congress on International Federation of Automatic Control. Seoul: IFAC Press,2008:3092-3097.
    [134]John A. M. Petersen and Marc Bodson. Constrained quadratic programming techniques for control allocation [J]. IEEE Transactions on Control Systems-Technology,2006,14(1):91-98.
    [135]Ola Harkegard and S. Torkel Glad. Resolving actuator redundancy optimal control vs. control allocation[J]. Automatic a,2005, Vol.41:137-144.
    [136]ZHANG Y M. RABBATH C A. SU C Y. Reconfigurable control allocation applied to an aircraft benchmark model[C]//Proceedings of American Control Conference. Washington: IEEE.2008:1052-1057.
    [137]WANG J. SOLIS J and LONGORIA R G. On the control allocation for coordinated ground vehicle dynamics control systems[C]. IEEE Proceedings of American Control Conference,2007. New York,5724-5729.
    [13S]BRAD SCHOFIELD and TORE HAGGLUND. Optimal control allocation in vehicle dynamics control for rollover mitigation[C]. IEEE Proceedings of American Control Conference.2008, Washington.3231-3236.
    [139]Alessandro Casavola and Emanuele Garone. Adaptive control allocation for fault tolerant overactuated autonomous vehicles[C]. In UAV Design Processes/Design Criteria for Structures,2007, Neuilly-sur-Seine, France: RTO.1-16.
    [140]边信黔,付明玉,王元慧.船舶动力定位[M].北京:科学出版社,2011.
    [141]夏国清,Corbett D R.(?)DRNN神经网络的PD混合控制技术在船舶动力定位系统中的应用[J].中国造船,2006,47(1):48-54.
    [142]JOHANSEN T A, FUGLSET T P, TONDEL P, et al. Optimal constramed control allocation in marine surface vessels with rudders [J]. Control Engineering Practice,200E.16(4):457-464.
    [143]CHRISTIAAN DE WIT. Optimal thrust allocation methods for dynamic positioning of ships[D]. Master Degree Dissertation of Delft University of Technology,2009.
    [144]J. Spj(?)tvold and T.A. Johansen. Fault tolerant control allocation for a thruster-controlled floating platform using parametric programming [C]. In Proceedings of CDC,2009, Shanhai, China,3311-3317.
    [145]Kostas Vlachos and Evangelos Papadopoulos. Control design and allocation of an over-actuated triangular floating platform[C].2010IEEE International Conference on Robotics and Automation. Alaska, USA,3739-3744.
    [146]俞建成,张艾群,王晓辉.基于SQP算法的7000m载人潜水器有约束(?)线性控制分配研究[J].信息与控制.2006.35(4):508-512.
    [147]Qian Liu and Daqi Zhu. Fault tolerant control of unmanned underwater vehicles with continuous faults: simulations and experiments[J]. International Journal of Advanced Robotic Systems.2009.6(4):301-308.
    [148]王宏健,边信黔,丁福光,等.海底管线检测与维修装置智(?)综合操纵和动力定位系统[J].中国造船,2004,(2):93-98
    [149]Walker D.G. Design and initial testing of a highly maneuverable remotely operated vehicle with dual articulating thrusters[C]. Proceedings of MTS/IEEE OCEANS,2005, Washington, DC, USA.2292-2298.
    [150]俞建成,张艾群,王晓辉.7000m载人潜水器推进器故障(?)控制分配研究[J].机器人,2006,28(5):519-524.
    [151]Thor I. Fossen. Tor A. Johansen and Tristan Perez. A survey of control allocation methods for underwater vehicles[M]. In A. Inzartsev(ed.), Intelligent Underwater Vehicles. I-Tech Education and Publishing, Vienna. Austria,2009.
    [152]DDM. Bodson. Evaluation of optimization methods for control allocation[J]. Journal of Guidance. Control and Dynamics.2002. Vol.25:703-711.
    [153]BENOSMAN M. LIAO F. LUM K Y, et al. Nonlinear control allocation for non-minimum phase systems[J]. IEEE Transactions on Control Systems Technology.2009.17(2):394-404.
    [154]Zheng-jie Wang and Shijun Quo. Rolling flight control using pseudo inverse control allocation for UAVs with multiple seamless warping control surfaces[J]. International Journal of Modelling, Identification and Control,2012,16(1):15-23.
    [155]Max Demenkov. Reconfigurable direct control allocation for overactuated systems[C]. The18th IFAC World Congress,2011. Milano. Italy,4696-4700.
    [156]黄红(?),韩(?).数学规划[M].北京:清华大学出版社,2006.
    [157](?)守奎,孙(?).数学建模算法与应用[M].北京:国防工业出版社,2011.
    [158]Tor A. Johansen. Thomas P. Fuglseth, Petter T(?)ndel and Thor I. Fossen. Optimal constrained control allocation in marine surface vessels with rudders [J]. Control Engineering Practice.2008. Vol.16:451-464.
    [159]JOHANNES T. JOHANSEN T A. Adaptive control allocation[J]. Automatica,2008.44(11):2754-2765
    [160]SCHURR S P. OLEARY D P and TITS A L. A polynomial-time interior point method for conic optimization, with inexact barrier evaluations [J]. SIAM Journal on Optimization.2009,20(1):458-471.
    [161]Tor A. Johansen. Thor I. Fossen and Svein P. Berge. Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming [J]. IEEE Transactions on Control Systems Technology,2004.12(1):211-216.
    [162]Cheng Siong Chin. Wai Shing L V. Low E and Gun Lee Seet G. Design of thrusters configuration and thrust allocation control for a remotely operated vehicle[C].2006IEEE Conference on Robotics, Automation and Mechatronics, Bangkok,1-6.
    [163]YU Jian-cheng. ZHANG Ai-qun, WANG Xiao-hui and WU Bao-ju. Adaptive neural network control with control allocation for a manned submersible in deep sea[J]. China Ocean Engineering,2007,21(1):147-161.
    [164]Vasile DOBREF and Octavian TARABUTA. Thuruster optimization of an underwater vehicle's propulsion system[J]. Fascicle of Management and Technological Engineering,2007,6(16):644-651.
    [165]J. Tjonnas and Johanseu T. A. Optimizing adaptive control allocation with activator dynamics,200746th IEEE Conference onDecision and Control, New Orleans, LA,2007,3780-3785.
    [166]Johannes Tjannas and Tor Arne Johansen. Optimizing adaptive control allocation with actuator dynamics[J]. Modeling., Identification and Control,2008,29(2):67-75.
    [167]Tristan Perez and Alejandro Donaire. Constrained control design for dynamic positioning of marine vehicles with control allocation [J]. Modeling, Identification and Control,2009,30(2):57-70.
    [168]Yang Shi-zhi, Wang Lei and Zhang Shen. Optimal thrust allocation based on fuel-efficiency for dynamic positioning system[J]. Journal of Ship Mechanics,2011,15(3):217-226.
    [169]ZHANG He, XU Yu-ru and CAI Hao-peng. Using CFD software to calculate hydrodynamic coefficients[J]. Journal of Marine Science and Application,2010,19(2):149-155.
    [170]GUO Bing-jie and STEEN Sveire. Evaluation of added resistance of KVLCC2in short waves [J]. Journal of Hydrodynamics,2011,23(6):709-722.
    [171]马骋,琏琏.水下运载器操纵控制及模拟仿真技术[M].北京:国防工业出版社.2009.
    [172]贾欣乐,杨盐生.船舶运动数学模型——机理建模与辨识建模[M].大连:大连海事大学出版社,1999.
    [173]朱继懋.潜水器设计[M].上海:上海交通大学出版社,1992
    [174]Small wood D. Advances in Dynamical Modeling and Control of Underwater Robotic Vehicles[D]. Ph.D thesis, The Johns Hopkins University, Mary-land, USA,2003.
    [175]Gobat J I and Grosenbaugh M A. Time-domain numerical simulation of ocean cable structures[J]. Ocean Engineering,2006,33(10):1373-1400.
    [176]Driscoll F R, Lueck R G and Nahon M. Development and validation of a lumped-inass dynamics model of a deep-sea ROV system[J]. Applied Ocean Research,2000,22(3):169-182.
    [177]Park H I, Jung D H and Koterayama W. A numerical and experimental study on dynamics of a towed low tension cable [J]. Applied Ocean Research,2003,25(5):289-299.
    [178]霍有锋.水下缆索动力学分析及其在水下机器人系统中的应用研究[D].上海交通大学硕士学位论文,2011.
    [179]Huo C F, Yao B H, Fu B and Lian L. Investigation on transient dynamic behaviors of low-tension undersea cables[J]. Journal of Shanghai Jiao Tong University (Science),201l,16(1):34-39.
    [180]Driscoll F R: Lueck R G and Nahon M. The motion of a deep-sea remotely operated vehicle system. Part1: motion observations. Ocean Engineering,2000,27(1):29-56.
    [181]Driscoll F R, Lueck R G and Nahon M. The motion of a deep-sea remotely operated vehicle system. Part2: analytical model. Ocean Engineering,2000,27(1):57-76.
    [182]Koh C G, Zhang Y and Quek S T. Low-tension cable dynamics: numerical and experimental studies[J]. Journal of Engineering Mechanics,1999,125(3):347-354.
    [183]Wu J and Chwang A T. A hydrodynamic model of a two-part underwater towed system[J]. Ocean Engineering,1999,27(5):455-472.
    [184]JAMESTEC. Cruise report:"Kaiyo"&"Hyper-Dolphin". Earthquake and Tsunami Research Project for Disaster Prevention,2011,1-37.
    [185]Fossen T I. Guidance and Control of Ocean Vehicles[M]. New York: John Wiley&Sons,1994.
    [186]施生达.潜艇操纵性[M].北京:国防工业出版社,1995.
    [187]Fossen T I. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles [M]. Marine Cybernetics,2002.
    [188]Karimi A and Feliachi A. Decentralized adaptive backstepping control of electric power systems[J], Electric Power Systems Research,2008,78(3):484-493.
    [189]Casado M H and Ferreiro R. Identification of the nonlinear ship model parameters based on the turning test trial and the backstepping procedure[J]. Ocean Engineering,2005,32(ll-12):1350-1369.
    [190]Yagiz N and Hacioglu Y. Backstepping control of a vehicle with active suspensions [J]. Control Engineering Practice,2008,16(12):1457-1467.
    [191]Kanellakopoulos I, Kokotovic P V and Morse A S. Systematic design of adaptive controllers for feedback linearizable systems [J]. IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
    [192]李殿璞.非线性控制系统[M].西安:西北工业大学出版社,2009.
    [193]侯明哲.寻的导弹导引与控制一体化设计[D].哈尔滨工业大学博士学位论文:2011.
    [194]Karmarkar N. A new polynomial-time algorithm for linear programming[J]. Combinatorica,1984,(4)4:373-395.
    [195]房亮.二阶锥规划和二阶锥互补问题的算法研究[D].上海交通大学博士学位论文,2010.
    [196]陈宝林.最优化理论与算法(第2版)[M].北京:清华大学出版社。2005.
    [197]Zhang Shan and Jiang Zhixia. A primal-dual interior point method for nonlinear programming[J]. Journal of Northeast Maths,2008,24(3):275-282.
    [198]Akrotirianakis I and Rustem B. A globally convergent interior point algorithm for nonlinear programming[J]. Journal of Optimization Theory and Applications,2005,Vol.125:497-521.
    [199]Caccia M and Veruggio G. Guidance and control of a recongurabie unmanned underwater vehicle[J]. Control Engineering Practice,2000, Vol.8:21-37.
    [200]Hassan Sayyadi and Abdoreza Babakhani. Path planning&trajectory tracking of AUVs in dynamic environments using intelligent converted solution and classical methods[J]. Journal of Marine Engineering,2009,5(9):19-34.
    [201]Saghafi M FJ, Kashani H, Mozayani N and Vossoughi G R. Developing a tracking algorithm for underwater ROV using fuzzy logic controller[C].5th Iranian Conference on Fuzzy Systems,2004, Tehran,17-25.
    [202]高剑,赵宁宁,徐德民,等.水下航行器轴向运动的自适应积分反演跟踪控制[J].兵工学报,2008。29(3):374-378.
    [203]Hoang N Q and Kreuzer E. A robust adaptive sliding mode controller for remotely operated vehicles[J]. TECHNISCHE MECHANIK,2008,28(3-4):185-193.
    [204]Ming-Chung Fang, Chang-Shang Hou and Jhih-Hong Luo. On the motions of the underwater remotely operated vehicle with the umbilical cable effect[J]. Ocean Engineering,2007,Vol.34:1275-1289.
    [205]Molero A, Dunia R, Cappelletto J and Fernandez G. Model predictive control of remotely operated underwater vehicles [C].201150th IEEE Conference on Decision and Control and European Control Conference(CDC-ECC),2011, Orlando, USA,2058-2063.
    [206]Jordan M A and Bustamante J L. Guidance of underwater vehicles with cable tug perturbations under fixed and adaptive control systems [J]. IEEE Journal of Oceanic Engineering,2008533(4):579-598.
    [207]Dave Shreiner, Jackie Neider and Tom Davis. OpenGL Programming Guidance(4th Edition)[M]. Beijing:People's Post and Telecommunication Publishing House,2009.
    [208]姜辉.水下潜器路径规划仿真平台的设计与实现[D].哈尔滨工程大学硕士学位论文,2009.
    [209]Pham D T and Dayal R Parhi. Navigation of multiple mobile robots using a neural network and a Petri net model[J]. Robotica,2003,21(1):79-93.
    [210]Aihua Ren. An integrated development environment for concurrent software developing based on object-oriented Petri nets[C]. Proceedings of the4th International Conference on High Performance Computing in the Asia-Pacific Region,2000,Vol.2:678-680.
    [211]Krishna M K and Alireza M. Modeling multithreaded applications using Petri nets[J]. International Journal of Parallel Programming,2002,30(5):353-371.
    [212]Claude Girault and Rudiger Valk. A Guide to Modeling, Verification and Applications[M]_Springer-Verlag:Berlin Heidelberg,2003.
    [213]Panfeng Yuan and Aihua Ren. Software process modeling method based on object-oriented Petri nets[C]. International Conference on Electrical and Control Engineering,2010, Wuhan, China,5608-5612.
    [214]Yanpei Liu, Yuesheng Gu and Jun Chen. A new control structure model based on object-oriented Pete nets[J]. Journal of Networks,2012,7(4):746-753.
    [215]罗雪山,罗爱民,张耀鸿,等.Petri网在C [4] ISR系统建模、仿真与分析中的应用[Ml长沙:国防科技大学出版社,2007.
    [216]王艺寰.基于三维空间数据模型的AUV前视声呐视域探测仿真研究[D].哈尔滨工程大学硕士学位论文,2009.
    [217]Shi W Z, Yang B S and Li Q Q. An object-oriented data model for complex objects in three dimensional geographic information systems[J]. International Journal of Geographical Information Science,2003,17(5):411-430.
    [218]闫志辉.动力定位船舶航迹控制研究及操控界面开发[D].哈尔滨工程大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700