用户名: 密码: 验证码:
高温及外场作用下碳纳米管大变形物理力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管由于其特殊的一维几何结构,优异的物理、化学、力学性质,被广泛认为将是构建下一代高性能纳米机电器件基元的理想材料。对其大变形物理力学行为的研究一直是该领域的前沿重点之一,新的现象仍然不断被发现,对设计基于碳纳米管的纳米机电器件具有重要的指导意义。本文利用基于Tersoff-Brenner势的分子动力学和密度泛函(DFT)第一原理(First Principles)方法,对碳纳米管在高温、强电场、及弯曲载荷下的大变形物理力学问题进行了系统研究,取得以下主要进展:
     1.利用分子动力学对实验观察到的单壁碳纳米管高温超塑性变形现象进行了系统研究,发现前人提出的单个缺陷滑移产生超塑性变形的模型过于理想话,物理上有限的缺陷形核和扩展不符合高温统计学原理,并且单个或少量缺陷往往会导致碳纳米管的局域化失效。我们的结果表明碳纳米管在高温拉伸至弹性极限附近时,大量均匀分布的拓扑缺陷的形核对碳纳米管的超塑性变形至关重要,它导致碳纳米管在随后的拉伸过程中没有显著的局域弱化,缺陷之间的相互作用和随机扩展使得碳纳米管在高温下超塑性伸长直至最后断裂。而低温拉伸由于缺乏足够的能量使得大量缺陷产生,碳纳米管主要表现为脆性断裂。超塑性变形能力与碳纳米管管径紧密相关,管径越小越容易发生缺陷的局域化,因此不容易产生超塑性变形,而大管径碳纳米管则容易发生超塑性变形。我们的结果更新了学术界对这一新现象的认识,首次揭示出广布缺陷及其演化是碳纳米管高温超塑性变形的原因,与实验观测一致。
     大温度范围模拟表明,碳纳米管可以在很大的温度范围内(大于500K)内被塑性拉伸,但塑性变形能力随温度降低而减弱,弹性极限则随温度的降低而升高,基于这个发现和实验操作中的焦耳加热特点,我们提出了逐步降温调节提高碳纳米管塑性拉伸的机制,并得到分子动力学模拟结果的证实,与实验观察吻合。
     2.研究了多壁碳纳米管的高温物理力学性质,发现在高温加热过程中多壁碳纳米管会形成层间sp3键,成键的能力随温度的升高而增强。由于小管径碳纳米管具有很高的本征应变能,稳定性相对较低,所以在加热过程中内管之间率先形成sp3键,作为曲率极小的极端情况,双层石墨在加热过程中也会产生层间sp3键,但稳定性较低,容易受扰动而消失。拉伸模拟表明,由于这些层间键不导致碳纳米管的显著结构破坏,因此它们不会导致多壁碳纳米管拉伸强度的显著降低。与此同时,由于层间键的引入有效提高了多壁碳纳米管的层间载荷传递能力,因此我们提出利用高温热处理来构造基于碳纳米管的超强纳米纤维复合材料的新方案。
     第一原理的计算表明,无论是金属性还是半导体性多壁碳纳米管,由于层间sp3键的引入,其电子结构由原来石墨式的电子能带结构向金刚石式的电子能带转变,在费米能级处产生能隙,使所有碳纳米管均转变为半导体。由此我们提出高温热处理合成全半导体碳纳米管的新思路,有望促进碳纳米管在未来半导体工业中的应用。
     3.利用密度泛涵理论,研究了有限长单壁碳纳米管在强电场下力电耦合性质,我们的结果发现由于碳纳米管在强电场下的巨电致变形效应,碳纳米管的电子结构会被显著调节,不同手性的碳纳米管的能级间隙随电场的改变展现出不同的变化趋势。电子轨道密度的分布变化表明,armchair碳纳米管的电荷分布变化比zigzag碳纳米管敏感,而带帽子的碳纳米管受电场和电致变形调节最弱,因而其场发射效应不如开口碳纳米管,与实验结论一致。我们的结果还发现碳纳米管的电偶极矩在不考虑电致变形的情况下与电场强度成正比,而电致变形效应使电偶极矩进一步增加,随电场强度呈非线性变化关系。
     4.将分子动力学模拟与原子力显微镜观测相结合,发现碳纳米管弯曲的双尺度效应和两种不同的屈曲模式,对应屈曲结处的高度随弯曲角呈现“突变”和“渐变”两种变化关系。我们的模拟结果表明,突变主要对应于单壁碳纳米管在弯曲载荷下的突然失稳和应变能释放;而渐变主要对应于多壁碳纳米管在弯曲载荷下层间范德华作用的约束效应,使得多壁碳纳米管各层的应变能不能在瞬间同时有效释放,导致多壁碳纳米管由外向内逐渐屈曲。
     对碳纳米管后屈曲阶段的系统模拟表明,由于屈曲结处应力集中,受弯碳纳米管会在屈曲结处形成sp3键。多壁碳纳米管由于层间相互作用较强,因此更容易形成层间sp3键,sp~3键的位置主要在高曲率处。对于单壁碳纳米管,小尺寸(管径、长度)碳纳米管由于单位原子承受应变能较高,更容易形成sp3键,而大尺寸单壁碳纳米管由于柔性较高难以形成sp3键。
     5.针对纳米石墨带的国际最新前沿进展,研究了沿纵向半打开合成的碳纳米管-石墨纳米带的异质结结构的热稳定性和力学性能。我们的分子动力学模拟结果表明随着温度的升高,自由边界的碳纳米管和石墨带由于连接处的悬键相距较近,可以从新键合形成无缺陷碳纳米管,因此稳定性显著降低。自愈合形成碳纳米管的时间与温度相关,温度越高,自愈合速率越快。
     拉伸模拟表明,无论是由armchair还是zigzag碳纳米管打开的异质结结构在室温下都呈脆性断裂模式,armchair结构的弹性极限高于zigzag结构。在400K时,armchair结构仍为脆性断裂,但zigzag结构有向塑性变形转化的趋势。在所有模拟中,断裂均在碳纳米管与石墨带连接处发生,表明此处为应力集中点,对器件工程应用有重要参考价值。
Due to their unique one-dimenstional structure, excellent physical, chemical and mechanical properties, carbon nanotubes (CNTs) are widely believed to be the ideal key materials for farbricating new generation high performance nano electromechanical devices. Exploration of the physical mechanics of large deformation in carbon nanotubes has been one of the central fundamental areas in carbon nanotube research. In this dissertation, molecular dynamics simulations based on Tersoff-Brenner potential, density functional theory (DFT) and first principle calculations have been used to study the large deformation properties of carbon nantubes in high temperatures, strong electric field and under bending manipulations, the following results and conclusions are obtained.
     1, Using molecular dynamics simulations, we studied the recent experiment finding of high temperature superplasticity of single-walled carbon nanotubes at high temperatures, it is noticed that previous theoretical explanation of this phenomenon is against the physical reality, the as-proposed nucleation and propagation of very few defects do not follow high temperature statistical principle and tend leading to localized failure of CNTs. Our results show that homogeneous nucleation of widely distributed topological defects near the elastic limit are essential to superelongation at high temperatures, it impedes the localization of defect distribution in subsequent tensile process, the random interaction and propagation of these defects produces the superelongation privior to its eventual broken. At low temperatures, due to the lack of sufficient thermal energy for activating large amount of topological defects, CNTs primarily show brittle fracture behavior. We found the superelongation behavior are closely related to the diameter of CNTs, for small diameter CNTs, defect nucleation prone to be localized which makes superelongation unfavored, while for large diameter CNTs, superelongation happens more frequently. Our results corrected the inappropriated understanding of the underlying physics in early literatures, we reveal for the first time the importance of wide-distributed defects for superelongation of carbon nanotubes at high temperature and agree well with the experiment.
     Our simulation within wide temperature range show that high strain tensile ductility can be realized in a broad temperature domain (generally over 500K), but the ability of being plastically stretched goes down with decreasing temperature, while the elastic limit increases when temperature is decreasing. Based on this finding and by noticing of the Joule Heating procedure in experiment, we proposed a mechanism of enhancing plastic elongation of CNTs by gradual decreasing of system temperature, molecular dynamics simulations demonstrated this strategy, and are in accordance with experiment observation.
     2, We studied the physical mechanical properties of multiwalled carbon nanotubes (MWCNTs) at high temperatures, it is found that interlayer sp3 bonds are formed during the heating procedure, the capability of forming the sp3 bonds increases with temperature. For small diameter CNTs, they have very high intrinsic strain energy which makes them less stable, therefore the first interlayer bonding form inbetween the inner layers of a MWCNT, for bilayer graphene that has an infinitely low curvature, although interlayer sp3 bondings can form during the heating procedure, these bonds are not very stable and will disappear under external perturbation. Tensile testing show that the tensile strength is not noticeably reduced because these interlayer bonds do not lead to the abrupt damage of the MWCNT structure. Meanwhile, due to the enhanced loading transfer capability between different layers of the MWCNT assisted by the interlayer bondings, we propose a new strategy for farbricating new carbon nanotube based ultra-strong nano fibers or composites through high temperature heating treatment.
     Our first principles calculations demonstrate that, regardless of the starting metallic or semiconducting nature of the intrinsic MWCNTs, introducing of interlayer sp3 bonds can eventually turn them into semiconductors, the transition from graphite-like band structure to diamond like band structure opens the energy gap around Fermi level. We propose a procedure of producing all-semiconducting carbon nanotubes based on the above findigs, it is expected that this scheme would accelerate the application of CNTs in semiconducting industry in the near future.
     3, Based on Density Functional Theory, we studied the electromechanical behavior of finite length SWCNTs under electric field. Our results show that due to the electricstrictive effect, electronic structures of carbon nanotubes can be significantly modified with increasing electric field strength and are chirality dependent. Electronic orbital charge density of armchair SWCNTs is found to be more sensitive to electric field than zigzag SWCNTs, while capped SWCNTs are least sensitive, implying that open ended SWCNTs are better for using as field emission sources, this is in accordance with experiment conclusions. In addition, we find that the electric dipole moment of SWCNT scales linearly with electric field strength if no electrostrictive effect is considered, however, electrostrictive deformation enhances the magnitude of dipole moment and the resultant relationship is nonlinear.
     4, We used molecular dynamics simulations in combination with atomic force microscopy experiment studies, a“dual-size effect”and two distinct buckling modes of CNTs under bend loading are identified. These two buckling modes correspond to the“abrupt”and“gradual”increase trend of the height at the buckling position with respect to the bending angle. Simulation results show that the abrupt buckling modes originate from the sudden release of strain energy due to the instability of SWCNTs at the critical buckling curvature. While the gradual buckling modes primarily correspond to the buckling of MWCNTs, due to the strong Van der Waals constraint in radial direction from the inner walls of a MWCNT, the strain energy from the outer layer of the MWCNT can not be released effectively and the inner layers as well, this leads to the layer by layer buckling of the MWCNT from outer wall to the inner wall.
     Simulations on the post-buckling behavior show that due to the stress concentration, sp3 bondings are formed at the buckling position. Interlayer sp3 bonds are easier to form in bent MWCNTs because they have strong Van der Waals interactions between adjacent layers, the sp3 bonds are mostly formed at the high curvature area. For SWCNTs, smaller sized (length and diameter) SWCNTs can form sp3 bonds easier than the larger size counterparts because the average strain energy per atom is larger than that in the large size SWCNTs, while large size SWCNTs show better flexibility that can release the strain energy effectively and are less able to form sp3 bonds.
     5,Following the recent advances in graphene research, we studied the thermal stability and mechanical properties of recent experimently identified new material: partially unzipped carbon nanotubes. Our molecular dynamics simulations show that due to the dangling bonds located at the edge of the graphene nano ribbons, their stability decreases with increasing temperature. These dangling bonds rebonded to form hexagonal structure and thus seamlessly roll back to nanotube structure, the rolling speed increases with temperture.
     Tensile test shows that both armchair and zigzag structures are brittle at room temperature with Young’s modulus of around 700 GPa. The elastic limit of armchair structure is higher than that of zigzag structure due to the different response of bond angle change to tensile strain. The fracture locate is close to the junction area of nanotube and nano ribbon. Zigzag structure tend to exerience plastic elongation mode when temperature increases over 400 K. Our results offer important reference for the potential application of these new materials.
引文
[1] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996, 271: 933-937.
    [2] J. Xiang, W. Lu, Y. J. Hu, et al, Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature, 2006, 441: 489-493.
    [3] Y. Cui and C. M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science, 2001, 291: 851-853.
    [4] Y. Cui, Z. H. Zhong, D. L. Wang, et al, High performance silicon nanowire field effect transistors, Nano Lett. 2003, 3: 149-152.
    [5] A. I. Hochbaum, R. Chen, R. D. Delgado, et al, Enhanced thermoelectric performance of rough silicon nanowires, Nature, 2008, 451: 163-167
    [6] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, et al, Silicon nanowires as efficient thermoelectric materials, Nature, 2008, 451: 168-171.
    [7] D. W. Wang, Y. Chang and H. J. Dai, Surface Chemistry and Electric Properties of Germanium nanowires, J. Am. Chem. Soc. 2004, 126: 11602-11611.
    [8] Z. W. Pan, Z. R. Dai and Z. L. Wang, Nanobelts of semiconducting oxides, Science, 2001, 291: 1947-1949.
    [9] Z. L. Wang and J. H. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, 2006, 312: 242-246.
    [10] M. Law, L. E. Greene, J. C. Johnson, et al, Nanowire dye-sensitized solar cells, Nature Mater. 2005, 4: 455-459.
    [11] B. Tian, X. Zheng, T. J. Kempa, et al, Coaxial silicon nanowires as solar cells and nanoelectrioncis power sources, Nature, 2007, 449: 885-890.
    [12] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al, Electric field effect in atomically thin carbon films, Science, 2004, 306: 666-669.
    [13] A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Mater, 2007, 6: 183-191.
    [14] X. L. Li, X. R. Wang, L. Zhang, et al, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, 2008, 319: 1229-1232.
    [15] X. R. Wang, Y. J. Ouyang, X. L. Li, et al, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors, Phys. Rev. Lett. 2008, 100: 206803.
    [16] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-58.
    [17] M. M. Treacy, T. W. Ebbesen and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 1996, 381, 678-680.
    [18] Eric W. Wong, Paul E. Sheehan, Charles M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science 1997, 277, 1971-1975.
    [19] M. F. Yu, O. Lourie, M. J. Dyer, et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science 2000, 287, 637-640.
    [20] N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors-graphitic microtubules, Phys. Rev. Lett. 1992, 68: 1579-1581.
    [21] R. Saito, M. Fujita, G. Dresselhaus, et al. Electronic-structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60: 2204-2206.
    [22] J. Wildoer, L. Venema, A. Rinzler, et al, Electronic structure of atomically resolved carbon nanotubes, Nature, 1998, 391: 59-62.
    [23] T. W. Odom, J. L. Huang, P. Kim, et al, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391: 62-64.
    [24] R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Carbon Nanotubes—the Route Toward Applications, Science 2002, 297: 787-792.
    [25] S. Tans, A. Verschueren and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, 1998, 393, 49.
    [26] R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 1998, 73, 2447.
    [27] V. Derycke, R. Martel, J. Appenzeller and Ph. Avouris, Carbon Nanotube Inter- and Intramolecular Logic Gates. Nano Lett. 2001, 1, 453.
    [28] A.Batchtold, P. Hadley, T. Nakanishi and C. Dekker, Logic Circuits with Carbon Nanotube Transistor, Science, 2001, 294, 1317.
    [29] Z. Chen, J. Appenzeller, Y. Lin et al, An Integrated Logic Circuit Assembled on a Single Carbon Nanotube, Science, 2006, 311, 1735.
    [30] K. Koziol, J. Vilatela, A. Moisala et al, High-Performance Carbon Nanotube Fiber, Science, 2007, 318, 1892-1895.
    [31] H. J. Dai, J. Hafner, A. Rinzler, D. Colbert and R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature, 1996, 384, 147-150.
    [32] J. Kong, N. R. Franklin, C. W. Zhou et al., Nanotube Molecular Wires as Chemical Sensors, Science 2000, 287, 622-625.
    [33] S. Ghosh, A.K.Sood, N. Kumar, Carbon nanotube flow sensors, Science 2003, 299, 1042-1044.
    [34] P. G. Collins, K. Bradley, I. Masa, A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science 2000, 287, 1801-1804.
    [35] C. Liu, Y. Y. Fan, M. Liu et al., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science 1999, 286, 1127-1129.
    [36] N. Kam, M. O’Connell, J. Wisdom and H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. USA, 2005, 102, 11600.
    [37] Z. Liu, M. Winters, M. Holodniy and H, Dai, SiRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters, Angew. Chem. Int. Ed, 2007, 46, 2023.
    [38] Z. Liu, J. T. Robinson, X. Sun and H. Dai, Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment, Cancer Res. 2008, 68, 6652.
    [39] H. Kroto, J. Heath, S. O’Brien, et al, C60: Buckminsterfullerene, Nature, 1986, 318: 162-163.
    [40] S. Iijima and T. Ichihashi, Single-Shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363: 603-605.
    [41] D. S. Bethune, C. H. Kiang, M. S. Devries, et al, Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls, Nature, 1993, 363, 605-607.
    [42] W. L. Guo and Y. F. Guo, Energy optimum chiralities of multiwalled carbon nanotubes, J. Am. Chem. Soc, 2007, 129, 2730.
    [43] G. Zhang, P. Qi, X. Wang et al, Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction, Science, 2006, 314, 974.
    [44] T. Sekitani, Y. Noguchi, K. Hata et al, A Rubberlike Stretchable Active Matrix Using Elastic Conductors, Science, 2008, 321, 1468-1472.
    [45] P. Kim and C. Lieber, Nanotube Nanotweezers, Science, 1999, 286, 2148.
    [46] S. J. Tans, M. H. Devoret, H. J. Dai, et al, Individual single-walled carbon nanotubes as quantum wires, Nature, 1997, 386: 474-477.
    [47] H. J. Li, W. G. Lu, J. J. Li et al, Multichannel Ballistic Transport in Multiwalled Carbon Nanotubes, Phys. Rev. Lett. 2005, 95, 086601.
    [48] T. Rueckes, K. Kim, E. Joselevich et al, Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science, 2000, 289, 94.
    [49] G. Zhang, X. Jiang and E. Wang, Tubular Graphite Cones, Science, 2003, 300, 472.
    [50] W. A. de Heer, A. Chatelain and D. Ugarte, A Carbon Nanotube Field-Emission Electron Source, Science, 1995, 270, 1179.
    [51] D. Mann, Y. Kato, A. Kinkhabwala et al, Electrically driven thermal light emission fromindividual single-walled carbon nanotube, Nature Nanotech. 2007, 2, 33.
    [52] P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes, Science, 1999, 283, 1513.
    [53] T. Hasobe, S. Fukuzumi and P. Kamat, Stacked-Cup Carbon Nanotubes for Photoelectrochemical Solar Cells, Angew. Chem. Int. Ed., 2006, 45, 755.
    [54] Y. H. Gao, and Y. Bando, Nanotechnology: Carbon nanothermometer containing gallium, Nature 2002, 415, 599-599.
    [55] T. Chang and H. Gao, Size-dependent elastic properties of a single-walled carbon nanotubes via a molecular mechanics model, J. Mech. Phys. Solids, 2003, 51: 1059.
    [56] M. F. Yu, B. S. Files, S. Arepalli, et al, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84: 5552-5555.
    [57] S. Ogata and Y. Shibutani, Ideal tensile strength and band gap of single-walled carbon nanotubes, Phys. Rev. B 2003, 68, 165409.
    [58] T. Ozaki, Y. Iwasa and T. Mitani, Stiffness of Single-Walled Carbon Nanotubes under Large Strain, Phys. Rev. Lett. 2000, 84, 1712.
    [59] T. Belytschko, S. P. Xiao, G. C. Schatz and R. S. Ruoff, Atomistic simulations of nanotube fracture, Phys. Rev. B, 2002, 65, 235430.
    [60] Q. Zhao, M. B. Nardelli and J. Bernholc, Ultimate strength of carbon nanotubes: A theoretical study, Phys. Rev. B 2002, 65, 144105.
    [61] D. Walters, L. Ericson, M. Casavant, et al, Elastic strain of freely suspended single-walled carbon nanotube ropes. Appl. Phys. Lett. 1999, 74, 3803.
    [62] J. Huang, S. Chen, Z. Wang, et al, Superplastic carbon nanotubes, Nature, 2006, 439: 281.
    [63] J. Huang, S. Chen, Z. F. Ren, et al, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures, Phys. Rev. Lett. 2007, 98: 185501.
    [64] A.J. Stone and D. J. Wales, Theoretical Studies of Icosahedral of C60 and Some Related Species, Chem. Phys. Lett. 1986, 128, 501.
    [65] P. Zhang, P. Lammert and V. Crespi, Plastic deformations of carbon nanotubes, Phys. Rev. Lett. 1998, 81, 5346-5349.
    [66] M. B. Nardelli, B. I. Yakobson and J. Bernholc, Brittle and Ductile Behavior in Carbon Nanotubes, Phys. Rev. Lett. 1998, 81, 4656-4649.
    [67] B. I. Yakobson, Mechanical relaxation and“intramolecular plasticity”in carbon nanotubes, Appl. Phys. Lett. 1998, 72: 918.
    [68] K. Suenaga, H. Wakabayashi, M. Koshino, et al, Imaging active topological defects incarbon nanotubes, Nature Nanotech. 2007, 2: 358-360.
    [69] D. Troya, S. L. Mielke, G. C. Schatz, Carbon nanotube fracture-differences between quantum mechanical mechanisms and those of empirical potentials, Chem. Phys. Lett. 2003, 382: 133-141.
    [70] C. Jin, K. Suenaga and S. Iijima, Vacancy migrations in carbon nanotubes, Nano Lett. 2008, 8: 1127-1130.
    [71] F. Ding, K. Jiao, M. Wu, et al, Pseudoclimb and dislocation dynamics in superplastic nanotubes, Phys. Rev. Lett. 2007, 98: 075503.
    [72] J. Huang, S. Chen, Z. F. Ren, et al, Kink formation and motion in carbon nanotubes at high temperatures. Phys. Rev. Lett. 2006, 97: 075501.
    [73] J. Huang, F. Ding and B. I. Yakobson, Dislocation dynamics in multiwalled carbon nanotubes at high temperatures. Phys. Rev. Lett. 2008, 100, 035503.
    [74] J. Huang, F. Ding, K. Jiao et al, Real time microscopy, kinetics, and mechanism of giant fullerene evaporation, Phys. Rev. Lett. 2007, 99, 175503.
    [75] C. H. Jin, K. Suenaga and S. Iijima, How does a carbon nanotube grow? An in situ investigation on the cap evolution. ACS Nano 2008, 2: 1275-1279.
    [76] S. Iijima, C. Brabec, A. Maiti, et al, Structural flexibility of carbon nanotubes, J. Chem. Phys. 1996, 104, 2089.
    [77] M. R. Falvo, G. Clary, R. Taylor, et al, Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389: 582-584.
    [78] B. I. Yakobson, C. Brabec and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett. 1996, 76: 2511-2514.
    [79] T. Chang, W. Guo and X. Guo, Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model, Phys. Rev. B 2005: 72, 064101.
    [80] H. Mori, S. Ogata, J. Li, et al, Energetics of plastic bending of carbon nanotubes, Phys. Rev. B, 2006, 74, 165418.
    [81] X. Li, W. Yang and B. Liu, Bending induced rippling and twisting of multiwalled carbon nanotubes, Phys. Rev. Lett. 2007, 98, 205502.
    [82] E. Pop, D. Mann, J. Cao, et al, Negative differential conductance and hot phonons in suspended nanotube molecular wires, Phys. Rev. Lett. 2005, 95, 155505.
    [83] H. J. Dai, E. W. Wong and C. M. Lieber, Probing electrical transport in anomaterials: Conductivity of individual carbon nanotubes, Science, 1996, 272: 523-526.
    [84] T. W. Tombler, C. Zhou, L. Alexseyev, et al, Reversible electromechanical characteristicsof carbon nanotubes under local-probe manipulation, Nature, 2000, 405, 769.
    [85] A. Maiti, A. Svizhenko, and M. P. Anantram, Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality, Phys. Rev. Lett. 2002, 88, 126805.
    [86] J. Cao, Q. Wang and H. J. Dai, Electromechanical properties of metallic, quasi-metallic and semiconducting carbon nanotubes under stretching, Phys. Rev. Lett. 2003, 90, 157601.
    [87] E. D. Minot, Y. Yaish, V. Sazonova, J. Y. Park, M. Brink, and P. L. McEuen, Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 2003, 90, 156401.
    [88] H. Postma, T. Teepen, Z. Yao, et al, Carbon nanotube single-electron transistors at room temperature, Science 2001, 293: 76-79.
    [89] W. Guo and Y. Guo, Giant electrostrictive deformation in carbon nanotubes, Phys. Rev. Lett. 2003, 91, 115501.
    [90] I.Cabria, C. Amovilli, M. J. López, et al,Electrostrictive deformations in small carbon clusters, hydrocarbon molecules, and carbon nanotubes,Phys. Rev. A 2006, 74, 063201.
    [91] Khalil El-Hami and Kazumi Matsushige, Electrostriction in single-walled carbon nanotubes, Ultramicroscopy 2005, 105, 143.
    [92] D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 1990, 42(15), 9458~9471.
    [93] D. W. Brenner, O. A. Shenderova, J. A. Harrison et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 2002, 14, 783-802.
    [94] W. Guo, C. Zhu, T. Yu, et al, Formation of sp3 bonding in nanoindented carbon nanotubes and graphite, Phys. Rev. Lett. 2004, 93: 245502.
    [95] J. Elliott, J. Sandler, A. Windle, Collapse of single-wall carbon nanotubes is diameter dependent, Phys. Rev. Lett. 2004, 92: 095501.
    [96] X. Duan, C. Tang, J. Zhang, et al, Two distinct buckling modes in carbon nanotube bending, Nano Lett. 2007, 7: 143-148.
    [97] A. Barreiro, R. Rurali, E. Hernandez, et al, Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes, Science, 2008, 320: 775-778.
    [98] D. Wang, J. Zhao, S. Hu, et al, Where, and How, Does a nanowire break? Nano Lett. 2007, 7: 1208.
    [99] K. Liew, X. He, and C. Wong, On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation, Acta Mater. 2004, 52: 2521.
    [100] J. Wei, K. Liew, and X. He, Mechanical properties of carbon nanocones, Appl. Phys. Lett. 2007, 91: 261906.
    [101] M. Marques, H. Troiani, M. Miki-Yoshida, et al, On the breaking of carbon nanotubes under tension, Nano Lett. 2004, 4: 811.
    [102] J. Kim, T. LaGrange, B. Reed, et al, Imaging of transient structures using nanosecond in situ TEM. Science, 2008: 321: 1472-1475.
    [103] M. Yang, V. Koutsos and M. Zaiser, Size effect in the tensile fracture of single-walled carbon nanotubes with defects, Nanotechnology, 2007, 18: 155708.
    [104] H. Guo, P. Yan, Y. Wang, et al, Tensile ductility and necking of metallic glass, Nature Mater. 2007, 6: 735-739.
    [105] X. D. Han, K. Zheng, Y. F. Zhang, et al, Low-temperature in situ large-strain plasticity of silicon nanowires, Adv. Mater. 2007, 19: 2112-2118.
    [106] Y. Zhang, X. Han, K. Zheng, et al, Direct observation of super-plasticity of beta-SiC nanowires at low temperature, Adv. Funct. Mater. 2007, 17: 3435-3440.
    [107] G. Lee, C. Wang, E. Yoon, et al, The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube, Appl. Phys. Lett. 2008, 92: 043104.
    [108] A. Lee, Y. Kang, K. Chang, et al, Reconstruction and alighment of vacancies in carbon nanotubes, Phys. Rev. B, 2009, 79: 174105.
    [109] K. Asaka and T. Kizuka, Atomistic dynamics of deformation, fracture, and joining of individual single-walled carbon nanotubes, Phys. Rev. B, 2005, 72: 115431.
    [110] T. Zhu, J. Li, A. Samanta, et al, Temperature and Strain-rate dependence of surface dislocation nucleation, Phys. Rev. Lett. 2008, 100: 025502.
    [111] C. Lee, X. Wei, J. Kysar, et al, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, 321: 385-388.
    [112] G. Begtrup, K. Ray, B. Kessier, et al, Probing Nanoscale Solids at Thermal Extremes, Phys. Rev. Lett. 2007, 99: 155901.
    [113] F. Ding, K. Jiao, Y. Lin, et al, How evaporating carbon nanotubes retain their perfection? Nano Lett. 2007, 7: 681.
    [114] T. D. Yuzvinsky, W. Mickelson, S. Aloni, et al, Shrinking a Carbon Nanotube, Nano Lett. 2006, 6: 2718-2722.
    [115] C. Jin, K. Suenaga and S. Iijima, Direct evidence for lip-lip interactions in multi-walled carbon nanotubes, Nano. Res. 2008, 1: 434-439.
    [116] L. F. Sun, S. Xie, W. Liu et al, Materials: Creating the narrowest carbon nanotubes, Nature, 2000, 403: 384.
    [117] L. Qin, X. Zhao, K. Hirahara, et al, Materials science: The smallest carbon nanotube, Nature, 2000, 408: 50.
    [118] N. Wang, Z. K. Tang, G. Li, et al, Materials science: Single-walled 4 ? carbon nanotube arrays, Nature, 2000, 408: 50-51.
    [119] B. Peng, M. Locascio, P. Zapol, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nature Nanotech. 2008, 3: 626-631.
    [120] W. Guo, Y. Guo, H. Gao, et al, Energy dissipation in gigahertz oscillators from multwalled carbon nanotubes, Phys. Rev. Lett. 2003, 91: 125501.
    [121] A. Kis, K. Jensen, S. Aloni, et al, Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes, Phys. Rev. Lett. 2006, 97: 025501.
    [122] Z. H. Xia, P. R. Guduru, and W. A. Curtin, Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging, Phys. Rev. Lett. 2007, 98: 245501.
    [123] C. Malmstrom, R. Keen, and L. Green, Jr, Some mechanical properties of graphite at elevated temperatures, J. Appl. Phys. 1951, 22: 593-600
    [124] P. Wagner, A. Driesner, and L. Haskin, High-temperature properties of graphite, II. Creep in tension, J. Appl. Phys. 1959, 30, 152-154.
    [125] Z. Xu, W. Lu, W. Wang, et al, Converting metallic single-walled carbon nanotubes into semiconductors by boron/nitrogen co-doping, Adv. Mater. 2008, 20, 3615-3619.
    [126] G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54: 11169-11186.
    [127] G. Kresse and J. Hafner, Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium, Phys. Rev. B, 1994, 49: 14251-14269.
    [128] G. Kresse and J. Hafner, Abinitio molecular-dynamics for liquid-metals, Phys. Rev. B, 1993, 47: 558-561.
    [129] V. Zolyomi, J. Koltai, A. Rusznyak, et al, Intershell interactions in double walled carbon nanotubes: charge transfer and orbital mixing, Phys. Rev. B, 2008, 77: 245403.
    [130] W. Su, T. Leung and C. Chan, Work function of single-walled and multiwalled carbon nanotubes: First-principles study, Phys. Rev. B, 2007, 76: 235413.
    [131] C. Park, Y. Kim and K. Chang, Band-gap modification by radial deformation in carbon nanotubes, Phys. Rev. B, 1999, 60, 10656-10659.
    [132] B. Shan, G. Lakatos, S. Peng, et al, First-principles study of band-gap change in deformed nanotubes, Appl. Phys. Lett. 2005, 87: 173109.
    [133] K. Nishidate and M. Hasegawa, Universal band gap modulation by radial deformation insemiconductor single-walled carbon nanotubes, Phys. Rev. B, 2008, 78: 196403.
    [134] A. Barboza, A. Gomes, B. Archanjo, et al, Deformation induced semiconductor-metal transition in single wall carbon nanotubes probed by electric force microscopy, Phys. Rev. Lett. 2008, 100: 256804.
    [135] R. H. Baughman, C. Cui, A. Zakhidov, et al, Carbon nanotube actuators, Science, 1999, 284: 1340-1344.
    [136] S. Chen, J. Huang, Z. Wang, et al, High-bias-induced structure and the corresponding electronic property changes in carbon nanotubes, Appl. Phys. Lett., 2005, 87: 263107.
    [137] A. Rochefort, D. Salahub, and P. Avouris, Effects of finite length on the electronic structure of carbon nanotubes, J. Phys. Chem. B 2001, 103: 641.
    [138] C. Kim et al, Effect of electric field on the electronic structures of carbon nanotubes, Appl. Phys. Lett. 2001, 79: 1187.
    [139] B. Shan and K. Cho, First principles study of work functions of single wall carbon nanotubes, Phys. Rev. Lett. 2005, 94: 236602.
    [140] A. Rinzler, J. Hafner, P. Nikolaev, et al, Unraveling nanotubes-field emission from an atomic wire, Science, 1995, 269: 1550-1553.
    [141] C. Q. Ru, Effective bending stiffness of carbon nanotubes, Phys. Rev. B, 2000, 62: 9973-9976.
    [142] L. F. Wang, Q. Zheng, J. Liu, et al., Size dependence of the thin-shell model for carbon nanotubes, Phys. Rev. Lett. 2005, 95: 105501.
    [143] Y. Huang, J. Wu and K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes, Phys. Rev. B, 2006, 74: 245413.
    [144] G. Cao and X. Chen, Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method, Phys. Rev. B 2006, 73: 155435.
    [145] C. Li and T. Chou, Elastic properties of single-walled carbon nanotubes in transverse directions, Phys. Rev. B 2004, 69, 073401.
    [146] M.J. Buehler, Y. Kong, H. J. Gao, Self-Folding and Unfolding of Carbon Nanotubes, J. Eng. Mater. Technol. 2006, 128, 3-10.
    [147] L. Liu, C. Jayanthi, and S. Wu, Structural and electronic properties of a carbon nanotorus: Effect of delocalized and localized deformations. Phys. Rev. B, 2001, 64: 033412.
    [148] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 2005, 438: 197-200.
    [149] Y. B. Zhang, Y. Tan, H. Stormer, et al, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature, 2005, 438: 201-204.
    [150] K. S. Novoselov, Z. Jiang, Y. Zhang, et al, Room-temperature quantum hall effect in graphene, Science, 2007, 315: 1379.
    [151] D. V. Kosynkin, A. Higginbotham, A. Sinitskii, et al, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, 2009, 458: 872.
    [152] L. Y. Jiao, L. Zhang, X. Wang et al, Narrow graphene nanoribbons from carbon nanotubes, Nature, 2009, 458: 877.
    [153] A. G. Cano-Marquez, F. Rodriguez-Macias, J. Campos-Delgado, et al, Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes, Nano Lett. 2009, 9: 1527-1533.
    [154] H. Santos, L. Chico, and L. Brey, Carbon Nanoelectronics: Unzipping Tubes into Graphene Ribbons, Phys. Rev. Lett., 2009, 103: 086801.
    [155] H. Zhao, K. Min and N. R. Aluru, Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension, Nano Lett. 2009, 9: 3012-3015.
    [156] J. C. Meyer, A. K. Geim, M. Katsnelson et al, The structure of suspended graphene sheets, Nature, 2007, 446: 60-63.
    [157] Z. Liu, K. Suenaga, P. Harris, et al, Open and Closed Edges of Graphene Layers. Phys. Rev. Lett. 2009, 102: 015501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700