用户名: 密码: 验证码:
我国HIV-1主要流行地区B'亚型与CRF07_BC重组毒株遗传变异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国中部地区河南及其周边省份的既往献浆员人群(former plasma donations,FPDs)和西南西北地区的静脉吸毒人群(intravenous drug users,IDUs)是我国HIV传播过程中主要的高危人群。我国正面临着HIV-1通过多种传播方式由高危人群向普通人群扩散的危机。为了解我国HIV-1毒株的流行状况,我们于2003年8月至2005年9月分别在河南、山西、四川和新疆等地采集了508份HIV-1阳性样本,经巢式PCR扩增及纯化、测序,得到的序列通过GCG软件包和国际HIV分子生物学网站提供的在线分析工具对得到的序列进行了基因型、遗传多样性,氨基酸序列、抗原表位、N-糖基化位点以及辅助受体进行了分析。在本研究中我们分析了gp120、gag、nef和tat基因的全长序列,主要结果如下:1)遗传多样性。河南和山西地区的既往献浆人群中流行的HIV-1毒株的主要亚型为B’亚型,在四川和新疆的静脉吸毒人群中流行的HIV-1毒株为CRF07_BC重组模式。B’亚型与CRF07_BC毒株中C3区段的遗传多样性高于其他保守区;河南和山西地区B’亚型毒株中V1,V4区的差异显著;B’亚型毒株gag基因变异较大的区段是P17区段,CRF07_BC毒株中则为P1P6区段。2)特征性氨基酸。我们对B’亚型毒株的gp120,gag和tat基因以及CRF07_BC重组毒株的gp120,gag,tat和nef基因的地区性特异性氨基酸位点进行了确认。3)V3环顶端四肽和N-糖基化位点以及辅助受体结合位点的变化。B’亚型毒株V3环顶端四肽存在6种不同的基序,GPGQ占43.59%,而CRF07_BC重组毒株V3环顶端四肽存在着4种类型,GPGQ所占比例为96.06%。B’亚型毒株V3环N-糖基化位点的丢失率高于CRF07_BC。在B’亚型毒株中,可能使用CCR5作为辅助受体的占14.1%,在CRF07_BC亚型毒株中,可能使用CCR5作为辅助受体的占86.7%。4)抗原表位。河南和山西地区B’亚型毒株与中和表位的完全一致率较低,与CTL抗原表位的完全一致率较高。5)P6区段缺失。在新疆地区CRF07_BC病毒P6区段的中部区域出现了高频率的1-13个氨基酸的缺失,在CD4+和病毒载量方面,有缺失和没有缺失的毒株之间没有明显的区别。
     由上述结果,我们可以得出以下结论:1)不同亚型的毒株在不同的高危人群中持续传播,导致HIV-1毒株在特定的高危人群中特异性的流行趋势。相同亚型毒株的遗传多样性与特定地区毒株的流行时间相关。C3区段在保守区段中变异程度最高,V3区段在可变区段中最保守。2)不同地区流行的具有独特特点的毒株可能是由于特异性的祖先株产生的奠基者效应导致的,还可能是由于传播过程很少出现省与省之间毒株的交叉传播。3)与CRF07_BC重组毒株相比,B’亚型毒株由于V3环的多样性和N-糖基化位点的丢失率较高,B’亚型毒株可能会受到更强有力的免疫压力作用。4)我国B’亚型毒株与已知中和抗体表位的一致性较低,与已知CTL抗原表位的一致性较高。5)CRF07_BC重组毒株Gag基因P6区段1-13个氨基酸的缺失对病毒复制能力和病毒载量的影响不明显。
Former plasma donors (FPDs) who live in Henan and contiguous provinces ofcentral China and injecting drug users (IDUs) in provinces in southwest and northwestChina represent the major hig-risk populations for HIV prevalence all over the country.China is facing the crisis that HIV is spreading from high risk population to commonpopulation by several transmission pathways. To characterize current HIV-1prevalence, we collected 508 HIV-1 sero-positive blood samples from Henan, Shanxi, Sichuan and Xinjiang provinces between August 2003 to September 2005 andsequences were successfully obtained by nested-PCR and subsequent auto-sequencing.GCG software package and online sequence analysis tools were used to editsequences and analyze genotype, genetic distance, amino acid sequences, antigenepitopes, N-linked glycosylation sites and coreceptor. In this paper, we analyzed thefull-length gp120, gag, nef and tat. We observed: 1) Genetic diversity. Thailand B isthe major strain circulating in FPDs in Henan and Shanxi provinces whereasCRF07_BC strain is predominantly circulating in IDUs in Sichuan and Xinjiangprovinces. The analysis of genetic distances revealed that C3 regions of B' clade andCRFO7_BC are more variable than other conservative regions; there is significantdifference in V1 and V4 regions between B' strains from Henan and from Shanxiprovinces; the genetic distance culminates in P17 region in B' strains derived Gagwhereas P1P6 represents the most variable region in CRF07_BC gag gene. 2)Characteristics in amino acid sequences. Regional specific amino acid motifs wereidentified in gp120, gag and tat of B' strains and gp120, gag, nef and tat ofCRF07_BC strains. 3) Variation at the tip, N-linked glycosites of V3 loop andcoreceptor binding sites. 6 different motifs were defined at the tip of B' derived V3loop, among those GPGQ accounts for 43.59%cases, whereas 4 motifs co-exist at thetip of CRF07_BC V3 loop and 96.06%cases contain GPGQ sequences. The losingrate of N-linked glycosites is higher at V3 loop in B' subtype strains than CRF07_BC. 14.1%B' strains and 86.7%CRF07_BC strains contain CCR5 motif. 4) Antigenepitopes. The sequences at CTL epitopes are more consistent in B' strains than that atneutralization epitopes. 5) Deletion in P6. A deletion of 1-13 amino acids wasfrequently observed at the central region of p6 in CRF07_BC derived Gag, and nosignificant differences in CD4~+ counts and virus loads were observed betweensubjects infected by viral strains with/without this deletion.
     From those results above, we concluded: 1) Different HIV-1 clades areconsistently circulating in different big-risk populations and thereby resulted insegregated HIV-1 strain specific prevalence. C3 is the most variable region amongconservative regions of B' and CRF07_BC strains. 2) The regional HIV-1 prevalencemay be initiated by regional specific ancestor viral strain, inter-province exchange ofviral strains was rare. 3) B' clade may undertake more immune pressure thanCRF07_BC, which resulted in more variations at the tip and N-linked glycosites ofV3 loop. 4) The antigen epitopes of B' genotype strains in China are more identical toknown CTL epitopes than to neutralization epitope, 5) The deletion of 1-13 aminoacids in gag P6 region of CRF07_BC strains has little influence to viral replicationand fitness.
引文
1. Adjorlolo-Johnson, G, De Cock, KM, Ekpini, E, Vetter, KM, Sibailly, T, Brattegaard, K, Yaro, D, Doorly, R, Whitaker, JP, Kestens, L arid. Prospective comparison of mother-to-child transmission of HIV 1 and HIV-2 in Abidjan, Ivory Coast. Jama (1994) 272(6), 462-6.
    2. Cavaco-Silva, P, Taveira, N, Douglas, NW, Daniels, R, Lourenco, MH and Santos-Ferreira, MO Virological and molecular demonstration of human immunodeficiency virus type 2 vertical transmission. J Virol (1998)72 (4), 3418-22.
    3. 3. Marlink, R, Kanki, P, Thior, L, Travers, K, Eisen, Cx, Siby, T, Traore, L, Hsieh, CC, Dia, MC, Oueye, EH Reduced rate of disease development after HIV 2 infection as compared to HIV I. Science (1994) 265(5178), 1587-90.
    4. O'Donovan, D., Ariyoshi, K., Milligan, P, Ota, M., Yamuah, L, Sarge-Njie, R. and Whittle, H. Maternal plasma viral RNA levels determine marked differences in mother-to-child transmission rates of HIV 1 and HIV-2 in The Gambia. C/Gambia Government/University College London Medical School working group on mother-child transmission of HIV. Aids (2000)14 (4), 441-8.
    5. Whittle, H., Morris, J, Todd, J, Corrah, T, Sabalty, S,r, Ngom, P T and Wilkins, A. HIV-2 infected patients survive longer thanHIV-1 infected patients. Aids (1994) 8(11), 1617-20.
    6. Frankel, AD &Young, JA. HlV-1: fifteen proteins and an RNA. Annu. Rev. Biochem. 67, 1-25 (1998).
    7. Freed, E. O., Englund, G. and Martin, M. A. (1995) Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. J Virol 69(6), 3949-54.
    8. Mammano, F, Kondo, E., Sodroski, J., Bukovsky, A. and Gottlinger, H. Cx (1995) Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J Virol 69(6), 3824-30.
    9. Gamble, T. R., Yoo, S., Vajdos, F. F, von Schwedler, U. K., Worthylake, D.K., Wang, H., McCutcheon, J. P, Sundquist, W.I. and Hill, C.P (1997) Structure of thecarboxyl-terminal dimerization domain of the HIV 1 capsid protein. Science278(5339), 849-53.
    10. Srinivasakumar, N., Hammarskjold, M. L. and Rekosh, D. (1995) Characterization of deletion mutations in the capsid region of human immunodeficiency virus type 1 that affect particle formation and Gag-Pol precursor incorporation. J Virol 69(10), 6106-14.
    11. Zhu, H., Jian, H. and Zhao, L.J. (2004) Identification of the 15FRFG domain in HIV—1 Gag pb essential for Vpr packaging into the virion. Retrovirology 1(1), 26
    12. Huang, M., 4renstein, J.M., Martin, M.A. and Freed, E. O. (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69(11), 6810-8.
    13. Erickson, J. W., Gulnik, S.V and Markowitz, M. (1999) Protease inhibitors: resistance, cross—resistance, fitness and the choice of initial and salvage therapies. Aids 13 Suppl A, S 189-204.
    14. Miller, V (2001) International perspectives on antiretrovirat resistance. Resistance to protease inhibitors. J Acquir Immune Defic Syndr 26 Suppl 1, $34-50.
    15. Oude Essink, B. B., Das, A. T. and Berkhout, B. (1996) HIV 1 reverse transcriptase discriminates against non-self tRNA primers. J Mol Biol 264(2), 243-54.
    16. Rice, P, Craigie, R. and Davies, D. R. (1996) Retroviral integrases and their cousins. Curr Opin Struct Biol 6(1), 76-83.
    17. Clapham, P. R. and Weiss, R. A. (1997} Immunodeficiency viruses. Spoilt for Choice of co—receptors. Nature 388(6639), 230-1.
    18. Huang C.C, Tang M, Zhang M.Y. Structure of a V3-containing HIV-1 gpl20 core. Science 2005; 310:1025-1028)
    19. Zhang, L., He, T., Huang, Y, Chen, Z., Guo, Y, Wu, S., Kunstman, K.J., Brown, R.C., Phair, J.P, Neumann, A.U., Ho, D.D. and Wolinsky, S.M. (1998) Chemokine coreceptor usage by diverse primary isolates of human imunodeficiency virus type 1. J Virol 72(11), 9307-12
    20. Shaheen, F and Collman, R.G (2004) Co-receptor antagonists as HIV-1 entry inhibitors. Curr Opin Infect Dis 17(1), 7-16.
    21. Chan, D.C., Fass, D., Bergen, J.M. and I}im, P S. (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89(2), 263-73.
    22. Jiang, S., Zhao, Q. and Debnath, A. K. (2002) Peptide and non-peptide HIV fusion inhibitors. Curt Pharm Des 8(8), 563-80.
    23. Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J. and WiIey, D.C. (1997) Atomic structure of the ectodomain from HIV I gp41. Nature 387(6631), 426-30.
    24. Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B. and Matthews, T.J., (I994)Peptides corresponding to a predictive 'alpha-helical' domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 91(21), 9770-4.
    25. Kilby, J. M. and Eron, J..1. (2003) Novel therapies based on mechanisms of HIV-1 cell entry N Engl J Med 348(22), 2228-38.
    26. Kilby, J. M., Hopkins, S., Venetta, T.M., DiMassimo, B., Cloud, G.A., Lee, J. Y, Alldredge, L., Hunter, E., Lambert, D., Bolognesi, D., Matthews, T., Johnson, M.R., Nowak, M. A., Shaw, CxM. andSaag, M.S. (1998) Potent suppression of HIV 1 replication in humans by T 20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 4(11), 1302-7.
    27. Sheehy, A. M., Gaddis, N. C., Choi, J.D. &Malim, M.H. (2002)Isolation of ahuman gene that inhibits HIV-linfection and is suppressed by the viral Vii protein. Nature 418, 646-650.
    28. Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science. 2003 Nov 7;302(5647): 1056-60
    29. Somasundaran M, Sharkey M, Brichacek B, et al. Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proc Natl Acad Sci U S A 2002;99: 9503-9508
    30. Klimkait T, Strebel K, Hoggan MD, et al. The human immuno deficiencyvirus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol 1990; 64:621-629.
    31. Gottlinger HG, Dorfman T, Cohen EA, et al. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc Natl Acad Sci U S A 1993; 90: 7381-7385).
    32. Willey RL, Maldarelli F, Martin MA, et al. Human immunodeficiencyvirus type 1 Vpu protein induces rapid degradation of CD4. J Virol 1992; 66: 7193-7200.
    33. Fujita K, Omura S, Silver J. Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by proteasome inhibitors. J Gen Virol 1997; 78: 619-625).
    34. YuXF, Yu QC, Essex M, et al. The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage. J Virol 1991;65: 5088-5091).
    35. Cujec, T. P, Cho, H., Maldonado, E., Meyer, J., Reinberg, D. and Peteriin, B.M. (1997) The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase Ⅱ holoenzyme. Mol Cell Biol 17(4), 1817-23
    36. Jones, K. A. (1997) Taking a new TAK on tat transactivation. Genes Dev 11(20), 2593-9.
    37. Parada, C. A. and Roeder, R.G (1996) Enhanced processivity of RNA polymerase Ⅱ triggered by Tat-induced phosphorylation of its carboxy—terminal domain. Nature 384(6607), 375-8.
    38. Yang, X., Herrmann, C. H. and Rice, A.P (1996} The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase Ⅱ for function. J Virol 70(7), 4576-84.
    39. Zhou, Q and Sharp, PA (1996) Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV 1 Tat. Science 274(5287), 605—10.
    40. Garcia Jr, Miller AD. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 1991; 350: 508-511.
    41. Guy B, Kieny MP, Riviere Y, et al. HIV F/3_ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 1987;330:266-269
    42. Malim, M. H., Hauber, J., Le, S.Y, Maizel, J.V and Cullen, B.R. (1989) rev trans-activator acts through export of unspliced viral NA.a structured target sequence The HIV 1to activate nuclear Nature 338(6212), 254-7.
    43. Iwai, S., Pritchard, C., Mann, D. A., Karn, J. and Gait, M.. I. (1992) Recognition of the high affinity binding site in rev-response element RNA by the human immunodeficiency virus type-Ⅰ rev protein. Nucleic Acids Res 20(24), 6465-72.
    44. Malim, M.H.,Tiley, L.S., McCarn, D.F, Rusche, J.R., Hauber, J. and Cullen (1990) HIV-1 structuralto gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 60(4), 675-83.
    45. Meyer, B. E., Meinkoth, J.L. and Malim, M.H. (1996) Nuclear transport of human immunodeficiency virus type 1, visna virus, and equine infectious anemia virus Rev proteins: identification of a family of transferable nuclear export signals. J virol 70(4), 2350-9.
    46. Wen, W., Meinkoth, J. L., Tsien, R. Y and Taylor, S.S. (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82(3), 463-73
    47. Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85: 1135-1148.
    48. Deng H, Liu R, Ellmeier W, et al. Identification of a major coreceptor for primary isolates of HIV-1. Nature 1996; 381: 661-666.
    49. McDonald D, VodickaMA, Lucero G, et al., Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 2002;159: 441-452
    50. Schwartzberg P, Colicelli J, Goff SP. (1984) Construction and analysis of deletion mutations in the pol gene of Moloney murine leukaemia virus: a new viral function required for productive infection. Cell; 37: 1043-1052
    51. Nahmias AJ, Weiss J, Yao X, et al. Evidence for human infection with an HTLV Ⅲ/LAV-like virus in central Africa, 1959. Lancet, 1986, 327: 1279-1280.
    52. Clavel F, Gutard D, BrunpVezinet F, et al. Isolation of a new human retro-virus from West African patients with AIDS. Science, 1986, 233: 343-346.
    53. Marlink R, Kanki P, Thior I, Travers K, et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science, 1994, 265:1587-1590.
    54. Kanki PJ, De Cock KM. Epidemiology and natural history of HIV-2. AIDS, 1994; 8 Suppl 1: S85-93.
    55. Bollinger RC, Tripathy SP, Quinn TC. The immunodeficiency virus epidemic in India. Current magnitude and future projections. Medicine, 1995, 74: 97-106.
    56. Hirsch VM, Olmstad RA, Murphey-Corb M, et al. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature, 1986, 339: 389-392.
    57. Gao, F, Robertson, D.L., Morrison, S. C}, Hui, H., Craig, S., Decker, J., Fultz, P N.,Guard, M., Shaw, CxM., Hahn, B.H. and Sharp, P M. Tho heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Viroi (1996) 70(10), 7013-29.
    58. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et al. Origin of HIV-1 in the chimpanzee pan troglodytes. Nature. 1999; 397(6718):436-41.
    59. Gojobori T, Moriyama EN, Ina Y, Ikeo K, Miura T, rsujimoto H, et al. Evolutionary origin of human and simian immune deficiency viruses. Proc Natl Acad Sci USA. 1990;87(11): 4108-11.
    60. Hirsch VM, Olmsted RA, Murphey-Corb H, Purcell RH, Johnson PR. An african primate lentivirus (SIVSM) closely related to HIV-2. Nature. 1989;339(6223): 389-92.
    61. Hirsch VM, Myers G, Johnson PR. Genetic diversity and phylogeny of primate lentiviruses. In: Morrow WJW, Haigwood NL, editors. HIV-molecular organization, pathogenicity and treatment. Amsterdam: Elsevier; 1993. p. 221-40.
    62. Janini LM, Tanuri A, Schechter M, Peralta JM, Vicente AC, Luo CC, et al. Horizontal and vertical transmission of human immunodeficiency virus type 1 dual infections caused by viruses of subtypes B and C. J Infect Dis. 1998;177(1): 227-31.
    63. Espinosa A, Vignoles M, Carrillo MG, Sheppard H, Donovan R, Peralta LM, et al. Intersubtype BFrecombinants of HIV-1 in a population of injectingdrug users in Argentina. J Acquir Immune Defic Syndr. 2004; 36(1):630-5.
    64. Gelderblom HR. Assembly and morphology of HIV: potential effect of structure on viral function. AIDS. 1991;5(6): 617-38.
    65. Ljungberg K, HassanMS, IslamMN, SiddiquiMA, AzizMM, Wahren B, et al. Subtypes A, C, G, and recombinant HIV type 1 are circulating in Bangladesh. AIDS Res Hum Retroviruses. 2002;18(9):667-70.
    66. Louwagie J, Delwart EL, MullAhs JI, McCutchan FE, Eddy G, Burke DS. Genetic analysis of HIV-1 isolates from Brazil reveals the presence of two distinct genotypes. AIDS Res Hum Retroviruses. 1994;10(5):561-7.
    67. Louwagie J, Janssens W, Mascola J, Heyndrickx L, Hegerich P, McCutchan FE, et al. Genetic diversity of the envelope glycoprotein from human immunodeficiency virus type 1 isolates of african origin. J Virol. 1995;69(1):263-71.
    68. Myers G. HIV: between past and future. AIDS Res Hum Retroviruses. 1994;10(11):1317-24.
    69. Shankarappa R, Margolick JB, Gange SJ, et al. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 1999; 73: 10489-10502.
    70. Robertson, D. IJ., Sharp, P M., McCutchan, F E. and Hahn, B.H. Recombination in H1V-1. Nature (1995)374(6518), 124-6
    71. Louwagie, J., McCutehan, F. E., Peeters, M., Brennan, T.P, Sanders—Buell, E., Eddy, G. A., van der Groen, G., Fransen, K., Gershy-Damet, GSM., Deteys, R. and et al. Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. Aids (1993)7(6), 769-80.
    72. McCutchan, FE., Hegerich, PA., Brennan, T.F, Phanuphak, P, Singharaj, P., 3ugsudee, A., Berman, P.W, Gray, A.M., Fowler, A.K. and Burke, D.S. Genetic variants of HIV-1 in Thaitand. AIDS Res Hum Retroviruses (1992) 8(11), 1887-95.
    73. Carr, J.K., Salmincn, M.O., Koch, D., Gottc, D., Artenstein, A.W., Hegerich, PA., St Louis, D., Burke, D.S. and MeCutchan, F E. (1996) Full—length sequence and mosaic structure of a human immunodeficiency virus type 1 isolate from Thailand. H Virol 70(9), 5935-43.
    74. Myers, G., Maclnnes, K. and Korber, B. (1992) The emergence of simian/human immunodeficiency viruses. AIDS Res Hum Retroviruses 8(3), 373-86.
    75. McCutchan, FE.,Carr, J.K., Bajani, M., Sanders-Buell, E., Harry, T. O., Stoeckli, T.C., Robbins, K. E., Gashau, W., Nasidi, A., Janssens, W. and Kalish, M.L. Subtype G and multiple forms of A/G intersubtype recombinant human immunodeficiency virus type 1 in Nigeria. Virology (1999)254(2),226-34.
    76. Montavon, C., Biboltet}Ruche, F, Robertson, D., Koumare, B., Mulanga, C., Esu-Williams, E., Toure, C., Mboup, S., Saman, E., Delaporte, E. and Peeters, M. (1999) The identification of a complex A/G/I/3 recombinant HIV type 1 virus in various West African countries. AIDS Res Hum Retroviruses 15(18). 1707-12.
    77. Nasioulas, G, Paraskevis, D., Magiorkinis, E., Theodoridou, M. and Hatzakis, A{1999} Molecular analysis of the full-length genome of HIV type 1 subtype Ⅰ: evidence of A/G/I recombination. AIDS Res Hum Retrovinrses 15(8), 745-58.
    78. Carr, J.K, B. T. Foley, T. I, eitner, M. Salminen, B. Korber, and F McCutchan. (1998) Reference sequences representing the principle genetic diversity of HIV-1 in thePandemic. Human retroviruses and AIDS: a compilation and analysis of nucleic acid and amino acid sequences. Los Alamos National Laboratory, Los Alamos, New Mexico.
    79. Osmanov, S., Pattou, C., Watker, N., Schwardlander, B. and Esparza, .I. Estimated global distribution and regional spread of HIV-1 genetic subtypes in the year 2002, J Acquit Immune Detfic Syndr (2002)29(2), 184-90.
    80. Vidal, N., Peeters, M., Mulanga-Kabeya, C., Nzilambi, N., Robertson, D., Ilunga, W., Sema, H., Tshimanga, K., Bongo, B. and Delaporte, E. (2000) Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV pandemic originated in Central Africa. J Virol 74(22), 10498-507.
    81.曾毅,郑锡文,苏崇鳌等(1988).艾滋病的血清流行病学调查研究.中华流行病学杂志.9,138-140
    82. Zhang K. L. and Ma, S.J. (2002) Epidemiology of HIV in China. Bmj 324(7341), 803—4.
    83.马瑛,张开祥,杨文乔,等.(1990)首次在我国吸毒人群中发现艾滋病病毒感染者.中华流行病学杂志11,184-185.
    84.邵一鸣,赵全壁,王斌,陈筝,苏玲,曾毅,赵尚德,张家鹏,段一娟.(1994)我国云南德宏地区HIV感染者HIV毒株膜蛋白基因的序列测定和分析.病毒学报10,291-299.
    85.滕智平,段一娟,张家鹏,曾毅.(1995)我国云南瑞丽市区HIV感染者HIV分子流行病学分析.中国性病艾滋病防治1,1-5.
    86. Luo, C.C., Tian, C., Hu, D.J., Kai, M., Dondero, T. and Zheng, X. (1995) HIV-lsubtype C in China. Lancet 345(895b), 1051-2.
    87.李大勤,张桂云,田春桥,等.(1996)中国云南省瑞丽等地艾滋病毒Ⅰ型C亚型的分布研究.中华流行病学杂志.17,337-339.
    88.邵一鸣,赵全壁,曾毅,张家鹏,张勇,段一娟,杨贵林.(1996)1995年云南瑞丽HIV-1毒株的基因变异和分析.病毒学报,12,9-17.
    89. Cheng, H, Zhang, J, Capizzi, J, Young, NL and Mastro, TD (I994) HIV-1. subtype E in Yunnan, China. Lancet 344(8927), 953-4.
    90. Chen, J., Young, N.L., Subbarao, S., Warachit, P, Saguanwongse, S., Wongsheree, S., Jayavasu, C., Luo, C.C. and Mastro, T.D. (1999) HIV type 1 subtypes in Guangxi Province, China, 1996. AIDS Res Hum Retroviruses 15(1), 81-4.
    91.陈杰,刘伟,梁富雄,李荣健,梁绍伶.(1999)广西HIV-1首次流行的分子流行病学分析.中华流行病学杂志.20,74-77.
    92.陈杰,苏玲,梁绍伶,刘伟,刘小良,梁富雄,邢辉,李荣建,邵一鸣.(1998) 广西壮族自治区HIV 1流行毒株的基因序列测定和亚型分析.14,240-245.
    93.邢辉,苏玲,范秀娟,冯毅,强来英,邵一鸣.(2002)1996-1998年中国流行E亚型艾滋病病毒1型毒株的分子流行病学研究.中国艾滋病性病8,200-203.
    94. Yu, X.F, Chen, J., Shao, Y, Beyrer, C. and Lai, S. (1998) Two subtypes of HIV-Zamong injection--drug users in southern China. Lancet 351(9111), 1250.
    95.秦光明,邵一呜,刘刚,苏玲,张灵麟,管永军,郑国英,陈钧,马义才,赵全壁.(1998)四川省HIV-1流行毒株的墓因序列测定和亚型分析.中华流行病学杂志.19,39-42.
    96.赵春红,苏玲,张永钢,邵一鸣,滕智平,季阳.(1999)四川省HIV 1的基因分型调查.中华传染病杂志。17,94-96.
    97.邵一鸣,赵峰,杨维中,张远志,龚新昌.(1999)我国西南西北地区吸毒人群重组人类免疫缺陷病毒1型毒株的发现.中国实验和临床病毒学杂志13,109-112.
    98.白旭华,张远志,邵一鸣,王冬莉,苏玲,刘小良,赵全壁,杜大卫,Josef Kostler.Hans Wolf.(1997)新疆乌鲁木齐HIV-1流行毒株膜蛋白基因C2-V3区序列测定和亚型分析.病毒学报13,339-343.
    99.赵熠君,刘新凤,彭平,李玉惠,等.(2000)甘肃省19951999年艾滋病监测分析.中国性病艾滋病杂志.6,138-140.
    100. Piyasirisilp, S., McCutchan, FE., Cart, J. R., Sanders-Buell, E., Liu, W., Chen, J.,Wagner, R., Wolf, H., Shao, Y, Lai, S., Beyrer, C. and Yu, X. F (2000) Arecent outbreak of human imunodeficiency virus type 1 infection in southern China was initiated by two highly homogeneous, geographically separated strains, circulating recombinant form AE and a novel BC recombinant. J Virol 74(23), 11286-95.
    101. Yu, X. F., Liu, W., Chen, Piyasirisilp, S. and J., Kong, W., Liu, B., gang, J., Liang, F, McCutchan, F Lai, S. (2001) Rapid dissemination of a novel B/C recombinant H1V among infection drug users in southern China. Aids 15 (4), 523-5.
    102. Yang, R., Kusagawa, S., Zhang, C., Xia, X., Ben, K. and Takebe, Y Identification and characterization of a new class of human immunodeficiency virus type 1 recombinants comprised of two circulating recombinant forms, CRFO7_BC and CRFO8_BC, in China. (2003)J Virol 77(1), 685-95.
    103. Yang, R., Xia, X., Kusagawa, S., Zhang, C., Ben, R. andTakebe, Y (2002) On-going generation of multiple forms of HIV 1 intersubtype recombinants in the Yunnan Province of China. Aids 16(10), 1401-7.
    104.冯铁建,邵一鸣,李良成,苏玲,张顺祥,赵全壁,袁建中.(2000)深圳市HIV-1 E亚型感染毒株的分子流行病学分析.中华实验和临床病毒学杂志.14,330-332.
    105.林鹏,曾常红,王晔,李晖,林矛,颜瑾.(2001)广东省1996—1999年艾滋病患者与艾滋病病毒感染者流行特征及趋势.中华流行病学杂志.22,194-197.
    106.潘品良,曾毅,范秀娟,姚均,邢辉,冯毅,邵一鸣.(1999)人类免疫缺陷病毒膜蛋白基因(env)F亚型毒株在中国的首例发现.病毒学报.15,97-101.
    107.严延生,邵一鸣,陈炯,颜苹苹,苏玲,郑健.(1999)福建省艾滋病流行特征及流行趋势分析.中华流行病学杂志.20,23-26.
    108.严延生,陈炯,邵一鸣,王惠榕,潘品良,陈亮,吴守丽,郑兆双,郑健.(2001)福建省艾滋病感染的流行病学和病毒亚型之间相互关系的研究.中华流行病学杂志22,428-431
    109. Wu, L., Liu, Z. and Detels, R. (1995) EIIV-1 infection in commercial plasma donors in China. lancet 34b(89bb), 61-2.
    110.韩卫国,苏玲.,王哲,邵一鸣,王春俭,李宏.(1999)河南省人免疫缺陷病毒流行株的基因亚型分析.中华传染病杂志.17,253-255.
    111.李允文,罗小光,苏玲,张流波,陈均,方越,袁健中,张艺,陈惠萍,Josef Kostlcr,Hans WoIF(1997)湖北省HIV-I析.中华流行病学杂志.18,217-219
    112. Su, B., Liu, L., Wang, F, Gui, X., Zhao, M., Tien, P., Zhang, L. and Chen, Z. (2003) HIV-Ⅰ subtype B' dictates the AIDS epidemic among paid blood donors a the Henan and Ⅰ-Iubei provinces of China. Aids 17(17), 2515, 20.
    113.姚均,赵红心,李兴旺,冯鑫,徐克沂,张福杰.(2002)北京市同性恋HIV-1感染者的包膜基因C2-V3区序列测定和亚型分析。中国性病艾滋病防治,8,131-133.
    114.陈恩富,孙颂文,许锋华.(2002)浙江省20002001年艾滋病病毒/艾滋病流行病学分析.中国性病艾滋病防治.8,287-289.
    115.韩晓旭,尚红,王亚男,卢春明,张世博,姜风霞,邵一鸣.(2001)辽宁省流行的人类免疫缺陷病毒1基因亚型调查.中华流行病学杂志.22,432-434.
    116.黄涛,苏生利,傅继华,刘学真,康殿民.(2000)山东省艾滋病流行特征及流行趋势分析.中华流行病学杂志.21,338-340.
    117.贾成梅,徐晓琴,李雷,刘光中,邢辉,邵一鸣.(2002)江苏省艾滋病流行特征及流行趋势分析.中国性病艾滋病防治.8,33-35.
    118.雷世光,杨宏亚,王丁力,乐斌,李豫,邵一鸣,邢辉.(2000)贵州省HIV-1感染毒株膜蛋白基因序列测定及流行病学分析.中华皮肤科杂志.33,149-151.
    119.黎志东,张亮,赵巧云,刘克辉.(2003)陕西省HIV 1分子流行病学研究.中国皮肤性病学杂志17,12-15.
    120.李根宝,汪国勋,廖清华.(2002)江西省1995-2001年性病艾滋病流行趋势分析.中国性病艾滋病防治8,284-286.
    121.吴玉华,高飞.(1999)黑龙江省艾滋病病毒感染流行现状的分析。中国性病艾滋病防治5,6-7.
    122.梁浩,魏民,陈钊,邢辉,赵全璧,冯毅,关琪,施侣元,邵一鸣.中国HIV-1型B、C亚型主要流行株外膜蛋白基因V3-V4区序列的变异分析.中华实验和临床病毒学杂志,2003年6月,第17卷,第2期 153-158
    123. Cynthia M. Rodenburg, Yingying Li, Stanley A. Trask, Yalu Chen, Julie Decker, David L. Robertson, Marcia L. Kalish, George M. Shaw, Susan A11en, Beatrice H. Hahn, Feng Gao, Near Full-Length Clones and Reference Sequences for Subtype C Isolates of HIV Type 1 from Three Different Continents. AIDS Research and Human Retroviruses. (2001) Volume 17, Number 2, pp. 161-168
    124. McClutchan, F. E., Carr, J.K., Murphy, D., Piyasirisilp, S., Gao, F., Hahn, B., Yu, X. F., Beyrer, C. and Birx, D.L. Precise mapping of recombination breakpoints suggests a common parent of two BC recombinant HIV type 1 strains circulating in China. AIDS Res. Hum. Retroviruses (2002)18 (15), 1135-1140
    125. Mansky, L. M., and H. M. Temin. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. (1995) 69: 5087-5094.
    126. Arnold E, Arnold GF. Human immunodeficiency virus structure: implications for antiviral design. Adv Virus Res. 1991; 39: 1-87. Review.
    127. Susan Zolla-Pazner. Identifying Epitopes of HIV-1 that Induce Protective Antibodys. Nature (2004) Volume 4, P: 99-210
    128. Marshall, R. D. (1974) The nature and metabolism of the carbohydratepeptide linkages of glycoproteins. Biochem. Soc. Symp., 17-26.
    129. Hebert, D.N., Zhang, J.X., Chen, W., Foellmer, B., andHelenius, A. (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J. Cell Bio., 139, 613-623.
    130.130. Land, A. and Braakman, I. (2001) Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie, 83, 783-790
    131. Slater-Handshy, T., Droll, D. A., Fan, X., Di Bisceglie, A.M., and Chambers, T.J. (2004) HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing. Virology, 319, 36-48.
    132. Meunier, J.C., Fournillier, A., Choukhi, A., Cahour, A., Cocquerel, L.,Dubuisson, J., and Wychowski, C. (1999b) Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex. J. Gen. Virol., 80(4), 887-896.
    133. Ye, Y., Si, Z.H., Moore, J.P., andSodroski, J. (2000) Association ofstructural changes in the V2 and V3 loops of the gp120 envelope glycoprotein with acquisition of neutralization resistance in a simian-human immunodeficiency virus passaged in vivo. J. Virol., 74, 11955-11962.
    134. Botarelli, P., Houlden, B. A., Haigwood, N.L., Servis, C., Montagna, D.,and Abrignani, S. (1991) N-glycosylation of HIV-gp120 may constrain recognition by T lymphocytes. J. Immunol., 147, 3128-3132.
    135. Ferris, R. L., Hall, C., Sipsas, N.V., Safrit, J.T., Trocha, A., Koup, R.A.,Johnson, R.P., and Siliciano, R.F. (1999) Processing of HIV-1 envelope glycoprotein for class I-restricted recognition: dependence on TAP1/2 and mechanisms for cytosolic localization. J. Immunol., 162, 1324-1332.
    136. Selby, M., Erickson, A., Dong, C., Cooper, S., Parham, P., Houghton, M., and Walker, C.M. (1999) Hepatitis C virus envelope glycoprotein E1 originates in the endoplasmic reticulum and requires cytoplasmic processing for presentation by class I MHC molecules. J. Immunol., 162, 669-676.
    137. Kaverin, N. V., Rudneva, I. A., Ilyushina, N.A., Varich, N.L., Lipatov, A.S.,Smirnov, Y.A., Oovorkova, E.A., Oitelman, A.K., Lvov, D.K., and Webster, R. G. (2002) Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J. Gen. Virol., 83, 2497-2505.
    138. Koito, A., Stamatatos, L., and Cheng-Mayer, C. (1995) Small amino acid sequence changes within the V2 domain can affect the function of a T-cell line-tropic human immunodeficiency virus type 1 envelope gp120. Virology, 206, 878-884.
    139. Matrosovich, M., Zhou, N., Kawaoka, Y., and Webster, R. (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol., 73, 1146-1155.
    140. Ogert, R. A., Lee, M.K., Ross, W., Buckler-White, A., Martin, M.A., andCho, M.W. (2001) N-linked glycosylation sites adjacent to and within the V1/V2 and the V3 loops of dualtropic human immunodeficiency virus type 1 isolate DH12 gp120 affect coreceptor usage and cellular tropism. J. Virol., 75, 5998-6006.
    141. Pollakis, G., S., Kang, Kliphuis, A., Chalaby, M.I., Goudsmit, J., and Paxton, W. A. (2001) N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization. J. Biol. Chem., 276, 13433-13441.
    142. Ruth A. McCaffrey, Cheryl Saunders, Mike Hensel, and Leonidas Stamatatos. N-Linked Glycosylation of the V3 Loop and the Immunologically Silent Face of gpl20 Protects Human Immunodeficiency Virus Type 1 SF162 from Neutralization by Anti-gp120 and Anti-gp41 Antibodies. Journal of Virology, Apr. 2004, p. 3279-3295 Vol. 78, No. 7
    143. Leonard, C., M. Spellman, L. Riddle, R. Harris, J. Thomas, and T. Gregory. 1990. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 65: 10373-10382.
    144. Cheng-Mayer C, Quiroga M, Tung JW, Dina D, Levy JA: Viral determinants of human immunodeficiency virus type 1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol 1990, 64: 4390-4398.
    145. Chesebro B, Nishio J, Perryman S, et al.: Identification of human envelope gene sequences influencing viral entry into CD4-positive HeLa cells, T-leukemia cells, and macrophages. J Virol 1991, 65: 5782-5789.
    146. Chesebro B, Wehrly K, Nishio J, Perryman S: Macropbagetropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol 1992,66: 6547-6554.
    147. Cocchi F, DeVico AL, Garzino-Demo A, et al.: V3 domain of HIV-1 envelope glycoprotein gp120 is critical for chemokinemediated blockade of infection. Nature Med 1996,2:1244-1247.
    148. Connor RI, Notermans DW, Mohri H, Cao Y, Ho DD: Biological cloning of functionally diverse quasispecies of HIV-1. AIDS Res Hum Retroviruses 1993, 9:541-546.
    149. Fouchier RAM, Groenik M, Kootstra NA, et al.: Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol 1992, 66: 3183-3187.
    150. Harrowe G, Cheng-Mayer C: Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. Virology 1995, 210: 490-494.
    151. gwang SS, Boyle TJ, Lyerly HK, Cullen BR: Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 1991, 253:71-74.
    152. Shioda T, Levy JA, Cheng-Mayer C: Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell line and macrophage tropism of human immunodeficiency virus. Proc Natl Acad Sci USA 1992, 89: 9434-9438.
    153. Trkola A, Dragic T, Arthos J, et al.: CD4-dependent, antibodysensitive interactions between HIV-1 and its co-receptor CCR- 5. Nature 1996, 384: 184-187.
    154. Ho DD, Fung MSC, Yoshiyama H, Cao Y, Robinson JE: Discontinuous epitopes on gp120 important in HIV-1 neutralization. AIDS Res Hum Retroviruses 1992, 8:1337-1339.
    155. Zhang LQ, MacKenzie P, ClelandA, et al.: Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. J Virol 1993,67: 3345-3356.
    156. JensenMA, Li FS, van 't Wout AB, Nickle De, Shriner D, He HX, McLaughlin S, Shankarappa R, Margolick JB, Mullins JI. Improved coreceptor usage prediction and genotypic monitoring of RS-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol. 2003 Dec; 77(24): 13376-88.
    157. Kato K, Sato H, Takebe Y. Role of naturally occurring basic amino acid substitutions in the human immunodeficiency virus type 1 subtype E envelope V3 loop on viral coreceptor usage and cell tropism. J Virol. 1999 Jul: 73(7): 5520-6.
    158. De Jong, J. J., A. De Ronde, W. Keulen, M. Tersmette, and J. Goudsmit. 1992. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype" analysis by single amino acid substitution. J. Virol. 66: 6777-6780.
    159. Hoffman, N. G., F. Seillier-Moiseiwitsch, J. Ahn, J. M. Walker, and R. Swanstrom. 2002. Variability in the human immunodeficiency virus type 1 gpl20 Env protein linked to phenotype-associated changes in the V3 loop. J. Virol. 76: 3852-3864.
    160. Zhu T, Korber BT, Nahmiask AJ, Uooper E, Sharp PM and Ho DD. An African HIV-1 sequence from1959 and implications for the origin of the epidemic. Nature, 1998; 391 (6667): 594-597
    161.医学分子病毒学,金奇主编.北京:科学出版社,2001
    162. Freed EO: HIV-1 replication. Somat Cell Mol Genet. 2001; 26:13-33.
    163. Isabelle Le Blanc, Marie-Christine Prevost, Marie-Christine Dokhelar, and Arielle R. Rosenberg: The PPPY motif of human T-cell leukemia virus type 1 Gag protein is required early in the budding process. J. Virol. 2002; 76: 10024-10029.
    164. Martin-Serrano, J., and P. D. Bieniasz: A bipartite late-budding domain in human immunodeficiency virus type 1. J. Virol. 2003; 77: 12373-12377.
    165. Gallego O, DE Mendoza C, Corral A, Soriano V (2002) Changes at the HIV-1 p6 protein among antiretroviral-naive and pre-treated patients. Abstr. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, Madrid, Spain 2002. Abstract No: H-2053.
    166. Africa Holguin, Amparo Alvarez, and Vincent Soriano: Differences in the Length of Sag Proteins among Different HIV Type 1 Subtypes. AIDS Reseach and Human Retroviruses. 2005; 21: 886-893.
    167. Pikora CA, Wittish C, Desrosiers RC: p6 Gag of human and simian immunodeficiency viruses is tolerant to small in-frame deletions downstream of the late domain. Virology. 2006; 346: 479-89.
    168. Marlowe N, Flys T, gackett J Jr, Schumaker M, Jackson JB, Eshleman SH (2004) Analysis of insertions and deletions in the gag p6 region of diverse HIV type 1 strains. AIDS Res and Hum Retroviruses 20: 1119-1125.
    169. Peters S, Munoz M, Yerly S, Sanchez-Merino V, Lopez-Galindez C, Perrin L, Larder B, Cmarko D, Fakan S, Meylan P, Telenti A. Resistance to nucleoside analog reverse transcriptase inhibitors mediated by human immunodeficiency virus type 1 p6 protein. J Virol. 2001 Oct;75(20):9644-53
    170. Alexander, L.E., Weiskopf, E., Greenough, T.C., Gaddis, N.C., Auerbach, M.R., Malim, M.H., O' Brien, S.J., Walker, B.D., Sullivan, J.L., Desrosiers, R.C., 2000. Unusual polymorphisms in Human Immunodeficiency Virus Type 1 associated with nonprogressive infection. J. Virol. 74, 4361-4376.
    171. Ling Su, Marcus Graf, Yuan Zhi Zhang, Hagen Von Briesen, Hui Xing, Josef Kostler, Holger Melzl, Hans Wolf, YiMing Shao, and Ralf Wagner: Characterization of a Virtually Full-Length Human Immunodeficiency Virus Type 1 Genome of a Prevalent Intersubtype (C/B) Recombinant Strain in China. Journal of Virology. 2000; 74:11367-11376.
    172.卫生部疾病控制司 卫生部艾滋病预防与控制中心 全国艾滋病哨点监测协作组 中国1995~1998年艾滋病哨点监测报告 中华流行病学杂志2000年2月第21卷第1期 p.7-9
    173.孙新华 1998年艾滋病状况和主要工作 中国性病艾滋病防治 1999年5卷第3期p.97-99
    174.郑锡文 王哲 高明 李宏 曲书泉 崔卫国等 中国某县有偿献血员艾滋病病毒感染流行病学研究 中华流行病学杂志2000年8月第21卷第4期p253-255.
    175.芦天成 崔兆麟 董继峰 河南省某市既往有偿献血人群HIV感染情况分析 中国艾滋病性病 2005年10月第11卷第5期p.357-358
    176.乌斯曼·玉素甫 张曼 张丽江 乌鲁木齐市2000~2003年AIDS/STD监测情况分析 中国艾滋病性病2005年2月第11卷第1期p.40-42
    177.刘刚 王敦志 秦光明 毛小英 郑国英 张灵麟等 四川省HIV/AIDS流行现状及趋势分析 中国艾滋病性病 2003年4月第9卷第2期p.79-89
    178. Yu, X.F, et al., Emerging HIV infections with distinct subtypes of HIV-1 infection among injection drug users from geographically separate locations in Guangxi Province, China. J Acquir Immune Defic Syndr, 1999. 22(2): p. 180-8.
    179. Yu, X.F., et al., Rapid dissemination of a novel BIC recombinant HIV-1 among injection drug users in southern China. Aids, 2001. 15(4): p. 523-5.
    180. Pieniazek, D., et al., Protease sequences HIV-1 group M subtypes A-11 reveal distinct amino acid initiation patterns associated with protease resistance in protease inhibitor-naive individuals worldwide. Aids, 2000. 14(11): p.1489-95.
    181. Yu, X.F.,et al.,Tow subtypes of HIV-lamong injection-drug users in southern China. hancet, 1998.351(9111):p. 1250.
    182. Kaufman, J. and J. Jing, China and AIDS—the time to act is now. Science, 2002.296(5577):p. 2339-40
    183.苏玲,邢辉,羊海涛,等.中国首例人类免疫缺陷病毒(HIV-1)A亚型毒株的鉴定.病毒学报,1997,13(3):265-268.
    184.邢辉,秦光明,冯毅,等.中国首例发现的人免疫缺陷病毒(HIV—1)D亚型毒株gag、env和tat基因的序列分析.中华实验与临床病毒学杂志,1999,13(2):157-162.
    185.潘品良,曾常红,范秀娟,等.人类免疫缺陷病毒蛋白基因(env) F 亚型毒株在中国的首例发现.病毒学报,1999,15:97-101
    186. Zhang, L., et al., Molecular characterization of human immunodeficiency virus type I and hepatitis C virus in paid blood donors and injection drug users in china. J Virol, 2004. 78(24): p. 13591-9.
    187. Bo Sua, Li Liua, FushengWangb, Xien Guia, et al. HIV-1 subtype B' dictates the AIDS epidemic among paid blood donors in the Henan and Hubei provinces of China. AIDS 2003, 17: 2515-2520
    188. Wu Z, Liu Z, Detels R. HIV-1 infection in commercial plasma donors in China. Lancet 1995, 346: 61-62
    189. Nerurkar, V R., et al., Complete nef gene sequence of HIV type 1 subtype B' froth professional plasma donors in the People's Republic of China. AIDS Res IIum Retroviruses, 1998. 14(5): p. 461-4.
    190. UNAIDS., 2002. pp. 7-11. Accessed February2003
    191. Graf, M .,Y. shao, Q. Zhao, et al. Cloning and characterization of a virtually full-length HIV type 1 genome from a subtype B' -Thai strain representing the most prevalent B-clade isolate in China. AIDS Res. Hum. Retroviruses. 1998,14(3): 285-288.
    192. Wagner R., L. Deml, F. Notka, et al. Safety and immunogenicity of recombinant human immunodeficiency virus-like particles in rodents and rhesus macaques. Intervirology 1996, 39(1-2): 93-103.
    193. Wagner R, Deml L, Teeuwsen V, etal. A recombinant HIV-1 virus-like particle vaccine: from concepts to a field study. Antibiot Chemother 1996, 48: 68-83.
    194. Weniger BG, Takebe Y, Ou CY, etal. The molecular epidemiology of HIV in Asia. AIDS 1994, 8 (Suppl. 2): S13-S28.
    195. Wei, M., et al., Biased G-to A hypermutation in HIV-1 proviral DNA from a long-term non-progressor Aids, 2004. 18(13): p. 1863-5.
    196. Normile D. China awakens to fight projected AIDS crisis. Science 2000, 288:2312-2313.
    197. Xiao-Fang Vu, Wei Liu, Jie Chen, SuCheep Piyasirisilp, et al. Maintaining Low HIV Type 1 Env Genetic Diversity among Injection Drug Users Infected with a B/C Recombinant and CRFOI_AE HIV Type 1 in Southern China. AIDS Research and Human Retroviruses ,Volume 18, Number 2, 2002, pp. 167-170
    198. McClutchan, F. E.,Carr, J.K.,Murphy, D.,Piyasirisilp, S.,Gao, F.,Hahn, B., Yu, X.F., Beyrer, C. and Birx, D. L. Precise mapping of recombination breakpoints suggests a common parent of two BCrecombinant HIV type 1 strains circulating in China. AIDS Res. Hum. Retroviruses 18 (15), 1135-1140 (2002)
    199. A. J. Kandathil, S. Ramalingam, R. Kannangai, Shoba David & G. Sridharan. Molecular epidemiology of HIV. Indian J Med Res 121, April 2005, pp 333-344
    200. Peter D. Kwong, Richard Wyatt, James Robinson, Raymond W. Sweet, Joseph Sodroski, Wayne A. Hendrickson. Structure of an HIVgp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. NATURE (1998) VOL 393 p. 648-659
    201. Korber B, Myers G. Signature pattern analysis: a method for assessing viral sequence relatedness. AIDS Res Hum Retroviruses. 1992 Sep;8(9):1549-60.
    202. Marcus-Sekura CJ, Woerner AM, Zhang PF, Klutch M. Epitope mapping of the HIV-1 gag region by analysis of gag gene deletion fragments expressed in Escherichia coli defines eight antigenic determinants. AIDS Res Hum Res Hum Retroviruses. 1990 Mar;6(3):317-27.
    203. Shankarappa R, Chatterjee R, Learn GH., et al. Human Immunodeficiency Virus Type 1 Env Sequences from Calcutta in Eastern India: Identification of Features That Distinguish Subtype C Sequences in India from Other Subtype C Sequences. J. Virol, 2001, 75(21): 10479-10487
    204. Nguyen L, Hu DJ, Choopanya K, et al. Genetic Analysis of Incident HIV-1 Strains Among Injection Drug Users in Bangkok: Evidence for Multiple TransmissionClusters During a Period of High Incidence. JAIDS, 2002, 30(2):248-256
    205. Julian Garcia, Pascal Dumy, Osnat Rosen, and Jacob Anglister. Stabilization of the Biologically Active Conformation of the Principal Neutralizing Determinant of HIV-1 ⅢB Containing a cis-Proline Surrogate: 1H N and Molecular Modeling Study. Biochemistry 2006, 45, 4284-4294
    206.梁浩 邢辉 Jonathan Z Li 魏民 洪坤学 冯毅 赵全壁 陈建平 全宇 滕涛 邵一鸣我国人类免疫缺陷病毒HIV-1主要流行株外膜蛋白基因V3-V4区及其临近区域的特征性氨基酸分析 中华医学杂志2005年4月6日第85卷第13期p897-902
    207. Leonard C K, Spellman M W, Riddle L, et al. Protein assignment of intrachaindisulfide bonds and characterization of potential glycosylation sites of the type lrecombinant human immunodeficiency virus envelope glycoprotein (gp120)expressed in Chinese hamster ovary cells. J. Biol. Chem., 1990, 265:10373-10382
    208. Leonard, C., M. Spellman, L. Riddle, R. Harris, J. Thomas, and T. Gregory. 1990. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265:10373-10382.
    209. Kornfeld, R., and S. Kornfeld. 1985. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54:631-634.
    210. Zhu, X., C. Botchers, R. Bienstock, and K. Tomer. 2000. Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry 39:11194-11204.
    211. Land, A., and I. Braakman. 2001. Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie 83:783-790.
    212. Li, Y., L. Luo, N. Rasool, and C. Kang. 1993. Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J. Virol. 67:584-588.
    213. Back, N. K. T., L. Smit, J. J. de Jong, W. Keulen, M. Schutten, J. Goudsmit, and M. Tersmette. 1994. An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology 199:431-438.
    214. Carrillo, A., and L. Ratner. 1996. Cooperative effects of the human immunodeficiency virus type 1 envelope variable loops V1 and V3 in mediating infectivity for T cells. J. Virol. 70: 1310-1316.
    215. Kolchinsky, P., E. Kiprilov, P. Bartley, R. Rubinstein, and J. Sodroski. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J. Virol. (2001) 75: 3435-3443.
    216. Labrosse, B., C. Treboute, A. Brelot, and M. Alizon. 2001. Cooperation of the V1/V2 and V3 domains of human immunodeficiency virus type 1 gp120 for interaction with the CXCR4 receptor. J. Virol. 75: 5457-5464.
    217. Lee, M. K., J. Heaton, and M. W. Cho. 1999. Identification of determinants of interaction between CXCR4 and gp120 of a dual-tropic HIV-1DH12 isolate. Virology 257:290-296
    218. Malenbaum, S. E., D. Yang, L. Cavacini, M. Posner, J. Robinson, and C. Cheng-Mayer. 2000. The N-terminal V3 loop glycan modulates the interaction of clade A and B human immunodeficiency virus type 1 envelopes with CD4 and chemokine receptors. J. Virol. 74: 11008-11016.
    219. Ogert, R. A., M. K. Lee, W. Ross, A. Buckler-White, M. A. Martin, and M. W. Cho. 2001. N-linked glycosylation sites adjacent to and within the V1/V2 and the V3 loops of dualtropic human immunodeficiency virus type 1 isolate DH12 gp120 affect coreceptor usage and cellular tropism. J. Virol. 75:5998-6006.
    220. Pollakis, O., S. Kang, A. Kliphuis, M. I. Chalaby, J. Goudsmit, and W. A. Paxton. 2001. N-linked glycosylation of the HIV type 1 gpl20 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization. J. Biol. Chem. 276: 13433-13441.
    221. Sanders, R. W., M. Venturi, L. Schiffner, R. Kalyanaraman, H. Katinger, K. O. Lloyd, P. D. Kwong, and J. P. Moore. The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J. Virol. (2002) 76: 7293-7305.
    222. Trkola, A., M. Purtscher, T. Muster, C. Ballaun, A. Buchacher, N. Sullivan, K. Srinivasan, J. Sodroski, J. P. Moore, and H. Katinger. 1996. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70: 1100-1108.
    223. Wei, X., J. M. Decker, S. Wang, H. Hui, J. C. Kappes, X. Wu, J. F. Salazar-Gonzalez, M. G. Salazar, J. M. Kilby, M. S. Saag, N. L. Komarova, M. A. Nowak, B. H. Hahn, P. D. Kwong, and G. M. Shaw. 2003. Antibody neutralization and escape by HIV-1. Nature 422:307-312.
    224. Alexey A. Nabatov, Georgios Pollakis, Thomas Linnemann, Aletta Kliphius, Moustapba I. M. Chalaby, and William A. Paxton. Intrapatient Alterations in the Human Immunodeficiency Virus Type lgp120 V1V2 and V3 Regions Differentially Modulate Coreceptor Usage, Virus Inhibition by CC/CXC Chemokines, Soluble CD4, and the b12 and 2G12 Monoclonal Antibodies J. Virol., Jan. 2004, Vol. 78 p. 524-530
    225. Feng Y X, Broder C C, Kennedy P E, et al. HIV-1 entry cofactor: functional cDNAcloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996, 272: 872-877
    226. Alkhatib G, Combadiere C, Broder C C, et al. CC-CKR-5: a RANTES, MIP-1α, MIP-1 receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996,272: 1955-1958
    227. Simmons G, Wilkinson D, Reeves J D, et al. Primary, syncytium-inducing humanimmunodeficiency virus type 1 isolates are dual-tropic and most can use eitberLestr or CCR5 as coreceptors for virus entry. J. Virol. 1996, 70: 8355-8360
    228. Berger E A, Doms R W, Fenyo E M, et al. A new classification for HIV-1. Nature, 1998,391:240-240
    229. Berger E A, Murphy P M, Farber J M. Chemokine receptors as HIV-1 coreceptors: Roles inviral entry, tropism, and disease. Annu. Rev. Immunol., 1999, 17: 657-700
    230. Fauei A S. Host factors and the pathogenesis of HIV-induced disease. Nature, 1996, 384:529-534
    231. Tscheming, C., et al., Differences in chemockine coreceptor usage between genetic subtypes of HIV-1. Virology, 1998. 241(2):p. 181-8
    232. Holm-Hansen, C.,et al., Determinants for the syncytium-inducing phenotype of HIV-1 subtype F isolates are located in the V3region. AIDS Res Hum Retroviruses, 2000.16(9): p. 867-70
    233. Abebe, A, et al., HIV-1 subtype C syncytium-and non-syncytium-inducing phenotypes and coreceptor usage among Ethiopian patients with AIDS. Aids, 1999,13(11): p. 1305-11.
    234. Broliden, P. A.,-A. yon Gegerfelt, P. Clapham, J. ROSEN, e.-M. Fenyo, B. Wahren, and K. Broliden. 1992. Identification of human neutralization-inducing regions of the human immunodeficiency virus type 1 envelope glycoproteins. Proc Natl Acad Sci USA 89: 461-465.
    235. Printer, A., W. J. Honnen, M. E. Racho, and S. A..TILLEY. 1993. Apotent, neutralizing human monoclonal antibody against a unique epitope overlapping the CD4-binding site of HIV-1 gpl20 that is broadly conserved across North American and African virus isolates. AIDS Res Hum Retro 9:985-996.
    236. Grimaila, R. J.,B. A. Fuller, P.D. Rennert, M.B. Nelson, M.-L. Hammarskjold, B. Potts, M .Murray, S.D. Putney, and G. Gray. 1992. Mutations in the principal neutralization determinant of human immunodeficiency virus type affect syncytium formation, virus infectivity, growth kinetics, and neutralization. J Virol 66: 1875-1883.
    237. Watkins, B. A., M. S. Reitz, Jr.,C. A. Wilson, K. Aldrich, A. E. Davis, and M. Robert-Guroff. 1993. Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies:evidence for multiple pathways. J Virol 67: 7493-7500.
    238. Gorny, M. K, A. J. Conley, s. Karwowska, J. Sodroski, C. Williams, S. Burda, L.J. Boots, a nd S. Zolla-Pazner. 1994. Human anti V2monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1. J Virol 68: 8312-8320
    239. Kliks, S. C.,T. Shioda, N. L. Haigwood, and J. A. Levy. 1993. V3 variability can influence the ability of an antibody to neutralize or enhance infection by diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90:11518-11522
    240. E. Bahraoui, A. Benjouad, J. M. Sabatier, J.P. Allain, Y. Launian, L. Montagnier, and J. C. Gluckman. Relevance of Anti-nef Antibody Detection as an Early Serologic Marker of Human Immunodeficiency Virus Infection. Blood, Vol 76, No 1(July 1),1990:pp 257-264
    241. Byrne, J. A.,and M. B. A. Oldstone. Biology of cloned cytotoxic Tlymphocytes specific for lymphocytic choriomeningitis virus:clearance of virus in vivo. J Virol (1984) 51: 682-686.
    242. Doherty, P. C. ,B. B. Knowles, and P.J. Wettstein. Immunological surveillance of tumors in the context of major histocompability complex restriction of Tcell function. Adv Cancer Res (1984) 42:1-65.
    243. Bevan, M. J.,and T. J. Braciale. Why can' t cytotoxic T cells handle HIV? Proc Natl Acad Sci USA (1995) 92: 5765-5767
    244. Carmichael, A.,X. Jin, P. Sissons, and L. Borysiewicz. Quantitative analysis of the human immunodeficiency virus type (HIV-1)-specific cytotoxic Tlymphocytes(CTL)response at different stages of HIV-linfection:differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J Exp Med (1993) 177: 249-256
    245. Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat RevImmunol., 2004, 4: 199-210
    246. Wilson C C, McKinney D, Anders M, et al. Development of a DNA vaccine designed toinduce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1. J. Immunol., 2003, 171: 5611-5623
    247. Chen Y H, Xiao Y, Yu T W, et al. Epitope vaccine: a new strategy against HIV-1. Immunol. Today, 1999, 20: 588-589
    248. Mosier D; Sieburg H. Macrophage-tropic HIV:critical for AIDS pathogenesis? Immunology Today, 1994 Jul, 15(7): 332-9
    249. Bleiber G, Peters S, Martinez R, Cmarko D, Meylan P, Telenti A. The central region of human immunodeficiency virus type 1 p6 protein (Gag residues S14-131) is dispensable for the virus in vitro. J Gen Virol (2004) 85: 921-927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700