用户名: 密码: 验证码:
燃煤锅炉氮氧化物排放特性研究及烟气脱硝催化剂的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对电站锅炉燃煤污染物排放浓度高的现状,通过大量的现场测试和实验,研究了多种容量燃煤锅炉的NOx排放特性,以及低NOx燃烧技术和低NOx燃烧器在这些锅炉上的应用效果;采用理论分析和实验研究相结合的方法,研究了颗粒状催化剂的成分对活性的影响、添加剂的成分和含量对催化剂活性的影响,以及催化剂的成分和制作工艺对成型性能和活性的影响,利用挤出成型法制备了峰窝状成型催化剂;通过测试成型催化剂在中型燃烧实验台上的活性,研究了烟气成分和实验参数对催化剂活性的影响;通过研究筛选出了成型性能好、活性高的催化剂,为开发具有自主知识产权的选择性催化还原反应(SCR)催化剂打下了良好的基础。
     1、系统地研究了山东电网不同容量、不同型式、不同煤种、不同时期低NOx燃烧技术和燃烧器锅炉的NOx排放浓度。早期投产的小容量机组锅炉的NOx排放浓度在800~1200mg/m~3之间;300MW机组锅炉的NOx排放浓度在600~1100mg/m~3之间,其中烧贫煤的300MW机组锅炉的NOx排放浓度达800~1100m/m~3;近几年新投产的大容量机组燃煤锅炉,引进利用新型炉内低NOx燃烧技术和燃烧器,NOx排放浓度可控制在300~700mg/m~3之间,由于燃烧调整不及时等原因,个别贫煤锅炉和烟煤锅炉的NOx排放浓度仍然高达800~1000mg/m~3。
     2、分析了燃煤锅炉NOx排放浓度与燃烧煤种、锅炉结构、燃烧器型式、锅炉运行工况和运行参数的关系。在所有因素中,煤种对NOx排放浓度的影响最大;在所有锅炉运行参数中,炉膛内平均氧量以及氧浓度分布对NOx排放浓度的影响最明显。“W”火焰锅炉燃烧贫煤,其NOx排放浓度最高,达1000~1500mg/m~3;其次是四角切圆直流燃烧器锅炉;燃用相同煤种时,采用新型低NOx旋流燃烧器锅炉的NOx排放浓度低于四角切圆燃烧锅炉;循环流化床锅炉的NOx排放浓度最低,一般不超过200 mg/m~3;烧烟煤的四角切圆燃烧锅炉的NOx排放浓度比贫煤锅炉低约50%;随过量空气系数和锅炉负荷的降低,烟煤锅炉NOx排放降低的量比贫煤锅炉大;锅炉运行工况和运行参数对NOx排放浓度有较大影响,及时地调整锅炉燃烧工况和运行参数,NOx排放浓度可降低10~20%。
     3、研究了浸渍法制备的V_2O_5-WO_3-MoO_3/TiO_2颗粒状催化剂在固定床反应器上的活性。钒是催化剂中的主要活性成分,钒的含量增加,SCR反应的脱硝效率增加;当钒的含量增加到1%时,催化剂具有较高的活性,且温度窗口拓宽到了200~300℃之间;随着钒的含量进一步增加,催化剂的活性降低,活性温度窗口范围减小。钨在催化剂中主要起促进作用,增强催化剂在高温区域的活性;但当钨的含量超过7%时,WO_3抢占钒在载体表面的位置,造成V_2O_5活性中心数目下降,催化剂活性下降。钼的存在改善了催化剂在高温区域的活性,增强了催化剂的表面酸性和NH_3的吸附性,反应的选择性增加;当钼的含量达到7%以上时,钼的含量进一步增加,催化剂的性能改善不大。以钒、钨、钼的含量分别为1%、5%和5%的催化剂活性最好,该配方的颗粒状催化剂的脱硝效率达到95%以上。
     4、通过实验对催化剂活性成分、添加剂成分及含量对催化剂成型性能和活性的影响进行了研究,利用挤出成型法,制备了蜂窝状催化剂。研究结果表明:添加剂加入到催化剂中,对成型性能和活性产生了不利的影响;添加剂成分和含量改变,催化剂的活性和最佳焙烧温度也改变,同时活性和最佳焙烧温度的关系也改变;通过调整各种添加剂成分及其含量,改变催化剂的成型工艺,对各物料的成型性能进行了研究,最终获得了成型性能好、活性高的蜂窝状成型催化剂。
     5、分析了催化剂样品的表征及其影响因素。催化剂的孔结构特性受活性成分、载体本身、添加剂成分、成型过程和制作工艺影响较大。混合法制得的颗粒催化剂的孔体积和比表面积都比浸渍法制得的颗粒催化剂的孔体积和比表面积小;合适的添加剂有利于改善催化剂的孔结构;成型过程中的挤压作用导致催化剂的孔体积和比表面积减小;随着焙烧温度的升高,成型催化剂的比表面积下降,活性降低;在所有成型催化剂中,经350℃焙烧后的催化剂的比表面积最大,催化剂的活性最高。分析扫描电镜结果得到:在成型性能好、活性高、经350℃焙烧后的催化剂表面,添加剂和活性成分、TiO_2载体结合良好,形成了形状规则的颗粒,颗粒表面孔上又分布着许多类似蜂窝的细小微孔结构。催化剂孔结构特性的差异最终导致了催化剂脱硝活性的差异,而且这种孔结构上的差异和催化剂的脱硝活性具有良好的对应关系。
     6、研究了成型催化剂在中型燃烧实验台上的催化活性。实验结果表明,催化剂的活性受各种因素影响较大:脱硝效率随氨氮比的增加而增加,氨氮比大于0.85时,脱硝效率达到90%以上,增大氨氮比会使脱硝效率提高,但当氨氮比大于1.1时,脱硝效率增长趋势平缓,在SCR催化剂还原反应中,维持氨氮比为1;在NO浓度为250~830ppm的实验范围内,NO初始浓度对脱硝效率的影响不明显;空速增大时,脱硝效率降低,在中型燃烧实验台上,反应空速为2000/h左右;反应温度对脱硝效率有较大影响,在100~200℃低温下,催化剂的活性很低,脱硝效率不到70%,随温度升高,脱硝效率急剧升高,温度升至315℃时,脱硝效率达到90%以上,在375℃左右,脱硝效率达到95%以上,随后脱硝效率随温度的升高而下降,催化剂的活性温度窗口较宽,从300℃到425℃。
     本课题得到国际科技合作重点项目(大气中氮氧化物NOx控制技术应用研究,NO.2004DFA07700)和山东电力集团科技项目(大容量燃煤锅炉氮氧化物NOx排放控制技术实验研究,NO.2008ZB-19)的资助。
Concentrating on the higher emission of pollutant in the gas exhausted from power station,the NOx emission characteristics,the effects of low NOx combustion technology and low NOx burner were investigated.With theory analyse and experiment, the influence of compositions,additives and the molding technologies on the catalytic activity and molding performance were first investigated in laboratory.The molding honeycomb catalyst was obtained by extruding method.The influences of gas compositions and experimental parameters on catalytic performance of honeycomb catalyst were investigated by simulated SCR reaction on middle-sized combustion test-bed.All these analysis and tests lead to a kind of honeycomb catalyst with excellent molding and catalytic performances,which can be used for SCR reaction.
     1.The investigation of NOx emission of boilers with different types,capacities, coal types,low NOx technologies and burners was systematically done in Shandong electric network.As the low NOx technologies early used were in low level,the low capacity boilers all have high NOx emission from 800 to 1200mg/m~3.The 300MW units put into production early have NOx emission from 600 to 1100mg/m~3,and the value increases to 800-1100mg/m~3 for boilers burning lean coal.The NOx emission of the boilers with big volume installed recently was reduced to 300-700mg/m~3,due to the new low NOx technologies and burners in these units.However the NOx emission value would still reach to 800-1000mg/m~3 if low NOx technologies and burners could not work sufficiently due to the delay of combustion regulation for boilers burning lean coal or bituminous coal.
     2.The influences of coal type,boiler configuration,burner mode,boiler operational conditions and parameters on NOx emission were studied.Among all the influencing parameters,coal type is the most important factor.Among all the operational parameters,the oxygen content and distribution in furnace have the most obvious influence on NOx emission.W-flame boiler burning lean coal has the highest NOx emission from 1000 to 1500mg/m~3.Boiler with quadrilateral tangential straight-flow burner comes next.The emission of boiler with low swirl-flow burner is lower than that of quadrilateral tangential straight-flow burner when the same coal is burnt.CFB boiler has the lowest NOx emission no more than 200mg/m~3.Boiler with quadrilateral tangential straight-flow burner burning bituminous coal has about 50% NOx emission lower than that of boiler burning lean coal.With excess air coefficient and boiler load decreasing,the reduction rate of NOx emission of boiler burning bituminous coal is larger than that of boiler burning lean coal.The result shows that the NOx emission is largely impacted by boiler operational conditions and parameters,and it can be reduced about 10-20%by adjusting combustion condition with boiler operational conditions and parameters changing.
     3.Much regularity was obtained by investigation on the catalytic performance of V_2O_5-WO_3-MoO_3/TiO_2 powder catalyst:the reaction rate and activity of SCR increases with the content of primary ingredient V_2O_5 growing.When the V_2O_5 content grows to 1%,there is high activity and a wide active temperature range from 200℃to 300℃. However,with the content of V_2O_5 increasing further,the catalytic activity decreases, its active temperature range becomes cabined.The W in catalyst mainly increases the activity at high temperature.But WO_3 would take the place of V_2O_5 active sites when the W content is higher than 7%,which will reduce the V_2O_5 active sites and consequently decrease the catalytic activity.The Mo in catalyst also improves the catalytic activity at high temperature,meanwhile it increase the surface acidity and NH_3 adsorption,which improves the selectivity of the reaction.But these benefits would not be remarkable when the Mo content is higher than 7%.Finally a kind of catalyst composing of 1%V,5%W,5%Mo was obtained,having the highest activity above 95%.
     4.The influences of active substances,additive species and their contents on molding performance,as well as the activity of catalyst have been investigated.The molding honeycomb catalyst was obtained by extruding method.The result of research shows that additives have some influences on the molding performances and activity of the catalyst.Both additive species and their contents have large impacts on the molding performances and activity of the catalyst.Through adjusting additives and their contents, changing the molding technologies,a recipe of one honeycomb catalyst with good molding performance and high activity was obtained finally.
     5.The characterizations of the catalyst and the influences factors on them were investigated by MPI(mercury intrusion porosimetry) and SEM(scanning electron microscope).The pore characterizations are largely impacted by active compositions, carrier characterizations,additive species and molding technologies.Catalysts made by mechanical blend method have bigger pore volume and pore area than those of catalysts made by dipping method.Appropriate additives can benefit molding performance and pore structure of the catalyst.Extruding process has slight negative impacts on pore structure for honeycomb catalyst resulting in the decrease of pore volumn and pore area. With the calcining temperature increasing,the decreasing pore area induces the drop of activity for honeycomb catalyst.The catalyst calcined at 350℃has the biggest pore volume and pore area among all of the honeycomb catalyst,so it has the highest activity. The investigations by SEM show that:For catalyst with good molding performance and high acitivity,calcined at 350℃,additives and active substances and TiO_2 carrier bond well on its surface,which form regular granules and honeycomb pores on surface of granules.Catalysts with different pore structures represent different catalytic performances.
     6.Tests on catalytic performance of the honeycomb catalyst were done by simulation SCR reaction on middle-sized combustion test-bed.The results show that: The NOx conversion is impacted by input ratio of NH_3 and NO,initial NO concentration,reaction temperature and space velocity.When the input ratio of NH_3 and NO is higher than 0.85 while lower than 1.1,the NOx conversion increases with the ratio growing,but this effect would not be remarkable if the ratio is above 1.1.For consideration of NH_3 escape,the ration is preferably fixed at 1.Within the NO concentration between 250 and 830ppm,the NOx conversion is not affected obviously by the initial NO concentration.The NOx conversion decreases with space velocity growing.For middle-sized combustion test-bed,the space velocity is 2000/h.Reaction temperature has large impact on NOx conversion,the NOx conversion is less than 70% when the temperature is between 100℃and 200℃.When the reaction temperature is above 200℃,the NOx conversion rapidly increases with temperature growing.The NOx conversion is above 90%at 315℃,and exceeds 95%around 375℃,then it slightly decreases with temperature growing.Therefore the active reaction temperature ranges from 300℃to 425℃,which is qualified for SCR reaction.
     This project is co-sponsored by International Science Cooperation Major Project (Technology for the control of nitrogen oxides emissions,NO.2004DFA7700) and Shandong Power Group Science Project(Experimental study on NOx emission and control technology of high-capacity boilers,NO.2008ZB-19).
引文
1 Armor J N.Catalytic Removal of Nitrogen Oxides Where are the Opportunities?[J],Catalysis Today,1995,26(2):99-105
    2 Jun M.Catalytic Reduction of Nitric Monoxide by Ethane over Nb/TiO_2 in the Presence of Excess Oxygen[J].Applied Catalysis,2002,39:205-210
    3 赵惠富.污染气体NOx的形成和控制[M].北京:科学出版社,1993
    4.杜雅琴,李新国等.煤炭开发与使用中的环境问题[J].矿业安全与环保,2005,32(6),63-65
    5 崔民选.2006中国能源发展报告[M].北京:社会科学文献出版社,2006.4
    6 赵宗林,闫冰等.燃煤电站氮氧化物控制技术发展现状与国产化策略[J].东北电力技术,2006,4,14-17
    7 李振中.燃煤电站系统脱硝技术产业化[J].中国科技产业,2006,2:48-52
    8 刘志超,郑维峰等.山东电网燃煤锅炉NOx排放状况[J].山东电力技术,2004,3,3-6
    9 刘志超.燃煤锅炉NOx排放浓度影响因素的实验和分析[J].电站系统工程,2005,21(5):30-34
    10 冯波.控制大气污染物排放,促进电力工业可持续发展[J].电力设备·市场,2005,6(5),104-106
    12 岑可法,姚强等.燃烧理论与污染控制[M].北京:机械工业出版社,2004
    13 Spliethoff H,Greul U,Rudiger H,et al.Basic effects on NOx emission in air staging and reburning at a Bench-scale test facility[J],Fuel,1996,75(5):560-568
    14 欧大武,方磊等.利用三次风再燃降低NOx排放研究[J].电站系统工程,2003,19(1):24-26
    15 Smoot L D,Hill S C,Xu H.NOx control through rebuming[J].Prog Energy Combust Sci,1998,24(5):385-408
    16 Maly P M,Zamansky V M,Ho L,et al.Alternative fuel reburning[J].Fuel,1999,78:327-334
    17 Bilbao R,Alzueta M U,Millera A,et al.Experimental study and modelling of the burnout zone in the natural gas reburning process[J].Chemical Engineering Science,1995,50(16):2579-2587
    18 Liu H,Edward H,Gibbs B M.Evaluation of the optimal fuel Characteristics for efficient NO reduction by coal reburning[J].Fuel,1997,76(1):985-993
    19 田子平.新型煤粉燃烧器NOxA—PM燃烧器[J].锅炉技术,1996,4:26-30
    20 严艳丽,魏玺群.NOx的脱除及回收技术[J].低温与特气,2000,18(4):29-30
    21 朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001
    22 祝天熙.硝酸尾气治理方法讨论[J].陕西化工,1997,5:8-10
    23 李晓东,杨卓如.国外氮氧化物气体治理的研究进展[J].环境工程,1996,14(6):34-39
    24 张文祥,贾明君,吴通好等.金属离子交换分子筛的NO的吸附性能.高等化学学报,1997,18(12):1999-2003
    25 郭斌,马一太,任爱玲等.生物法净化含NOx尾气的研究[J].环境工程,2003,21(2):37-39
    26 何志桥,王家德.生物法处理NOx废气的研究进展[J].环境污染治理技术与设备,2002,3(9):59-62
    27 魏恩宗,林赫,高翔等.燃煤锅炉烟气NOx污染等离子体治理技术[J].环境污染治理技术与设备,2003,4(1):58-62
    28 Young Sun M,In Sik N.Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide.Chemical Engineering Journal,2002,85:87-97
    29 Krzyszt K,Michal Mlotek.Combined plasma-catalytic processing of nitrous oxide.Applied Catalysis B:Environmental,2001,30:233-245
    30 曲虹霞,钟秦.NH_3选择性催化还原NOx的实验研究.南京理工大学学报,2002,26(1):68-71
    31 钟秦.选择性非催化还原法脱除NOx的实验研究.南京理工大学学报,2000,24(1):68-71
    32 Iwamoto M.Recent progress in novel catalytic removal of nitrogen monoxide.Catalysis Today,1994,22(1):583-596
    33 Ronald M,Heck V.Catalytic abatement of nitrogen oxides stationary applications.Catalysis Today,1999,53:519-523
    34 宣小平,姚强,岳长涛等.选择性催化还原法脱硝研究进展[J].煤炭转化,2002,25(3):26-32
    35 Schalert B,Gutberlet H.Untersuchung von deNOx katalysatoren mit einem katalysatorpruefstand fuer ganze elemente[R].Essen:VBG-Tagung Chemic im Krafwerk,1990,74-79
    36 K Manfred,M.Giuseppe,E.Martin.Selective Catalytic Reduction of NO and NO_2 at Low Temperature.Catal.Today.2002,73(3):239-247
    37 D.Lukyanov,G.SilI,J.L.Ditri.Comparison of Catalyzed and Homogeneous Reduction of Hydrocarbons for Selective Catalytic Reduction of NOx[J].Catal.1995,153(2):265-274
    38 M.Iwamoto.Reaction Mechanism of Selective Catalytic Reduction of Nitrogen Monoxide by Hydrocarbon.Catalysis.1994,36(2):135-155
    39 Pio Forzatti,Present status and perspectives in de-NO_x SCR catalysis[J].Applied Catalysis A:General,2001,222:221-236
    40 陈杭君,赵华,丁经纬.火电厂烟气脱硝技术介绍[J],热力发电,2005,2:15-18
    41 吕君英,龚凡,郭亚平,等.选择性催化还原NO_x催化剂的研究进展[J].化工进展,2005,24(10):1079-1083
    42 A.Fritz,V.Pitchon.The Current State of Research on Automotive Lean NOx Catalysis.Appl.Catal.B.1997,13(1):1-25
    43 林永明,张涌新等.选择性催化还原脱硝技术(SCR)的工程应用[J].广西电力技术,2006,1.11-15
    44 马忠云,檀国彪.燃煤锅炉烟气脱销(SCR法)工艺及特性[J].技能环保技术,2006,2,30-32
    45 Kathleen C,Taylor.Nitric Oxide catalysis in automotive exhaust systems.Catalsis Reviews Science and Engineering,1993,35(4):457-481
    46 Y.Kiyoshi,S.Tasashi,T.Naoki.Effect of the Addition of Transition Metal to Pt/Ba/Al_2O_3Catalyst on the NOx Storage-Reduction Catalysis under Oxidizing Conditions in the Presence of SO_2.Appl.Catal.B.2001,30(4):459-468
    47 J.M.Garcia,J.Perez,M.J.Illan.Comparative Study of Pt-based Catalysts on Different Supports in the Low-temperature de-NOx-SCR With Propene.Appl.Catal.B.2001,30(4):399-408
    48 B.Hammer.The NO+CO Reduction Catalyzed by Flat,Stepped and Edged Pd Surfaces.J.Catal.2001,19(20):171-176
    49 Pio Forzatti.Present status and perspectives in de-NO_x SCR catalysis[J].Applied Catalysis A:General,2001,222:221-236
    50 Clayton,B.Maugans,Aydin,Akgerman.Catalytic wet oxidation of phenol in a Trickle bed reactor over a Pt/TiO_2 catalyst.Water Reaserach,2003,37:319-328
    51 N.Economidis,et al.Catalytic performance of Al_2O_3/SiO_2/TiO_2 loaded with V2O5 for the selective Catalytic Reduction of NOx with ammonia.Catalysis Today,1998,40:27-37
    52 李金林,王海龙.新型含La、Sr的Cu/Al_2O_3氮氧化物脱除催化剂的性能研究[J].环境科学与技术.1995.18(3):10-12
    53 J.W.Federico,M.Norman,S.T.Mintcho.Electrochemical Promotion of Bimetallic Rh-Ag/YSZ Catalysts for the Reduction of NO under Lean Burn Conditions.Electrochemical Acta.2002,47:1259-1265
    54 M.Machida,T.Watanabe,S.Ikeda.A Dual-bed Lean DeNOx Catalyst System Consisting of NO-H_2-Os Reaction and Subsequent N_2O Decomposition.Catal.Commu.2002,3(6):233-238
    55 Ken-ichi Shimizu,Atsushi Satsuma,Tadashi Hattori.Catalytic Performance of Ag-Al_2O_3 catalyst for the selective catalytic reduction of NO by higher hydrocarbons.Appl.Catal.B.2000,25(4):239-247
    56 A.Keshavaraja,X.She,M..Flytzani-Stephanopoulos.Selective catalytic reduction of NO with methane over Ag-alumina Catalysts.Appl.Catal.B.2000,27(1):L1-9
    57 Guido Busca,Luca Lietti,Gianguido Ramis,et al,Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts:A review[J].Applied Catalysis B:Environmental,1998,18:1-36
    58 关乃佳,单学蕾.Cu-ZSM-5/荃青石整体式催化剂上NO的吸附态及分解反应机理[J].催化学报,2001,22(3):245-249
    59 Varga,et al.Modified ZSM-5 zeolite as DENOx catalyst environmental pollution[J].1998,102(S1),691-695
    60 Misono M,Kondo K.Catalytic removal of nitrogen monoxide over rare earth ion-exchanged zeolites in the presence of propane and oxygen.Chemical Letter,1991,1001-1002
    61 Ogura M,Kikuchi E.Intrapope catalysis in NO reduction with methane on Ir/In/H-ZSM-5 catalyst.Chemical Letter,1996,1017-1018
    62 Chuan Shi,Mojie Cheng,Zhenping Qu,et al.On the selectively catalytic reduction of NOx with methane over Ag-ZSM-5 catalysts.Applied Catalysis B:Environment,2002,36:173-182
    63 Scott A Stevenson,Jim C.Vartuli.The Selective Catalytic Reduction of NO_2 by NH_3 over HZSM-5[J].Journal of Catalysis,2002,208:100-105
    64 Scott A Stevenson,James C.Vartuli,Carlton F.Brooks.Kinetics of the Selective Catalytic Reduction of NO over HZSM-5[J].Journal of Catalysis,2000,190:228-239
    65 Li Z,Flytzani Stephanopoulos M.On the promotion of Ag-ZSM-5 by cerium for the SCR of NO by methane.Journal of Catalysis,1999,182:313-327
    66 Lili Ren,Tao Zhang,Dongbal Liang,et al.Effect of addition of Zn on the catalytic activity of Co/HZSM-5 catalyst for the SCR of NOx with CH_4.Applied Catalysis B,2002,35:317-321
    67 Kazuhito Sato,Takanori Fujimoto,Sakunobbu Kanai,et al.Catalytic performance of silver ion-exchange saponite for the selective reduction of nitrogen monoxide in the presence of excess oxygen.Applied Catalysis B:Environment,1997,13:27-33
    68 张平,王乐夫.原位漫反射红外光谱研究氮氧化物在Ag-ZSM-5催化剂上的吸附态及选择性催化还原反应机理[J].分析化学,2002,30(12),1469-1472
    69 刘灵燕,肖金凯,张澄博等.柱化剂研究进展[J].矿物岩石地球化学通报,2002,21(4):247-252
    70 李松军,罗来涛,郭建军.交联粘土催化剂的研究与进展[J].工业催化,2000,8(6):3-7
    71 V.A.Sadykov et al,Molecular design and characterization of catalysts for NO_x selective reduction by hydrocarbons in the oxygen excess based upon ultramicroporous zirconia pillared clays[J].Topics in Catalysis,2005,32:1-2
    72 P.Canizares,J.L.Valverde,M.R.Sun Kou et al,Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different betonies.A comparative study[J].Microporous and Mesoporous Materials,1999,29:267-281
    73 R.Q.Long,R.T.Yang,Selective Catalytic Reduction of Nitrogen Oxide by Ammonia over Fe~(3+)-Exchanged TiO_2-Pillared Clay Catalysts[J].Journal of Catalysis,1999,186:254-268
    74 R.Q.Long,R.T.Yang,The promoting role of rare earth oxides on Fe-exchanged TiO_2-pillared clay for selective catalytic reduction of nitric oxide by ammonia[J].Applied Catalysis B:Environmental,2000,27:87-95
    75 R.Q.Long,R.T.Yang,FTIR and Kinetic Studies of the Mechanism of Fe~(3+)-Exchanged TiO_2-Pillared Clay Catalyst for Selective Catalytic Reduction of NO with Ammonia[J].Journal of Catalysis,2000,190:22-31
    76 Kaixi Li,Licheng Ling,Chunxiang Lu,et al.Catalytic remova of SO2 over ammonia-activtaed carbon fibers[J].Carbon,2001,39:1803-1808
    77 Dmitri A,Bulushev,Lioubov Kiwi-MInsker,Igor Yuranov,et al.Structured Au/FeOx/C catalysts for low-temperature CO oxidation.Journal of Catalysis Today,2003,78:477-485
    78 Zhenping Zhu,Zhengyu Liu,Shoujun Liu,et al.Adsorption and reduction of NO over activated coke at low temperature.Fuel,2000,79:651-658
    79 Shan Xiao,M.Kaiwen,Xiaoyong Tang.The Lean Catalytic Reduction of Nitric Oxide by Solid Carbonaaceous Materials.Appl.Catal.B.2001,32(2):107-122
    80 M.Illan,E.Raymudo.Catalytic NOx Reduction by Carbon Supporting Metals.Appl.Catal.B.1999,20(4):267-275
    81 王学中,杨向光,吴越.Pd/C催化剂在处理NO反应中的催化行为[J].催化学报.1998,19(3):191-195
    82 Zhenping Zhu,Zhengyu Liu,Shoujun Liu,et al.Catalytic NO reduction with ammonia at low temperature on V_2O_5/AC catalysts:effect of metal oxides addition and SO2[J].Appled Catalysis B:Environmental.2001,30-267-276
    83 孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M]北京:化学工业出版社,2006.12
    84 王琦,王树荣,高翔.SCR脱硝催化剂的性能实验研究[J]动力工程,2005 25(增刊):195-200
    85 钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2007.5
    86 Lee I Y,Dong W K,Lee J B,et al.A practical scale evaluation of sulfated V_2O_5/TiO_2 catalyst from metatitanic acid for selective reduction of NO by NH_3.Journal of Chemical Engineering,2002,90:267-272
    87 Hoi J H.The preparation of V_2O_5/TiO_2 catalyst supported on the ceramic filter candle for selective reduction of NO.Korean Journal of Chemical Engineering,2001,18(4):456-462
    88 Zhu Z,Liu Z,Niu H.Catalytic NO reduction with ammonia at tow temperature on V_2O_5/AC catalysts:effect of metal oxides addition and SO_2.Applied Catalysis B:Environmental,2001,30:267-276
    89 Kohler K,Engweiler J,Balker A.Vanadia-ehromia grafted on titanium:structural and catalytic properties in the selective catalytic reduction of NO by NH_3.Journal of Molecular Catalysis A:Chemical,2000,162:423-430
    90 周新刚,刘志超.燃烧调整降低锅炉NOx排放实验研究[J].电站系统工程,2005,21(5):16-18
    91 王学栋,栾涛,程林.锅炉结构和型式对氮氧化物排放浓度影响的实验研究[J].煤炭学报,2007,32(9):984-988
    92 WANG Xue-dong,LUAN Tao,CHENG Lin,et al.Research of boiler combustion regulation for reducing NO_x emission and its effect on boiler effficiency[J].Journal of Thermal Science,2007,Vol.16,No.3 270-276
    93 王学栋,辛洪昌,栾涛等.330MW机组锅炉燃烧调整对NOx排放影响的实验研究[J].电站系统工程,2007,23(3):7-10
    94 王学栋,栾涛,程林等.锅炉燃烧调整对氮氧化物排放和锅炉效率影响的实验研究[J].动力 工程,2008,28(1):19-23
    95 苗长信,刘志超.1025t/h“W”火焰锅炉燃烧特性实验研究[J].热能动力工程,2002,17(11):599-602
    96 苗长信,王建为,车刚.600MW”W”火焰锅炉降低NOx的调试分析[J].山东电力技术,2004年第2期6-9,22
    97 苗长信,车刚,刘志超.菏泽发电厂300MW”W”火焰锅炉燃烧调整及运行特性分析[J].中国电力,2002,35(7),13-17
    98 王建新,孔令君.青岛电厂1025t/h锅炉燃烧调整降低氮氧化物实验分析[J].山东电力技术;2003,134(6):37-39
    99 赵九生,时其昌,马福善.催化剂生产原理[M]北京:科学出版社,1986.11
    100 潘履让.固体催化剂的设计与制备[M].天津:南开大学出版社,1993.12
    101 张高良.工业催化剂的生产[M].上海:上海科学技术出版社,1988
    102 朱丙辰.化学反应工程[M].北京:化学工业出版社,2000.1
    103 李作骏.多相催化反应动力学基础[M].北京:北京大学出版社,1990.2
    104 曲虹霞.催化脱除燃煤烟气中NOx的研究[D].南京理工大学,2005
    105 范红梅.选择性催化还原(SCR)烟气脱硝催化剂性能实验和脱硝过程数值模拟[D].东南大学,2006
    106 符春林,魏锡文,陈立军等.影响TiO_2从锐钛型转变为金红石型的相变因素的研究[J].涂料工业,2002年2期,11-15
    107 朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002年5月
    108 张鹏,姚强.用于选择性催化还原法烟气脱硝的催化剂[J].煤炭转化,2005,8(2):18-24
    109 catalyst for reducing the nitrogen oxide concentration in a flowing medium and method for producing the catalyst[P],United States Patent:US 6,054,408,2000.4.25
    110 Ozkan U S,Yeping Cai,Kumthekar M W.Effect of crystal morphology in selective catalytic reduction of nitric oxide over V_2O_5 catalysts.Applied Catalysis A,1993,96:365-381
    111 Miyamoto A,Yamazaki Y,Inomata M,Murakami Y.Determiation of the vanadium=oxigen species on the surface of vanadium oxide catalysts.Journal of Physical Chemistry,1981,85(16):2366-2372
    112 Gasior M,Haber J,Machej T,et a.l.Mechanism of the reaction nitric oxide+ammonia on vanadium pentoxide catalysts.Journal of Molecular Catalysis,1988,43(3):359-369
    113 Ozkan K,Shelef M,Kummer J T.Journal of Physical Chemistry,1970,74(13):2690
    114 Miyamoto A,Kobayashi K,Inomata M,et al.A molecular orbital investigation of the mechanism of the nitric oxide -ammonia reaction on a vanadium oxide catalyst.Journal Molecular Catalysis,1982,16(3):315-313
    115 Janssen F J J G,Van den Kerkhof F M G,Bosch H,et al.Mechanism of the reaction of nitric oxide,ammonia,and oxygen over vanadia catalysts.2.Isotopic teansient studies with oxygen-18 and nitrogen—15.Journal Molecular Catalysis,1987,91(27):6633-6641
    116 Lietti Luca,Forzatti Pio.Temperature programmed desorption/reaction of ammonia over V_2O_5/TiO_2 de-NOxing catalysts.Journal of catalysis,1994,147:241-249
    117 Miyamota A,Baba S.Kinetics,kinetic deuterium isotope effects,and mechanism of nitrous oxide reaction with hydrogen on supported precious-metal catalysts.J PhysChem,1981,85(21):3117-3122
    118 R.Q.Long,R.T.Yang.Selective Catalytic Reduction of NO with Ammonia over Fe~(3+)-Exchanged Mordenite(Fe-MOR):Catalytic Performance,Characterization,and Mechanistic Study[J].Journal of Catalysis,2002,207:274-285
    119 翟旭.选择性催化还原去除NOx的新型催化剂的研究(D).哈尔滨工业大学,2005年
    120 肖坤.SCR脱硝技术用催化剂性能与成型研究(D).山东大学,2008年
    121 王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2007
    122 朱洪法.催化剂成型[M].北京:中国石化出版社,1992.1
    123 田英姿,陈克复.用压汞法和氮吸附法测定孔径分布及比表面积[J].中国造纸,2004,vol23(4),21-23
    124 Carlos A,Leon y Leon.New Perspectives in Mercury Porosimeter[J].Advances in Colloid &Interface Science,1998,76-77:341-372
    125 S J 格雷格,K S W辛.吸附/比表面和空隙率[M].高敬琮,刘希尧,译.北京:化学工业出版社,1989
    126 刘希尧,等.工业催化剂分析测试表征[M].北京:烃加工出版社,1990
    127 Monica Calatayud,Basma Mguig,Christian Minot,et al.A Periodic Model for the V_2O_5-TiO_2(anatase) Catalyst.Stability of Dimeric Species.Surface Science 526(2003),297-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700