用户名: 密码: 验证码:
基于ZigBee的井下无线瓦斯监控系统的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着贫油、少气的日益凸显,以及国际原油价格的不断攀升,煤炭在我国的能源主体地位日益巩固,因此对煤矿安全生产的研究也显得更为重要。据统计,在我国发生的矿难中,80%为瓦斯事故,因此对井下瓦斯的监测与控制成为煤矿生产的重中之重。
     在现有的瓦斯监控系统中,大多采用有线监控方式,而在井下工况条件十分恶劣的情况下,有线系统经常会产生通讯故障。随着近几年无线通讯的发展,有关井下无线监控系统的研究成为热点。但是通过查询有关的资料和论文,可以发现,现阶段这些研究内容大部分处于理论研究阶段,很少有付诸实施的。本文针对目前市场上存在的瓦斯监控系统,提出了一套基于ZigBee无线传输和组态软件的瓦斯监控系统。
     本系统根据高瓦斯矿井的特点,通过井下通风系统和瓦斯抽放系统来保证井下瓦斯含量不超标,同时通过数据采集模块,将各个位置的相关传感器数据汇总后发送到上位机监控系统中,监控系统通过组态软件对井下数据进行实时显示。
     井下通风系统由PLC、变频器、通风机及各种传感器组成。其中PLC用于综合系统中传感器传回来的数据,计算变频器的输出频率,通过控制变频器的频率实现对通风机的控制。考虑到工作面的实际情况,将变频器的控制分为自动和手动两种,为系统配备了两台变频器和两台通风机,以保证系统的运行
     瓦斯抽放系统包括PLC、变频器、水环式真空泵、循环水泵、冷却塔、通风机以及各种传感器组成。其中,水环式真空泵用于抽取瓦斯,为了保障水环式真空泵的运行,为其配备了循环水泵和冷却塔。因为在瓦斯抽放过程中,难免会有瓦斯泄露到泵房中,所以为泵房配备了通风机,在泵房瓦斯含量超标时,通过通风机将其排出,PLC用于对各种设备的启停进行自动控制。为了保证瓦斯抽放系统的正常工作,为其配备了两台水环式真空泵和两台循环水泵,二者互为备用。
     井下环境参数的实时采集通过各种传感器来实现,然后将其通过数据采集器RTU进行汇总,有效减少了数据传送多、杂、乱的问题。
     在数据传输中,采用了ZigBee设备进行无线通讯,它具有自组网、功耗低、通讯可靠等优点,而且支持透明传输,井下设备与上位机通过Modbus-RTU协议进行通讯。
     在上位机监控系统中,采用组态软件进行数据的实时显示和数据保存,同时对设备进行远程控制。通过Visual Basic程序和多画面显示,实现了对井下各个位置的实时监控。
With the short board of deficient oil and lean gas have become more obvious, fast increase of international petroleum price, the coal's energy subject position of China consolidates increasingly, so the research of coal mine safety production become more important. Statistics show that80%of our china's coal accidents were gas accident, so the detection and control of mine gas become more and more important.
     Most of the existing gas monitoring system using wire, and the wire system often goes wrong by the very adverse work condition of mine. In recent years, the research of mine wireless monitoring system become popular with the development of wireless communications. By reading reference associated materials and books, we can find that most of these research contents in theoretical study and little in practice. Be aimed at the current gas monitoring system, this paper presents a gas monitoring system with wireless transmission of ZigBee and MCGS.
     According to the characteristics of high gas mine, this system using the ventilation system and gas drainage to ensure no limit exceeding of the gas content. And return the summary data from various sensors to upper computer monitoring system by using data collector. The monitoring system use MCGS to real time monitoring the underground data.
     The ventilation system include PLC^frequency converters> ventilation fan and various sensors. PLC used for calculate the frequency of frequency converters by synthesis the data return from sensors, and through the frequency converters to control the ventilation fan. Consider the actual situation of working surface, the control of frequency converters divided automatic and manual. In order to ensure the system operation, we provided with two frequency converters and ventilation fans.
     The gas drainage include PLC、frequency converters、Water-ring vacuum pump、Circulating water pump、Cooling tower、Ventilation fan and various sensors. The Water-ring vacuum pump used for gas drainage, In order to ensure the operation of Water-ring vacuum pump, provided with Circulating water pump and Cooling tower for them. In the process of gas drainage, the gas hard to avoid leak into pump room, so in the pump room we provided with a ventilation fan. When the gas of pump room was overranging of content, the gas will discharged by ventilation fan. And the PLC was using for start-stop the various types of equipment. In order to ensure the normal work of gas drainage, we provided with two Water-ring vacuum pumps and circulating water pump in this system, both equipment will be mutual standby.
     The environmental parameters of underground coal mine were obtained by various sensors. The much, random and miscellaneous were effectively reduced through RTU to summarize.
     In data transmission, the wireless communication can realize by using ZigBee equipment. ZigBee equipment has various advantages include ad hoc networks、low power dissipation and communications reliable and it can communicate by transparent transmission. The underground equipment and upper computer communicated by Modbus-RTU Protocol.
     In the upstream watch system, using conFig.uration software to achieve the real time display and save of the Downhole Data. The same time, through conFig.uration software to remote control the downhole equipments. Use the visual basic program and multi-picture show to realize the aims which can real-time monitoring the each position of underground.
引文
[1]阳宪惠,徐用懋.现场总线技术及其应用(第二版)[M].北京:清华大学出版社,2008.10.
    [2]廖常初.PLC编程及应用(第三版)[M].北京:机械工业出版社,2008.01.
    [3]北京亚控科技发展有限公司.组态王6.52使用手册.2006.
    [4]李海云.城镇水厂自动供水SCADA系统的研究与应用[D].太原理工大学,2010.
    [5]廖常初.PLC应用技术问答[M].北京:机械工业出版社,2006.01.
    [6]北京易控微网科技有限公司.STC-1产品使用说明书.2004.5.
    [7]吕利娟,林景栋.利用DDE实现组态王和VB应用程序的数据交换[N].佳木斯大学学报,2009(Vol.27,No.6).
    [8]唐妍,林景栋,曲莹莹.基于组态王SQL访问功能的报表数据统计[N].佳木斯大学学报,2010(Vol.28,No.3).
    [9]康筱彬.基于ZigBee技术的矿井安全监控系统设计[D].兰州大学,2011.
    [10]葛国秋.PLC在瓦斯抽放控制系统中的应用[J].仪器仪表用矿业安全与环保,2007.8(36):73-75.
    [11]董金波,李春华.基于PLC与触摸屏的煤矿瓦斯控制系统的研究[J].科学技术与工程,20011.4(11):2566-2568.
    [12]刘倩.ZigBee技术在矿灯监控中的应用研究[D].安徽理工大学.2009.
    [13]李志,王同联.井下使用可编程序控制器(PLC)受到的干扰及预防措施[J].能源技术与管理,2006(2):79-80.
    [14]汤良,张申,干玲等.认知无线电技术在煤矿井下的应用研究[J].工矿自动化,2010.7(7):36-39.
    [15]Orkisz. Variable frequency drive as a source of condition monitoring data [J]. Institute of Electrical and Electronics Engineers Computer Society, Institute of Electrical and Electronics Engineers Computer Society, Jul. 11-13.2008.
    [16]王凯,李长录,许健.V锥流量计测量瓦斯抽放流量的误差分析[J].煤矿安全,2011(12):110-112.
    [17]杨茂茂.瓦斯抽放监测监控系统在煤矿行业的应用[J].能源环境,2011.10(下):151.
    [18]荣妍.基于无线网络的矿井安全监控系统设计[J].中国集成电路,2007(3).
    [19]阮绍刚.水环真空泵在煤矿瓦斯抽放中的智能化节能控制方法[J].矿业安全与环保,2011.10(5):58-61.
    [20]吴作明.工控组态软件与PLC应用技术[M].北京:北京航空航天大学出版社,2006.12.
    [21]张梅,王芳.矿井局部通风机的模糊PID控制器设计[J].煤矿机械,2010(Vol.31,No.10):144-146.
    [22]马国华.监控组态软件及其应用[M].北京:清华大学出版社,2005.8.
    [23]Stuart A. Boyer. SCADA:Supervisory Control and Data Acqusition [M].2nd ed. Carolina:Instrument Society of America,1999.
    [24]杨春稳,李俊豪,马东娟等.基于PLC煤矿通风机供电控制系统可靠性研究[J].中国煤炭,2011(Vol.37,No.4):79-84.
    [25]于水娟,吴建.基于两级网络的煤矿通风机监控系统设计与实现[J].煤矿机械,2007(Vol.28,No.11):183-185.
    [26]Ben-Brahim, Lazhar. Iterative learning control for variable frequency drives [J]. Institute of Electrical and Electronics Engineers Inc. Jun 15-19 2008.
    [27]曾宇航.我国煤矿安全监控系统研究综述[J].软件导刊,2010(Vol.9,No.7):140-142.
    [28]Robbins, Matthew D. Computer-controlled, variable-frequency power supply fordriving multipole ion guides, American Institute of Physics Inc.2008.
    [29]Wang Yanwen, Yujin, Wang Chunping. Study of microcomputer protection for general purpose low-voltage motors in mine [J]. Journal of China Coal Soeiety. Apr.1997.22(2):206-210.
    [30]李长青,朱世松,赵建贵.煤矿安全和生产监控系统的现状与未来发展趋势[J].焦作工学院学报,2000(Vol.19,No.2):121-125.
    [31]黄梅初.基于ZigBee无线网络技术的自动控制系统[D].合肥工业大学,2008.
    [32]石磊,梁自泽,范长春等.组态软件在煤矿监测监控系统中的应用[J].微计算机信 息,2009(Vol.15,No.4):21-23.
    [33]ZigBee Specification Document 053474r13 [S]. ZigBee Standards Organization.
    [34]刘圆,朱华.基于Zigbee技术的煤矿安全监控系统[J].工矿自动化,2007(4):1-3.
    [35]梁秀荣,朱小龙.煤矿安全监测监控系统有关问题的探讨[J].煤炭科学技术,2006(Vol.34,No.8):69-71.
    [36]梅畅.无线传输技术在煤矿安全监控系统中的应用[J].煤矿机械,2010(Vol.31,No.4):164-166.
    [37]Mahmoud, Gamal. Inverter faults in variable voltage variable frequency inductionmotor drive [J], Institute of Electrical and Electronics Engineers Computer Society, Jun.2007.
    [38]Huber L, Borojevic D. Space vector modulated three-phase to three-phase matrix converter with input power factor correction [J]. IEEE Trans, on IndustryApplications,1995,31 (6):1234-1246.
    [39]周邦全.煤矿安全监测监控系统的发展历程和趋势[J].煤业安全与环保,2007(34):76-77.
    [40]吴永祥,曹珍贯,吴攀.基于无线电台的风井综合参数安全监控系统[J].煤矿安全,2006(12):37-38.
    [41]候友夫,尹逸,徐达.基于PLC的掘进面智能通风控制系统的研究[J].2007中国(淮南)煤矿瓦斯治理技术国际会议论文集:516-521.
    [42]廖晓群.煤矿安全生产远程监测监控系统的研究[D].西安科技大学,2007.
    [43]夏巍,丁刚,严辉.基于CAN总线的智能煤矿安全监控系统的设计[J].工矿自动化,2006(6):37-39.
    [44]罗心,罗可.基于GPRS和CAN总线的煤矿安全监控系统[J].仪表技术与传感器,2008(5):72-73.
    [45]李波.煤矿安全监控系统分析与设计[D].北京邮电大学,2009.
    [46]西门子(中国)有限公司.S7-200可编程序控制器系统手册[S].2008.08
    [47]杨国庆,侯红伟,冯改国.我国煤矿瓦斯监控系统现状及发展[J].煤炭技术,2008(Vol.27,No.9):63-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700