用户名: 密码: 验证码:
机械化学法在植物有效成分提取中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然植物中含有丰富的活性物质,被广泛用于药品、保健品和化妆品中。我国拥有丰富的中药资源,但中药提取物的国际市场占有率还不足5%。目前,我国中药提取物生产多采用乙醇、甲醇、丙酮等传统有机溶剂加热、回流提取,效率低,成本高,工艺复杂,难以提高商业价值。而且,多数有机溶剂具有毒性,污染环境,且易燃易爆,存在生产安全隐患。因此,如何实现药材的高效利用,开发绿色环保、低成本、技术成熟度高的提取技术无疑是一个亟待解决的问题。
     本研究采用机械化学法,以水作溶剂提取穿心莲内酯和银杏叶总黄酮。首先,筛选和确定了机械化学辅助提取的最佳助剂;其次,初步考察目标提取物与助剂间的作用情况并比较不同预处理方法对目标提取物的形态及提取率的影响;最后,在单因素试验基础上,通过正交试验优化提取工艺并与热回流提取比较。
     结果表明,经固态研磨后,穿心莲内酯及芦丁可能分别与最佳助剂Na2CO3、Na2CO3 & Na2B4O7反应成盐;芦丁可能与羟丙基-β-环糊精(HP-β-CD)形成复合物;以水作溶剂,机械化学法的提取率显著高于物理混合及超微粉碎辅助提取;物料的粒度及扫描电镜分析表明经机械化学处理后穿心莲及银杏叶的大部分细胞可能被充分破碎。
     机械化学辅助提取穿心莲内酯的最佳工艺为:Na2CO3用量3% (w/w),研磨时间为45min,水(乙醇浓度0%, v/v)作溶剂,料液比为1:60 g:ml。此时穿心莲内酯提取率为1.59%,比粗粉蒸馏提取率提高25.2%。
     机械化学辅助提取银杏叶中总黄酮的最佳工艺为:(1)碱作助剂。Na2CO3 & Na2B4O7用量9% (w/w),研磨时间35min(物料粒度D95≤37μm),乙醇浓度为20% (v/v),料液比为1:50 g:ml。以水替换乙醇,其提取率与乙醇提取相当。(2) HP-β-CD作助剂。用水提取,HP-β-CD用量18% (w/w),循环水温度60℃,研磨时间25min。最佳工艺条件下与热回流提取比较,以Na2CO3 & Na2B4O7及HP-β-CD作助剂的机械化学辅助提取,总黄酮提取率分别提高15.49%和18.90%,以水作溶剂,室温下提取,大大缩短了提取时间。
Natural plant contains a diverse group of bioactive substances with a broad range of applications in medicine, healthcare product and cosmetic. China is rich in medical herb resources, but has a weak market share (less than 5%) for plant extract in the world market. At present, heat or heat reflux extraction with conventional organic solvents such as ethanol, methanol and acetone is widely used in the industrial-scale production of herb extracts in China. This method with limitations such as high cost and complex procedures required has greatly decreased the production efficiency and profits. Moreover, the requirements for hazardous organic solvents which is inflammable-explosive could also increase the probability of safety risks in production and environmental contamination. Therefore, environmental friendly and industry-ready technique with low cost and enhanced efficiency is required in order to accelerate the development of herb extract industry in China.
     The present study was focused on the mechanochemical assisted extraction (MCAE) of andrographolide and total flavone from Ginkgo bilobal with water as solvent. First, the chemical reagent was selected according to the yield of target compounds by MCAE; Second, a preliminary investigation was conducted on the interaction of the target compound-chemical reagent. Different pretreatment was compared with respect to their effects on the plant material morphology as well as the target compound yield. Finally, the MCAE process was optimized based on both orthogonal and one-factor experiment, and was compared with conventional heat reflux extraction.
     Preliminary investigation showed that andrographolide and lutin could possibly be neutralized by Na2CO3, Na2CO3 & Na2B4O7 respectively, and certain complexes may have been formed between lutin and hydroxypropyl-β-cyclodextrin (HP-β-CD) after the solid grinding process. The yield of MCAE treated samples (extracting with water) was significantly improved (P <0.05) comparing with physical mixing and superfine grinding samples. Both particle analysis and scanning electron micrographs suggested that the plant cell wall could be broken up after the mechanochemcal treatment.
     The optimum parameters for MCAE of andrographolide were as follows: Na2CO3 content, 3% (w/w); milling period, 45min; extraction solvent, water (0% v/v, aqueous ethanol); liquid/solid ratio, 1:60g:ml. The water extraction yield by MT is higher than that of heat reflux extraction from crude powder by 25.2%.
     The optimum parameters for MCAE of total flavone from Ginkgo bilobal were as follows: (1) alkali reagent. Na2CO3 & Na2B4O7 content, 9% (w/w); milling period ,45min(particle size, D95≤37μm); extraction solvent, 20% v/v aqueous ethanol; liquid/solid ratio, 1:50 g:ml. Aqueous ethanol was replaced by water, and no significant difference in yield was observed with other optimized parameters settings. (2) HP-β-CD reagent. HP-β-CD content, 18% (w/w); circulating water temperature, 60℃; milling period, 25 min. The water extraction yield by MT is higher than that of heat reflux extraction from crude powder by 15.49% and 18.90%.
     Under the optimized parameters determined herein, significant enhancement such as improved yield, shorter time and more simplified procedures over heat-reflux extraction was observed, which makes MCAE (a combination of physical and chemical method) a potential convenient tool for andrographolide and total flavone extraction from Ginkgo bilobal. Moreover, the favorable solvent is water, making MCAE a less expensive and eco-friendly technique.
引文
[1]刘雪东,卓震.机械化学法粉体表面改性技术的发展与应用.江苏石油化工学院学报, 2002, 14(4): 32~35.
    [2]宋晓岚,邱冠周,杨华明.超细功能粉体的机械化学合成研究进展.金属矿山, 2004, 337(7): 25~30.
    [3] Kaupp G. Organic solid-state reactions with 100% yield. Topics in Current Chemistry. Springer Berlin/Heidelberg, 2005: 95~183.
    [4]李希明,陈家镛.机械化学在资源和材料化工及环保中的应用.化工冶金, 2000, 21(4): 443~448.
    [5]马学鸣.氧化铜室温下机械还原的研究.金属学报, 1991, 27(6): 470~472.
    [6] Osseo A K. Solution chemistry of Tungsten leaching system. Metallurgical Transactions B, 1982, 13B(4): 555~564.
    [7] Boldrev V. Particle Technology. Nurnberg, 1986.
    [8] Heinicke G. Tribochemistry. Berlin, Akademie Verlag, 1984.
    [9]董川,李俊芬,双少敏.环糊精包结物的形成及光谱表征.光谱室, 2000, 17(3): 247~256.
    [10]杨新萍. X射线衍射技术的发展和应用.山西师范大学学报(自然科学版), 2007, 21(1): 72~76.
    [11]唐新村,黄伯云,贺跃辉.室温固-固反应初期动力学的粉末紫外-可见漫反射光谱研究.高等学校化学学报, 2006, 27(8): 1558~1560.
    [12]曾里,夏之宁.超声波和微波对中草药提取的促进和影响.化学研究与应用, 2002, 14(3): 245~249.
    [13]杨华明,邱冠周.机械化学法处理钼渣的新工艺.中国钼业, 1998, 22(3): 13~15.
    [14] Nurr L E. Kinetic effects of particle-size and crystal dislocation density on the dichromate leaching of chalcopyrite. Metallurgical Transactions, 1981, 12B: 225~267.
    [15] Hoberg H. The influence of mechanical activation on the kinetics of the leaching process of columbite. International Journal of Miner Processing, 1985, 15(1/2): 57~64.
    [16] Schaffer G B, McCormick P G. Mechanical alloying. Materials Forum, 1992, 16(2): 91~97.
    [17]章新桥,张东明. NbC粉末的机械合金化合成.国有色金属学报, 1995, 5(1): 87~89.
    [18]吴方领.固相研磨合成研究.商丘师范学院学报, 2005, 12(2): 125~128.
    [19]邵锡宸,夏定龙,刘为群.麻黄草原料前处理及麻黄碱连续浸取.中国医药工业杂志, 1994, 25(8): 363~368.
    [20]王杰,任仲皎,伍明.从黄连中提取小檗碱的新方法研究.中国药学杂志, 1994, 29(8): 490~491.
    [21]邱国福,胡泉源,李红等.从银杏叶中提取黄酮苷方法的改进.湖北医科大学学报, 1996, 17(3): 205~206.
    [22]吴俊伟,古淑英,曾忠良等.酸水法及其它方法提取穿心莲总内酯的比较.中国兽药杂志, 1999, 33(2): 23~25.
    [23]魏凤玲,朱春波,朱立平等.三七总皂苷提取工艺优选.中国中药杂志, 2000, 25(12): 722~723.
    [24]张兰桐,任雷鸣,温进坤.中药现代化研究与发展战略.河北医科大学学报, 2000, 21(4): 253~256.
    [25]王宏洁,司南,边宝林.饮片超微粉碎前后主要有效成分溶出量的对比研究.中国中药杂质, 2004, 29(11): 1111~1112.
    [26]李鹰,丁青龙,赵静安,用正交试验探讨金银花煎煮条件对绿原酸含量的影响.江苏药学与临床研究,2008,8(1):33~35.
    [27]周德庆,曾骆.黄岑总黄酮的提取工艺研究.华西药学杂志, 2002,18(1): 78~79.
    [28]黄祖良,何有成,韦国锋等.从植物十大功劳叶中制取四氢小蘗碱的工艺研究.广西化工, 2002, 32(2): 16~17.
    [29]张春红,张崇禧,郑友兰等.浸溃法提取人参皂昔最佳工艺的研究.吉林农业大学学报, 2003, 250: 73~74.
    [30]刘进月,赵典刚,韩月香.渗流法提取芦丁的实验研究.中国中医药科技, 1999, 6(5): 320~321.
    [31]邵方晓,刘吉晨.苦参总碱浸膏提取工艺的研究.中国新医药,2003,2(6): 8.
    [32]刘祥兰,刘重芳,张英等.金银花中绿原酸提取工艺的比较和优化研究.中成药, 2000, 22(6): 402~404.
    [33]方阵,吴健,王康才.正交实验筛选黄连水提工艺.时珍国医国药, 2001, 12(11): 982~983.
    [34]全学军,王万能,陆天健.超声提取植物有效成分的动力学研究.化学反应工程与工艺, 2005, 21(4): 320~326.
    [35]韩伟,郝金玉,薛伯勇等.微波辅助提取青蒿素的研究.中成药, 2002, 24(2): 83~86.
    [36]李晓明,王跃生,闫寒等.超微粉碎决明子对其大黄酚溶出量的影响.中国实验方剂学杂志, 2001, 7(6): 6~8.
    [37] Joneston K P, Harrison K L, Clarke M J et al. Water-in-Carbon dioxide microemulsion an environment for hydrophiless including proteins. Science, 1996, 271: 624~627.
    [38]马桔云,赵晶岩,姜颖等.纤维素酶在黄连提取工艺中的应用.中草药, 2000, 31(2): 103~104.
    [39]沈爱英,谷文英.复合酶法提取姬松茸子实体多糖的研究.食用菌, 2001, 23(3): 7~9.
    [40] Kokorevics A, Gravitis J. Cellulose depolymerization to glucose and other water soluble polysaccharides by shear deformation and high pressure treatment. Glycoconjugate Journal, 1997, 14:669~676.
    [41] Yarmukhametova E G, Altunina L K, Tikhonova L D. Preparation of cellulose ether from rice husks. Proc. 5th Russ-Kroean. Int. Symp. Sci. Technol, Russia, 2001, 2: 150~153.
    [42] Korolev K G, Lomovskii O I,Rozhanskaya O A et al. Mechanochemical preparation of water-soluble forms of triterpene acids. Chemistry of Natural Compounds, 2003, 39 (4): 366~372.
    [43] Lomovsky O, Korolyov K, Kwon Y S. Mechanochemical solubilization and mechanochemically assisted extraction of plant bioactive substances. Proc Of the 7th Kroea-Russia Int Symp on Science and Technology, KORUS 2003, Korea, 2003, 1 (1):7.
    [44]邹艳敏.三种中药材微粉与普通粉松密度流动性及有效成分含量的比较研究.时珍国医国药, 2005,(16)8: 761~762.
    [45]陈长洲,孙冬梅,张孝娟等.天麻超细粉体的显微和溶出特征.中药新药与临床药理, 2002, 13(4): 251~252.
    [46]徐月红,王宁生.微粉化对三七质量影响的研究.中国粉体技术, 2004, 6: 28~30.
    [47]杜力军,邢东明,丁怡.微细化工艺制备三种中药的溶出度、生物活性及体内动力学比较研究.世界科学技术-中医药现代化新技术和新方法, 2004, 6(5):34~40.
    [48]宋丽丽,张启明,王鸽子.超微粉碎对蒲公英成分溶出特性的影响.时珍国医国药, 2001, 12(6): 492~493.
    [49]尉小慧,金青,赵文英.松茸菌与鸡枞菌超微粉碎提取多糖.青岛科技大学学报, 2003, 4, 24(2): 117~119.
    [50]邱蓉丽,李磷,李祥.超微粉体技术对穿心莲药材中穿心莲内酯及脱水穿心莲内酯溶出率的影响.中西医结合学报, 2004, 2(6): 456~458.
    [51]郭学东.比较红参普通粉碎和微粉化处理的溶出速率.首都医药, 2000, 7(9): 47.
    [52]郭学东.茱萸普通粉碎和微粉化处理在溶出速率上的比较.首都医药, 2000, 7(8): 45~68.
    [53]李富文,金凤媚.超微粉碎技术在中药中的应用.中国动物保健,兽药研发, 2003(11): 35~36.
    [54]匡海学.中药化学.中国中医药出版社, 2003:176, 328.
    [55]张新勇,向仁德,张根元.酸碱法提取蛇床子总香豆素的工艺研究.中成药, 1999, 21(1):7~8.
    [56]周益明,忻新泉.低热固相合成化学.无机化学学报, 1999, 15(3):24~29.
    [57]许正斌等.中医药信息. 1987,(4):36~37.
    [58] Lomovsky.O.I. Mechanochemical technology of processing of plant raw materials.Regional scientific-practical conference《Chemical and pharmaceutical industry in modern conditions》.Novosibirsk: 1999.
    [59] Pankrushina.N.A, Lomovsky.O.I. Mechanochemical solid-state extraction-new effective approach to extraction of biologically active compounds from medicinal herbs,Book of abstract of the International seminar《Wood biologically active resources》.Khabarovsk: 2001.
    [60]肖树雄,王小钰.穿心莲的成分及其分析方法研究概况.中国药, 2002, 5(11):693~694.
    [61]张建强,张玲,王欢,孙英法.穿心莲提取工艺.食品与药品, 2005, 7(1):39.
    [62]赵玉江,李勇,吴修红,孟祥才.不同提取方法对穿心莲内酯含量的影响.黑龙江医药, 2006, 19(3):182.
    [63]颜玉贞,谢培山.穿心莲质量控制的再评价.中药新药与临床药理, 1998,9(4): 204~206.
    [64]于波涛,张志荣,刘文胜等.穿心莲内酯体外稳定性研究.中成药, 2002, 24(5): 331~333
    [65]聂凌云,罗兴平.穿心莲提取工艺的研究及热稳定性考察.解放军药学学报, 2005, 21(1): 32~34.
    [66]吴俊伟,古淑英,曾忠良.酸水法提取穿心莲总内酯.四川畜牧兽医学院学报, 1999, 13(3):7.
    [67]郭彬,娄勇,蒋琼等.穿心莲浸膏的提取工艺研究.安徽医药, 2002, 6(3): 7.
    [68]金海英,徐慧,郭艳民等.穿心莲药材中穿心莲内酯的含量测定.中医药信息, 2002, 8(6): 27.
    [69]马桔云,吕芳,于喜水等.纤维素酶用于中药穿心莲提取的初步研究.黑龙江医药, 2000,13(1): 16~17.
    [70] 72廖世煌,张国辉,朱俊章等.病毒净滴眼液对单纯疱疹性角膜炎疗效研究.中国中医眼科杂志,1992, 2(1): 5~7.
    [71] Calabrese C,Berman S H,Babish J G,et al.A phaseⅠtrial of andrographolide in HIV positive patients and normal volunteers. Phytother Res,2000,14(5): 333~338.
    [72]陈牧,孙振华,徐立春.穿心莲内酯与rlL2促进LAK细胞生长及细胞表型变化的研究.深圳中西医结合杂志,2001,l1(1): 8~10.
    [73]彭光勇,周峰,丁如宁等.穿心莲必治注射液(穿心莲内酯)对免疫功能的调节作用.中国中药杂志, 2002, 27(2): 147~150.
    [74] Imretagoyena M I, Tobar J A,Gonzalea P A,et a1. Andrographolide interferes with T cell activation an d reduces experimental autoimmune encephalomye1itis in the mouse. JPharmoecol Exp Ther, 2005, 312(1): 366~372.
    [75] Rajagopal S, KumarR A, Deevi D S,et al, Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J. Exp.Ther Oncol, 2003, 3(3): 147~158.
    [76] Ajaya A K, Sridevi K, Vkuman N V, et a1. Anticancer and immunostimulatory compounds from A.paniculata. J Ethnophammcol, 2004, 92(2~3): 291~295.
    [77] Satyanarayana C, Deevi D S, Rajagopalan R, et a1. DRF3188 a novel semi-synthetic anolog of andrographolide: cellular response to MCF7 breast cancer cells. BMC Cancer, 2004, 4: 26.
    [78]方淑贤,郑恒,刘东等.穿心莲内酯对二磷酸腺苷诱导血小板聚集的拮抗作用.医药导报, 2004, 23(11):805~806.
    [79]郑敏,尹时华,吴基良等.穿心莲内酯对大鼠脑缺血再灌注损伤的影响.医药导报, 2004, 23(10): 708~710.
    [80]黄泰康.常用中药成分与药理手册(下册).北京:中国医药科技出版社, 1999:1465
    [81] Kapil A.et a1.Antihepatotoxic effects of majors diterpenoid constituents of Andrographis paniculata. Biochem Pharmacol, 1993, 46 (1): 182.
    [82] Handa SS,et a1.Hepatoprotecfive activity of an drographolide against galactosamine and paracetamol intoxication in rats.Indian J Med Res, 1990, 92:284.
    [83] Visen PK, et a1. Andrographolide protects rat hepatacytes against paracetamol-induced damage. J Ethnopharmacol, 1993,40(2): 131.
    [84] Dwivedi SK, et a1. Comparative efficacy of Liv 52 and Andrographis paniculata Nees in experimental liver Irnage in rabbits.Indian Drugs, 1987(25): 1.
    [85]李敬芬,李彬,佟德成,孙志忠.均匀试验设计在6-甲基-8-氰甲基-2’,3’,4’-三甲氧基黄酮合成中的应用.数理医药学杂志. 2003.16(1): 67~68.
    [86]梁立兴.从银杏文献计量分析研究看我国银杏研究现状及发展趋势.林业科技通讯,1994,12: 18~20.
    [87]张迪清,何照范.银杏叶资源的化学研究.北京,中国轻工业出版社. 1999:1.
    [88]苑克武,孟宪惠,徐文豪.银杏叶黄酮含量的季节性变化.中草药, 1997, 28(4): 211.
    [89]范怡梅,王勇,谭仁禅等.银杏叶黄酮苷含量与生长季节和植物性别的相关性研究.中国中药杂志, 1998, 23(5): 267.
    [90]张志信,张仕秀,宋关斌.微波-碱水法提取三七茎叶总黄酮的工艺研究.药物生物技术, 2005,12(6): 389~392.
    [91]王亭兰,汤为.银杏产业的可行性调研报告.时珍国医国药. 2004,15(5):311~312.
    [92]李雄彪,张金忠编.简明植物生物化学.天津:南开大学出版,1992:343~344.
    [93]肖崇厚,陆蕴如.中药化学.上海:上海科学技术出版社,1987.
    [94]梁克军.黄酮化合物的代谢.中草药通讯,1976,3: 39~43.
    [95]王冰,李宏涛,缪铭等.甘草总黄酮提取工艺的研究.郑州工程学院学报, 2004,25(3): 61~63.
    [96]童林荟.环糊精化学-基础与应用.北京:科学出版社,2001.
    [97] Uekama K, Irie T, Hirtayama F. Cyclodextrin drug carrier systems. Chemical Reviews, 1998,98(5):2045~2076.
    [98]张钰,程度胜.β-环糊精及其衍生物在生物制药领域中的应用.生物技术通讯, 2003, 14(5): 433~435.
    [99]徐志红,李磊,武法文等.环糊精对黄酮的包合作用及其在银杏黄酮提取中的应用.精细化工, 2005, 22(10): 762~765.
    [100]刘锦业,刘远军,罗智等. 2-羟丙基β-环糊精对女贞叶提取物的增溶作用.中国冶金工业医学杂志, 2002, 19(4): 201~202.
    [101]张振海,刘力,徐德生.环糊精辅助提取丹参工艺的研究.中成药, 2005, 27(3): 264~266.
    [102] Yang Z G, Gulisitan A, Cao Y et al. Preparation and physicochemical characterization of quercetin-HP-β-CD inclusion complexes. Journal of Chinese Pharmaceutical Sciences, 2006, 15(2): 69~75.
    [103]杨小明,叶允荣,王萍等.银杏叶提取物和银杏酸的抗菌活性研究.食品科学, 2004, 25(4): 68~72.
    [104]白桂芬.银杏叶的药用作用保健功能与加工利用.农产品加工学刊, 2007, 8: 51~53.
    [105]裴凌鹏,惠伯棣,金宗濂等.黄酮类化合物的生理活性及其制备技术研究进展.食品科学, 2004, 25(2): 203~207.
    [106]尹钟诛.葛根素对人和动物血小板聚集性和5 - HT释放的影响.中国医学科学院学报, 1981,3(增刊): 44.
    [107]丁之恩.银杏叶的利用价值及其研究进展.经济林研究, 2003, 21(4): 128~130.
    [108] Nicole C , Maria C P , Maria C A , et al . Antioxidantp roperties of hydroxyl flavones. Free Radical Biology&Medicine, 1996,20(1): 35~43.
    [109]高文胜.山东省银杏生产现状及发展建议.山东农业, 2002, 4: 23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700