用户名: 密码: 验证码:
渭北黄土高原林—草景观界面植被、土壤特征及其关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
景观界面的研究是现代景观生态学研究的重要组成部分,也是国内外研究的热点问题。因此,开展刺槐人工林-草地景观界面的研究具有非常重要的意义。本研究通过野外观测与实验室分析相结合的方法,在陕西省咸阳市永寿县马坊林
     场,调查了样带上的植物种类组成、土壤水分、土壤养分以及各种小气候因子,分析它们在草地—界面—刺槐林异质景观环境梯度上的分布与变化特征,籍以揭示植被与土壤环境因子之间的相互关系,从而为该地区林草资源管理以及土地利用方式提供合理的建议。研究结果表明:
     (1)通过聚类分析,将研究区域划分为3种景观类型,即刺槐林景观、草地景观和林-草界面景观,确定了界面的影响域为20m,其中向林内为14m,向草地内为6m。3种景观中的群落类型分别为“发草+羊茅Deschampsis caespitosa (L)Beauv.+ Festuca ovina L.”、“纤毛鹅观草+羊茅Roegneria ciliaris(Trin.)Nevski.+ Festuca ovina L”和“羊茅+赖草Festuca ovina L.+Leymus secalinus(Georgi)Tzvel.”。
     (2)Simpson多样性指数、Shannon-Wiener多样性指数、Margalef丰富度指数和Pielou均匀度指数在林草景观及其界面中的大小均表现为林地>草地>界面。
     (3)土壤水分在样带水平距离梯度上总的变化趋势是草地>界面>林地。但垂直剖面上有所不同,草地和林地水分变化可划分为速变层、活跃层、次活跃层和相对稳定层4个层次,而界面只有速变层、活跃层和次活跃层3个层次。土壤水分季节动态变化明显,在生长前期和末期含水量较高,按其季节变化划分为土壤水分相对稳定期(3-5月)、土壤水分消耗期(6-7月)和土壤水分恢复期(8-10月)。
     (4)不同景观中土壤养分表现为:表层土壤有机质含量为界面>林地>草地;全氮和水解氮含量与草地相比差异显著;亚表层土壤中,有机质、全氮和水解氮沿样带水平方向的分布差异不显著。全磷、速效磷、全钾、速效钾在草地、界面和林地的同一土层中含量差异均不显著。在垂直方向上,有机质、全氮、水解氮、速效磷、速效钾在草地、林地及界面中均表现为表层>亚表层;全磷仅在草地和界面中表现为表层>亚表层;PH值均为表层>亚表层,但仅在草地2个层次间差异显著;全钾在层次间差异不显著。
     (5)空气温度在从草地—界面—刺槐林内部的连续过程中是逐渐升高的,温差达1.59℃。空气相对湿度表现出与此相反的变化趋势,内外相差0.77%;地温的总趋势是草地>界面>林地。
     (6)相关分析表明:在草地中,植物多样性指数与水解氮和全氮显著相关;刺槐林中,植物多样性指数与土壤水分密切相关;在林草界面中,植物多样性指数与土壤水分和速效磷、全磷、全钾密切相关。
Landscape boundary is an important component of landscape and often plays indispensable roles in regulating ecological flows. By field investigation and experimental work , the gradient distribution and variation of microclimatic element, vegetation composiyion,soil water,soil nutrients were analyzed,through which the correlations of plants to soil factors were described.
     The main results were summarized as following:
     Ⅰ.By cluster analysis, the 25 sites were divided into 3 types of landscape: forest, grassland and forest- grassland boundary. The influential range of boundary on speciesdiversity was about 20m,ranging from 14m in forest to 6m in grassland.The main communities in the three types of landscape were“Roegneria ciliaris(Trin.)Nevski.+ Festuca ovina L”,”Deschampsis caespitosa (L)Beauv.+ Festuca ovina L.”and“Festuca ovina L.+Leymus secalinus(Georgi)Tzvel.”.
     Ⅱ. Simpson Index,Shannon-Wiener Index,Margalef Index and Pielou Index for the three types of landscape appeared consistent in variations,with highest number for forest,followed by that of grassland and boundary respectively.
     III.Soil water at the horizontal dimension across the sample plot appears most in content in grassland,then in landscape boundary followed by forest. Across the soil profiles of grassland and forest, 0-210cm depth can be divided into four layers: rapid change layer, active layer, sub-active layer and relatively stable layer. Landscape boundary only has three layers observed: rapid layer, active layer and sub-active layer. Seasonal variations of soil water are significant and higher at early phase and last phase of growth. Three stages of soil water variation have been observed: relatively stable stage ( March—May), exhaustion stage ( June—July) and recovery stage (August—October).
     IV. Soil nutrients across the horizontal and vertical dimensions of sample plot were significantly different. On the horizontal dimension, highest OM goes to landscape boundary, followed by forest and grassland respectively. TN and AN contents were not significantly different between forest and boundary but significantly different compared to grassland. In the sub-surface layer, OM, TN and AN were not significantly distributed across the horizontal level of sample plot. TP, AP TK and AK of same soil layer with grassland, boundary and forest were not significantly different in contents but in the vertical direction for grassland, boundary and forest, OM, TN, AN, AP and AK in surface layer were all higher than those in sub-surface layer, significant difference indeed. Only with grassland and boundary, TP in surface layer was higher than that in sub-surface layer. PH value with surface layer was higher than that of sub-surface layer but significantly different among grassland. TK contents were not significantly different among layers.
     V. Temperatures were increasing along grassland-boundary-forest gradients, with temperature difference amounting to 1.59℃. A reverse variation happened to relative humidity, with a interior-exterior difference of 0.77%. Soil temperature tendency was following the order of grassland>boundary >forest.
     VI. Correlation analysis revealed that in grassland, the indices of phyto-biodiversity were correlated with AN and TN; in forest, indices of speciesdiversity were significantly correlated with soil water; and in forest-grassland boundary, indices of speciesdiversity were significantly correlated with soil water, AP, TP and TK.
引文
[1] 韩士杰,廖利平.关于森林界面生态学的思考[J].应用生态学报,1998,9(5):538-542.
    [2] 高洪文.1994 生态交错带理论研究进展[J].生态学杂志,13(1): 32-38.
    [3] 王庆锁,王襄平,罗菊春等.生态交错带与生物多样性[J].生物多样性,1997,5(2): 126-131.
    [4] Holland M.M. SCOPE/MAB technical consultations on landscape boundaries :report of a SCOPE/MAB work shop on ecotones[J]. Biology International, Specia lIssue. 1988,17:47-106.
    [5] Dicastri F, Hansen A J. The environment and development crises as determinants of landscape dynamics. Landscape Boundaries[M]. New York: Springer- Verlag. 1992: 3-18.
    [6] 肖笃宁,李秀珍,高峻等.景观生态学[M].北京:科学出版社,2003
    [7] Strayer D .L .,Power M.E .,Fagan ,W.F.,et al. A classification of ecological boundaries[J].BioScience, 2003,53(8):723-729.
    [8] Fortin M-J.,Drapeau P.,Jacquez G.M. Quantification of the spatial co-occurrences of ecological boundaries[J].Oikos, 1996,77 :51-60.
    [9] Dicastri F, Hansen A J. The environment and development crises as determinants of landscapedynamics. Landscape Boundaries[M]. New York: Springer- Verlag. 1992: 3-18.
    [10] Turner M .G.and R.H.Gardner. Quantitative methods in landscape ecology [M].New York:Springer-Verlag, 1991:216-218
    [11] 高甲荣,肖斌.生态学的新发展—森林界面生态[J].西北林学院学报,1998,13(3):68-73.
    [12] Weins J.A.Boundary dynamics:A conceptual framework for studying landscape ecosystems[J]Oikos.1985,45:42l~427.
    [13] 张理华、周秉根,万荣荣.生态交界带特征与动态变化机理分析[J].地域研究与开发,2003,22(3):59-61.
    [14] 王玉朔,赵成义.绿洲一荒漠生态脆弱带的研究[J].干旱区资源与环境,2001,15(2):25-31.
    [15] 孙武.波动性生态脆弱带的特征.中国沙淇.1997,11(2):199 一 203.
    [16] 常学礼,赵爱芬,李胜功.生态脆弱带的尺度与等级特征[J].中国沙漠.1999,19(2):115-119.
    [17] 常禹.长白山森林景观边界的定量判定及其动态变化[D].沈阳:中国科学院沈阳应用生态研究所,2001.
    [18] 常学礼,赵爱芬.生态脆弱带的尺度与等级特征[J].中国沙漠.1999,19(2):115-119.
    [19] 肖笃宁,布仁仓,李秀珍.1997.生态空间理论与景观异质性[J].生态学报.17(5): 453-461.
    [20] Mc Neely J. A. et. al. Conserving the World's Biological Diversity. [M].Washington, D. C. and G1and,1990
    [21] 王伯荪,彭少麟.鼎湖山森林群落分析 X—边缘效应[J].中山大学学报(自然科学版).1986 (4):52~56.
    [22] Neilson RP et al. Regional and local vegetation pattens:the response of vegetation diversity to subcontinent air masses [A]. Hansen AJ.di Castri F(eds).Landscape Boundaries consequences for biotic diversity and ecological flows[C] Springer-Verlag, New York,1992.
    [23] 王庆锁,刘涛.森林—草原交错带白桦林和山杨林植物多样性研究[J].林业科学.2000,36(1):110-115 .
    [24] Fraver S. Vegetation responses along edge-to-interior gradients in the mixed
    [25] Hardwood forests of the Roanoke River Basin,North Carolina[J].Conservation Biology.1994,8 :822-832.
    [26] 王庆锁,冯宗炜.河北北部内蒙古东部森林—草原交错带生物多样性研究[J].植物生态学报.2000,24(2):141-146.
    [27] 韩景军.长白山白河地区森林/沼泽交错群落的研究[J].北华大学学报:自然科学版.2000,1(3):246-253.
    [28] 刘金福,洪伟.格氏栲群落林窗边缘效应研究[J].应用生态学报.2003:14(9):1421-1426.
    [29] 马友鑫,刘玉洪.西双版纳热带雨林片断小气候边缘效应的初步研究[J].植物生态学报.1998,22(3):250-255
    [30] 丁立仲 ,卢剑波.千岛湖破碎化景观中灌木层植被的边缘效应[J].浙江大学学报(农业与生命科学版). 2006,32(5):563~568.
    [31] Beecher WJ.,Nesting Birds and the Vegetation Substrate Chicago. Chicago Ornithological Society.1942
    [32] Luczaj L,Sadwska B. Edge effect in different groups of organism,vascular plant bryophyte and fungi species . richness across a forest-grassland borded[J].Folta Jeobot Phyiataion.1997,34(2):343-353.
    [33] 奚为民,钟章成.四川缙云山森林群落林窗边缘效应的研究[J],植物生态学与地植物学学报.1993,17(3):232-242.
    [34] 苗莉云,王孝安. 太白红杉群落交错带物种多样性的研究[J],广西植物.2005,25(2):112-116.
    [35] 于顺利,刘灿然.蒙古栎群落交错带(ecotone)的研究[J].生物多样性.2000,8(3):277-283.
    [36] 石培礼,李文华,王金锡.岷江冷杉林线交错带的植冠三维结构[J].生态学报.2002,22(11):1820-1824.
    [37] 陈旭东,赵雨兴.鄂尔多斯高原生态过渡带的判定及生物群区特征[J].植物生态学报.1998,22(4):312-318.
    [38] 常禹,布仁仓,胡远满.景观边界研究概况[J].生态学杂志.2002,21(5):49~53.
    [39] Page H.M.Variation in the natural abundance of 15N in the halophyte.Salicornia virginica associated with ground water subsides of nitrogen in a southern california salt-marsh[J] Oecologia.1995,104(2):181~188.
    [40] 李丽光.岷江上游农林景观边界生态效应分析[D].沈阳:中国科学院沈阳应用生态研究所,2005.
    [41] Stohlgren T.T et,al Species environment relationships and vegetation patterns:effects of spatial scale and tree life—stage[J].Plant Eco1.1998,35(2):2l5~228.
    [42] Kapos V. Effects of isolation on the water status of Forest patches in the Brazilian Amozon Journal of Tropical Ecology,1989,5:173-185.
    [43] Saunders S.C.,Chen J. Drummer T.D.,Crow T.R.Modeling temperature gradients across edges over time in a managed landscape[J]. Forest Ecology and Management. 1999,117: 17 -31.
    [44] Haetenschwiler S.,Smith W.K. Seedling occurance in alpine tree line conifers: a case study from the central Rocky Mountains, USA [J].Acta Oecologia.1999,20(3 ):219-224.
    [45] Walsh W .,Stephen J .Influence of snow patterns and snow avalanches on the alpine . tree line ecotone [J]. Journal of Vegetation Science.1994,5: 657-672.
    [46] 王正非.森林气象学[M],北京:中国林业出版社,1985.
    [47] 王述礼,朱廷,孔繁智.农田林网内风速特征及防护效益[A].朱廷.防护林体系生态效益及边界层物理特征研究北京[C].北京.气象出版社, 1992.
    [48] Cadenasso ML,Traynor MM,Picket STA.1997.Functional location of forest edges: Gradients of multiple physical factors .Canadian Journal of Forest Research,27 :77 4-782
    [49] 朱廷,周广胜.防护林生态效益及近地面层物理特征的观测研究[A].朱廷.防护林体系生态效益及边界层物理特征研究[C].北京:气象出版社, 1992.
    [50] Miller DR,Lin JD. Canopy architecture of a red maple edge stand measured by a point drop method[A].Hutchison BA,eds. The Forest-Atmosphere Interaction. Dordrecht[C] .D. Reidel Publishing Company. 1985.
    [51] 石培礼, 李文华.生态交错带的定量判定[J].生态学报.2002,22(4):586-592.
    [52] Burk JH. Sonoran desert vegetation[A]. Barbour MC,eds. Terrestrial Vegetation of California[C]. New York:John Wiley and Sons. 1977.
    [53] Gosz JR. Ecological functions in a biome transition zone :translating local response to broad-scale dynamics[A]. Hansen AJ and di Castri F , eds. Landscape Boundary-Consequence for Biotic Diversity and Ecological Flow[C]. New York :Spring-Veriag Press Inc. 1992.
    [54] 张峰,上官铁梁.有序样方聚类在植被垂直带划分中的应用[J].植物生态学报.1997,21(3):267-273.
    [55] Zhao D-C . The altitudinal distribution belts of vegetation on Changbai Mountain. For Ecosyst Res[J]. 1980,1 :65~70 .
    [56] Ludwing JA and Corneius JM. Locating discontinuities along ecological gradients. Ecology[J]. 1987,168 (2) :448~450
    [57] Hill MO and Gauch Jr H G. Detrended correspondence analysis: an improved ordination technique[J]. Vegetation.1980, 42: 47~ 58.
    [58] 于大炮,唐立娜.长白山北坡植被垂直带群落交错区的定量判定[J].应用生态学报.2004 ,15 (10)∶1760~1764.
    [59] Armand AD. Sharp and gradual mountain timberlines as a result of species interaction. [A]. Hansen A J and di Castri F, eds. L and scape Boundary -Consequence for Biotic Diversity and Ecolog ical Flow[C]. New York: Spring-Verlag Press Inc. , 1992.
    [60] Armand A D. The generation and types of the natural borders[J]. Izvestija V sesojuznogo Geograf icheskogo Obschestva. 1955,87(3):26.
    [61] 常禹,布仁仓.长白山北坡苔原/岳桦景观边界的定量检测[J].地理科学.2003,23(4):477-482.
    [62] Li H . Spatial patern analysis in plant ecology [J].Forest Science. 2001,47 :11.
    [63] Schlesinger W.H,Raikes J A ,Hartley A E,et al. On the spatial patern of soil nutrients in desert ecosystems[J]. Ecology, 1996. 7:364-374.
    [64] 尤文忠,曾德慧,刘明国等.黄土丘陵区林草景观边界雨后土壤水分空间变异规律.应用生态学报.2005,16(9):1 591-1596.
    [65] 常禹,布仁仓.长白山森林景观边界动态变化研究[J].应用生态学报,2004,15(1):15-20.
    [66] 吕辉红,王文杰.晋陕蒙接壤区典型生态过滤带景观变化遥感研究[J].,环境科学研究.2001,14(6)-50-53.
    [67] 任国玉,全新世.东北平原森林—草原生态过渡带的迁移[J].生态学报,1998,18(1):33-37.
    [68] Zhen H.and Kong N.N.Landscape pattern analysis based on boundary characteristics[J].Chin J Appl Ecol.2002,13(1):81~86.
    [69] Dyer J.M.and Baird P.R.Wind disturbance in remnant forest stands along the prairie.forest ecotone,Minnesota,USA[J].Plant Eco1.,1997,129(2):121~134.
    [70] Peters DPC . Plant species dominance at a grassland-shrubland ecotone : an individua1-based gap dynamics model of herbaceous and woody species [J].Eco1.Mode1.2002,152.5~32.
    [71] 王健峰,雷瑞德.生态交错带研究进展[J].西北林学院学报. 2002,17(4): 24-28.
    [72] 王玉辉,周广胜.内蒙古地区羊草草原植被对温度变化的动态响应[J].植物生态学报.2004,28(4):507-514.
    [73] 刘钦普,林振山.气候变暖与荒漠-草原过渡带植物动态响应灰色分析——以美国新墨西哥州 Sevilleta 生态过渡带为例[J].生态学杂志.2005:24(7):756-762.
    [74] 谢海生,赵雨兴.鄂尔多斯高原生态过渡带气候特殊性和气候植物生长指数与畜牧业生产动态分析[J].生态学报.1994:14(4):355-365.
    [75] Odum E P. Fundamantals of ecology[M]. Pennysyvania: Saunders Company, 1971.
    [76] Decasenace J.L, J P Peltto, J Protomastro. Edge-Interior differences in vegetations structure and composition in a chaco sem-arid forest[J]. Argentina. Ecology Manage. 1995, 72(1): 61-69
    [77] Brothers T.S. Fragmentation and edge effects in central Indiana old-growth forests[J]. Nature.1993, 13(4): 268-275.
    [78] Harrison S. How namral habitat patchiness effects the distribution of diversity in California Serpentin Chaparral[J]. Ecology. 1997, 78(6): 1898
    [79] 黄世能,王伯荪,李意德.海南岛尖峰岭次生热带山地雨林的边缘效应[J].林业科学研究.2004,17(6):693~699.
    [80] Weathers K. ,Cadenasso M.L., Picket STA. Forest edges as nutrient and pollutant concentrators :Potential synergisms between fragmentation ,forest canopies ,and the atmosphere[J]. Conservation Biology . 2001,15:1506-1514.
    [81] 陈利顶,徐建英,傅伯杰等.斑块边缘效应的定量评价及其生态学意义[J].生态学报.2004,(24):9:1827-1832.
    [82] 单长卷,梁宗锁,郝文芳等.黄土高原不同立地条件下刺槐生长与水分关系研究[J].西北林学院学报.2004,19(2):9-14.
    [83] 韩蕊莲,侯庆春.延安试区刺槐林地在不同立地条件下土壤水分变化规律[J]. 西北林学院学报.2003,18(1):74-76.
    [84] 姚军,吴发启.黄土高原南部刺槐林地的土壤水分变化规律研究[J].西北林学院学报.2007,22(1):47-50.
    [85] 魏天兴,余新晓,朱金兆等.黄土区防护林主要造林树种水分供需关系研究[J].应用生态学报.2001,12(2):185—189.
    [86] 李洪建,王孟本,陈良富等.刺槐林水分生态研究[J].植物生态学报.1996,20(2):151—158.
    [87] 李洪建.刺槐林地土壤水分的周年变化特征[J].土壤侵蚀与水土保持学报.1999,5(6):6—1O
    [88] 李凯荣 赵晓光.刺槐人工林地土壤水分下渗研究[J].西北林学院学报.1998,13(2): 26-29.
    [89] 单长卷.刺槐根系对深层土壤水分的影响[J].应用生态学报.2006,17(5):765-768.
    [90] 张社奇,王国栋, 刘建军等.黄土高原刺槐林地土壤水分物理性质研究[J].西北林学院学报.2004,19(3):11-14.
    [91] 王百田,郑培龙.黄土半干旱区不同土壤水分条件下刺槐蒸腾速率的研究[J].水土保持学报.2006,20(2):122-125.
    [92] 杨建伟,梁宗锁,韩蕊莲.不同土壤水分状况对刺槐的生长及水分利用特征的影响[J].林业科学.2004,40(5):93-98.
    [93] 许明祥,刘国彬.黄土丘陵区刺槐人工林土壤养分特征及演变[J].植物营养与肥料学报 .2004,10(1):40-46.
    [94] 刘世海,余新晓.京北山区刺槐林主要养分元素积累与分配的研究[J].北京林业大学学报.2003,25(6):20-25.
    [95] 刘增文,李雅素.刺槐人工林养分利用效率生态学报[J].2003,23(3):444-449.
    [96] 胡延杰,翟明普.杨树刺槐混交林及纯林土壤微生物数量及活性与土壤养分转化关系的研究[J].土壤.2002,34(1):42-46,50.
    [97] 王如松,马世骏.边缘效应及其在经济生态学中的应用[J].生态学杂志.1985,2:38-42.
    [98] 王玉朝,赵成义.绿洲—荒漠生态脆弱带的研究.干旱区资源与环境.2001,15(2):25-31.
    [99] 王庆锁等.生态交错带与生态流[J].生态学杂志.1997,16(6):52-58.
    [100] 王庆锁等.生态交错带与生物多样性[J].生态学杂志.1997,5(2):126-131.
    [101] 罗伟祥.黄土高原渭北生态经济型防护林体系建设模式研究[M].中国林业出版社.1995:1-2.
    [102] 陕西省永寿县农业资源调查和农业区划报告.内部资料.永寿县农业区划委员会.1984:29-95.
    [103] 尤文忠.黄土高原坡地农林复合系统景观边界土壤特征的研究——以陕西省永寿地区为例[D]. 沈阳:沈阳农业大学,2006.
    [104] 晋瑜.克拉玛依农业综合开发区外围荒漠植物群落分布及其物种多样性土壤环境解释[D].乌鲁木齐:新疆农业大学,2005.
    [105] Greig-Smith P. Quantitative Plant Ecology[M]. London:Butterworth Scientific Publications, 1957.
    [106] Sukachev V.N. Vegetation communities: Introduction into Phytosociology[A]. Sukachev V N. Izbrannyje Trudy [C]. Nauka : Leningrad, 1975. 42~93
    [107] 毕润成,杨焕根,朱新军.山西霍山落叶阔叶林边缘效应的研究[J].西北植物学报.2004,24(8):1441—1447.
    [108] Walter H.1979.Vegetation and climate zone.4th ed.Stuttgart:Eugen Ulmer-Verlag.
    [109] 金森,周晓峰,国庆喜.中国寒温带森林与温带森林之间过渡边缘的检测[J]. 植物生态学报.2002,26(5):561~567.
    [110] 王迪海,赵忠,薛文鹏等.水分生态环境对刺槐细根垂直分布的影响[J].水土保持研究. 2005,12(5):200-202.
    [111] 单长卷,梁宗锁.黄土高原刺槐人工林根系分布与土壤水分的关系[J].中南林学院学报.2006,26(1):19-21,40.
    [112] 陈洪松,邵明安,王克林.黄土区荒草地和裸地土壤水分的循环特征[J].应用生态学报.2005,16(10):1853~1857.
    [113] 沈思源.土壤空间变异研究中地统计学的应}及其展望[J].土壤学进展.l989,17(3):11—25.
    [114] 郝长红. 沈阳福陵古松根区土壤养分状况及理化性质的研究[D]. 沈阳:沈阳农业大学,2006.
    [115] 刘全友,童依平.北方农牧交错带土地利用类型对土壤养分分布的影响[J].应用生态学报.2005.16(10 ): 1849 一 1852
    [116] 王海明,陈治谏,李贤伟等.不同林草复合经营模式矿质营养元素相互关系的研究[J].水土保持学报.2005,19(4):76-79.
    [117] 王长庭, 龙瑞军,曹广民等.三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素[J].植物生态学报.2006:30(3):441-449.
    [118] 王汉杰,李宪文,史学正等.2003 不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报.2003,17(2):44-50.
    [119] 杨丁丁.四川省天全县两种退耕还林模式土壤养分动态研究[D].成都:四川农业大学.2005.
    [120] 高俊琴,欧阳华,白军红等.若尔盖高寒湿地土壤活性有机碳垂直分布特征[J].水土保持学报[J].2006,20(1):76-79,86.
    [121] 吕国红,周莉,赵先丽等.芦苇湿地土壤有机碳和 TN 含量的垂直分布特征[J].应用生态学报.2006,17(3):384-389.
    [122] 洪瑜,方晰,田大伦.湘中丘陵区不同土地利用方式土壤碳氮含量的特征[J].中南林学院学报.2006,26(6):9-16.
    [123] Delgado J A. mosier A R,Valentime D W,eta1.Longterm 15N studies in a catena of the short grass steppe[J].Biobechemisytry,1996,32:4l-52.
    [124] 荣兴民,王朗国家级自然保护区森林土壤养分与微生物的分异特征研究[D]. 重庆:西南农业大学.2004.
    [125] 陈立新,杨承栋.落叶松人工林土壤磷形态、磷酸酶活性演变与林木生长关系的研究[J].林业科学.2004,40(3):12-18.
    [126] Pujos A,Morard P.Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage[J]. Plant and Soil.1997,189(2):l89—196.
    [127] Jonathan N.E,Fred T D,Malcolm C D.Effect of potassium on drought resistance of Hibiscus rosa—sinensis CV.Leprechaun l:Plant growth,leaf macro—and micronutrient content and root longevity[J].Plant and Soil,2001,229(2):213-224.
    [128] Sarjala T.,Kaunisto S.Potassium nutrition and free polyamines of Betulapendula Roth and Betula pubescens Ehrh[J].Plant and Soil,2002,238(1):141— 149.
    [129] 刘荣乐,金继运,吴荣贵等.我国北方土壤作物系统内钾素循环特征及秸秆还田与施钾肥的影响[J].植物营养与肥料学报.2000.6(2):123—132.
    [130] Shivaprasad C.R,Niranjana K V,Dhanorkar B A,et a1.Available potassium statusof major soils of Karnataka[J].Journal of Potassium Research.1995,11(3— 4):219—227.
    [131] Brian K,Rick L,Dan S L.Soil phosphorus and potassium mapping using a spatial correlation model incorporating terrain slope gradient[J].Precision Agriculture.2002,3(4):407—417.
    [132] 傅华,裴世芳,张洪荣.贺兰山西坡不同海拔梯度草地土壤氮特征[J].草业学报.2005:14(6):50-56.
    [133] 张利田,卜庆杰,杨桂华等.环境科学领域学术论文中常用数理统计方法的正确使用问题(二)—相关分析中相关系数的选择.环境科学学报.2007,27(1):171~173.
    [134] 侯庆春,韩蕊莲,李宏平. 关于黄土丘陵典型地区植被建设中有关问题的研究 I、土壤水分状况及植被建设区划[J].水土保持研究.2000,7(2):102-110.
    [135] 张乃莉. 松嫩草甸主要植物群落土壤磷素研究[D].长春:东北师范大学,2005
    [136] 林长存.松嫩平原西部农田与林地生产力耦合作用的初步研究[D]. 长春:东北师范大学,2004.
    [137] 刘艳红.东北东部森林植物多样性及其影响因素研究[D].哈尔滨:东北林业大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700