用户名: 密码: 验证码:
黄土高原农林复合系统景观边界土壤养分、微生物和酶活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在陕西省咸阳市永寿县马坊林场,采用标准地调查的方法,对黄土高原农林复合系统四种景观界面(刺槐林地—草地,刺槐林地—农田,刺槐林—草地—刺槐林,刺槐林带—农田)土壤的养分(有机质、氮、磷、钾和pH)含量、微生物(细菌、真菌和放线菌)数量和酶活性(蔗糖酶、脲酶、过氧化氢酶)进行测定。通过分析比较其养分、微生物和酶活性的分布特征,揭示黄土高原区坡地典型农林景观格局一刺槐林景观边界上各种生物因子、非生物因子的影响机制,阐明小尺度范围内林地与农田、林地与草地互相作用的强度与范围,为我国西部土地优化利用模式选择、退耕还林还草工程建设、构建西部黄土区森林复合景观的优化配置模式提供科学依据。研究的主要结论如下:
     1.土壤养分
     1.1林-草界面及相邻区域土壤养分分布特征:OM值在0~40 cm土层的平均含量为草地>边缘>林地;AN则为边缘>林地>草地;TN为林地>草地>边缘;TP、TK和pH为边缘>草地>林地,差异不明显;AP和AK为草地>林地>边缘,差异也不明显。林地系统、草地系统内的OM、AP、AK含量在生长季末期(9月)含量相对最高,在生长季或生长季前期(6月或4月)含量较低;而AN含量在生长季前期(4月)含量最高。
     1.2林-农界面及相邻区域土壤养分分布特征:OM、TN、AK和pH在0~40 cm土层的平均含量为边缘>林地>农田;AN为林地>边缘>农田;TP为林地>农田>边缘,差异不明显;AP和TK为农田>边缘>林地;差异也不明显。林地系统、农田系统内的OM、TN、AP、TP在生长季(6月)含量相对最高,而在生长季前期(4月)含量最低;TK、AK在生长季末期(9月)含量最高,在生长季或生长季前期(6月或4月)含量较低。
     1.3林-草-林界面及相邻区域土壤养分分布特征:OM、TN和AK在0~40 cm土层的平均含量为林地>草地,AN、TP、AP和TK为草地>林地,差异也都不明显;pH值为林地>草地。
     1.4林带-农界面及相邻区域土壤养分分布特征:OM、TN、AN和AK值在0~40 cm土层的平均含量为边缘>林地>农田;TP为农田>林地>边缘,AP为农田>边缘>林地,差异不明显;TK为林地>农田>边缘,pH为边缘>农田>林地,差异不明显。
     1.5不同类型农、林、草边界土壤养分沿林地—边缘—农田、林地—边缘—草地水平分布特征表现为呈“V”、倒“V”或近线性;沿样带梯度分布特征表现为“V”“W”、波浪状等。
     2.土壤微生物
     2.1四种景观界面下土壤中各种微生物数量存在明显差异,在总体数量上均以细菌为主,放线菌次之,真菌较少。林地微生物总数量0~20 cm土层的远大于20~40 cm土层,而农田20~40 cm土层的远多于0~20 cm土层的。细菌在林地和草地上都是0~20 cm土层大于20~40 cm土层。在农田上是20~40 cm土层的远多于0~20 cm土层的。
     2.2真菌在林地和农田上是0~20 cm土层的小于20~40 cm土层,在草地上不同景观界面数量分布不一样,在林草景观界面的草地上是0~20 cm土层的小于20~40 cm土层,但在林草林景观界面的草地上是0~20 cm土层的大于20~40 cm土层,这是因为0~20 cm土层的pH小于20~40 cm土层,真菌在酸性环境条件下生长旺盛。
     2.3放线菌在林草界面的林地中是0~20 cm土层的大于20~40 cm土层,在其它3中景观界面的林地中是0~20 cm土层的小于20~40 cm土层;在草地上是0~20 cm土层的大于20~40 cm土层,农田中林农界面上是0~20 cm土层的小于20~40 cm土层,林带农田界面是0~20 cm土层的大于20~40 cm土层。
     3.土壤酶活性
     3.1在垂直层次上,三种酶的活性都是0~20 cm土层高于20~40 cm土层;蔗糖酶活性在土层间差异性较小,脲酶和过氧化氢酶活性在土层间差异性较大。
     3.2在景观界面上,蔗糖酶活性最强,脲酶和过氧化氢酶活性较弱。蔗糖酶活性在景观界面上林地>草地>农田;脲酶活性在景观界面上农田>林地>草地;过氧化氢酶活性在景观界面上变化不大,在林地、农田、草地活性基本一样。
     4.土壤肥力相关性
     4.1土壤细菌、真菌、放线菌对土壤pH值成相关性,除了在林草景观界面呈正相关外,在其它三个景观界面呈负相关。对其他养分指标相关性不显著。
     4.2土壤蔗糖酶、脲酶和过氧化氢酶与土壤pH值均呈负相关关系,对有机质、全氮、速效钾呈显著或极显著相关性。
     通过研究黄土高原不同土地类型上土壤养分、微生物和酶活性变化特征,给土地优化利用模式提供参考,对西部退耕还林还草工程实施以来的生态效益以及土壤质量的研究提供参考依据,为复合景观模式配置研究提供参考依据。
Based on determination of soil nutrients(organic matter,N,P,K and pH) and soil microoganisms(bacteria, fungi and actinomyces)and activity of the enzyme(invertase,urease, catalase)in four kinds of agroforestry landscape boundaries(forest-grassland,forest-farmland ,forest-grassland-forest and forest belt-farmland boundaries) in gully region of loess plateau,comparative analysis of siol nutrients, microoganisms and enzyme activity statistics were carried out.
     The main conclusions are as follows:
     1.Soil nutrient
     1.1 The soil nutrient distribution characters of forest-grassland boundary and neighboring region were different.The organic matter of average level in 0-40 cm soil layer was grassland > boundary > forestland,
     Available N was boundary > forestland > grassland ,Total N was forestland > grassland > boundary,Total P,K and pH were boundary > grassland > forestland,the difference was not significant.Available P and Available K were grassland > forestland > boundary,the difference was not significant.The content of organic matter,available P,available K of forestlsnd and grassland were higher in the late growing season (September),than that in early growing season(June or April),But the content of available N was the highest in the early growing season(April).
     1.2 The soil nutrient distribution characters of forest-grassland boundary and neighboring region were different.The organic matter,Total N,Total K and pH of average level in 0-40 cm soil layer were boundary > forestland > farmland,Available N was forestland > boundary > farmland,Total P was forestland > farmland > boundary,the difference was not significant.Available K and Available K were farmland > boundary > forestland,the difference was not significant.
     The amount of organic matter,total N,available P,and total P of forestlsnd and farmland were highest in the growing season (June), in early growing season(April)were the lowest.The amount of total K and available K were the highest in the late growing season(Septemper),in early growing season or growing season(June or April)were the lowest.
     1.3 The soil nutrient distribution characters of forest-grassland-forest boundary and neighboring region were different.The organic matter,Total N,Available K of average level in 0-40 cm soil layer were forestland > grassland,the difference was not significant.Available N,Total P, Available P and Total K were grassland > forestland,the difference was not significant.pH was forestland > grassland.
     1.4 The soil nutrient distribution characters of forest belt-grassland boundary and neighboring region were different.The organic matter,Total N,Available N and Available K of average level in 0-40 cm soil layer were boundary > farmland > forestland, Total P farmland > forestland > boundary,the difference was not significant.Available P was farmland > boundary > forestland,Total K was forestland > farmland > boundary,pH was boundary > farmland > forestland,the difference was not significant.
     1.5 Horizontal distributions of soil nutrient across different boundaries showed“V”shape,inverse“V”shape and line shape along patch gradients of farmland (grassland)-edge-forestland and showed“V”shape,“W”shape and wave shape along belt transect gradients distribution.
     2. Soil microoganism
     2.1 Each kind of microoganism quantity exists obvious difference under four kinds of agroforestry landscape boundaries in soil.In the overall quantity,the bacteria was the highest,the fungi took second place,and the actinomyces was the lowest.The amount of microorganism in 0-20 cm soil layer of forestland was significantly much more than that of 20-40 cm.But the amount of microorganism in 20-40 cm soil layer of farmland was significantly much more than that of 0-20 cm.
     The amount of bacteria in 0-20 cm soil layer of forestland and grassland was more than that of 20-40 cm.But the amount of bacteria in 20-40 cm soil layer of farmland was significantly much more than that of 0-20 cm.
     2.2 The amount of fungi in 0-20 cm soil layer of forestland and farmland was less than that of 20-40 cm.The amount of fungi in different landscape boundaries was different in the grassland,the fungi in 0-20 cm soil layer of forest-grassland boundary was less than that of 20-40 cm,but the fungi in 0-20 cm soil layer of forest-grass-forestland boundary was more than that of 20-40 cm.This is because pH of 0-20 cm soil layer is smaller than that of 20-40cm, the fungus grows exuberantly under the acidic environmental condition.
     2.3 The amount of actinomyces in 0-20 cm soil layer of forestland in forest-grassland boundary was more than that of 20-40 cm,but 0-20 cm soil layer was less than 20-40 cm in other boundaries.In grassland were 0-20 cm soil layer more than 20-40 cm.In farmland ,The amount of actinomyces in 0-20 cm soil layer of forest-farmland boundary was less than that of 20-40 cm,the forest belt-farmland boundary was just opposite.
     3. Soil enzyme activity
     3.1 In vertical level,The activity of invertase,urease and catalase in 0-20 cm soil layer are more than that of 20-40 cm,The activity of invertase at different level showed small difference,But the urease and catalase showed big difference.
     3.2 On the landscape boundaries,The activity of invertase was the highest,the urease and catalase were weak.The activity of invertase in landscape boundary was forestland > grassland > farmland ,the urease was farmland > forestland > grassland,The activity of catalase showed little change, There was almost no difference among forestland,farmland and grassland.
     4. Correlation analysis of soil fertility
     4.1 The bacteria,fungi and actinomyces have the positive correlation with pH in forest-grassland boundary,But have the negative correlation in other landscape boundary.There was correlation between pH with other soil Nutrients, but the correlation was not significant.
     4.2 The activity of invertase,urease,catalase showed a negative correlation with pH,and a significant correlation with the organic matter,the total N,Available K.
引文
[1] 闻大中.1989.农林业系统的清查及调查设计:农林业系统研究进展之二生态学进展[M].6(1): 7-11
    [2] 赵兴征,卢剑波.2004.农林系统研究进展[J].生态学杂志,23(2):127-132
    [3] Lundgren B.O.1982.Introduction Agroforestry Systems[M].1:3-61
    [4] 朱首军.2001.渭北早源农林复合系统水量平衡要素变化规律的试验研究[D].杨凌:西北农林科技大学博士学位论文
    [5] 蒋建平,1990.农林业系统工程与农桐间作的结构模式世界林业研究[J].3(1):32-38
    [6] 孟平,张劲松,樊巍.2003.中国复合农林业研究[J].北京:中国林业出版社
    [7] 李文华,赖世登.1994 中国农林复合经营[J].北京:中国科学技术出版社,279-286
    [8] King K F S.1989.The history of agroforestry.In:N air,P .K .R .(eds.)Agroforestry Systems in Tropics.Kluwer Academic Publishers[J],Netherlands.pp3-11.
    [9] 李杰,彭方仁,黄宝龙.1999.农林复合系统种群互作研究进展.世界林业研究[J].12(5): 10-14
    [10] 卢琦,赵体顺,师永全.1999.农用林业系统仿真的理论与方法[M].北京:中国环境科学出版社
    [11] Nair P K R.1989.Agroforestry defined.Agroforestry Systems in Tropics.Kluwer Academic Publishers,Netherlands.pp13-20
    [12] 冯宗炜.1992.农林业系统结构和功能[M].北京:中国科学技术出版社
    [13] 樊巍,孟平,李芳东.2001.河南平原复合农林业[J].郑州:黄河水利出版社
    [14] 朱清科,沈应柏,朱金兆.1999.黄土区农林复合系统分类体系研究[J].北京林业大学学报,21(3):36-40
    [15] Cadenasso ML,Picket STA,WeatherKC,JoneCG 2003.A framework for a theory of ecological boundaries.BioScience,53:750-758
    [16] Wiens J.A.1989.Spatial scalingin ecology.Funct.Ecol.3:385-397
    [17] 高洪文.1994.生态交错带理论研究进展[J].生态学杂志,13(1):32-38
    [18] 王庆锁,王襄平,罗菊春,等.1997.生态交错带与生物多样性[J].生物多样性,5(2):126-131
    [19] Clements,F.E.1905.Research methods in ecology.University Publishing Company,Lincoin, Nebraska,USA
    [20] Holland,M.M.1988.SCOPE/MAB technical consultations on landscape boundaries: report of a SCOPE/MAB work shop on ecotones[J].Biology International,Special Issue 17:47-106
    [21] 肖笃宁,李秀珍,高峻,等.2003.景观生态学[M].北京:科学出版社
    [22] Strayer,D.L.,Power,M.E.,Fagan,W.F.,et al.2003.A classification of ecological boundaries[J]. BioScience, 53(8):723-729
    [23] Fagan,W.F.,Fortin,M-J.,Soykan,C.2003.Integrating edge detection and dynamic modeling in quantitative analyses of ecological boundaries[J]. BioScience,53:730-738
    [24] Fortin,M-J.,Drapeau,P.,Jacquez,G.M.1996.Quantification of the spatial co-occurrences of ecological boundaries[J].Oikos,77:51-60
    [25] Turner,M.G.and R.H.Gardner.1991.Quantitative methods in landscape ecology[J],New York:Springer-Verlag,216-218
    [26] 常禹.2002.长白山森林景观边界的定量判定及其动态变化[D].中国科学院博士学位论文. 沈阳:中国科学院沈阳应用生态研究所
    [27] 熊文愈,王汉杰.1986.论生态界面系统[J].南京林业大学学报,9(2):1-9
    [28] 王汉杰.1990.生态界面理论研究的最新进展[J].南京林业大学学报,(15):6-10
    [29] 韩士杰.1996.叶面界面生态学[J].哈尔滨:东北林业大学出版社
    [30] 肖笃宁,布仁仓,李秀珍.1997.生态空间理论与景观异质性[J].生态学报,17(5): 453-461
    [31] Hansen ed AJ .1992.Landscape boundaries:consequences for biotic diversity and ecological flows-Springer-verlag.NewYork
    [32] 吕一河,傅伯杰.2001.生态学中的尺度及尺度转换方法[J].生态学报,21(12): 2096-2105
    [33] 王健峰,雷瑞德.2002 生态交错带研究进展[J].西北林学院学报,17(4):24-28
    [34] Johnston V.R.1947.Breeding birds of the forest edge in east central Illinois.Condor,49:45-53
    [35] Aplet,G.H.,Vitousek,P.M.1994.An age-altitude matrix analysis of Hawaiian rain-forest succession.Journal of Ecology,82:137-147
    [36] 李丽光.2005.崛江土游农林景观边界生态效应分析[D].中国科学院博士学位论文,沈阳:中国科学院沈阳应用生态研究所
    [37] 石培礼,李文华.2002.生态交错带的定量判定[J].生态学报,22(4):586-592
    [38] Zhang,X.S.1994.Terrestrial ecosystem research in global change program. In:Annual Report of Quantitative Vegetation Ecological Lab.Institute of Batany[J],Academia Sinica,41-54
    [39] Whittaker R H.1965.Vegetation of Santa Catalina Mountains,Arizona:a gradient analysis of south slope[J].Ecology,46:429-452
    [40] Gillison AN and Brewer K R W .1985.The use of gradient directed transects or gradsects on natural resource surveys.Journal of Environmental Management[J],20: 103-127
    [41] Johnston,C.A.,Partor,J.,Pinay,G.1992.Quantitative methods for studying landscape boundaries In:Hansen,A.J.&dictatrix,F.eds.Landscape boundary-consequence for biotic diversity and ecological flow[J].NewYork: Springer-Verlag Press Inc.,107-128
    [42] Cadenasso M L,Pickett STA.2000.Linking forest edge structure to edge function:M ediation of herbivore damage[J].Journal of Ecology,88:31-44
    [43] Weathers K,Cadenasso ML,Picke STA.2001.Forest edges as nutrient and pollutant concentrators Potential synergisms between fragmentation,forest canopies,and the atmosphere.Conservation Biology[J] ,15:1506-1514
    [44] Ludwing,J.A.and Cornelius,J.M.1987.Locating discontinuities along ecological gradients. Ecology, 68(2):448-450
    [45] 聂道平.森林生态系统营养元素的生物循环[J].林业科学研究,1991,4 (4):435-440
    [46] 姚迎久.樟树人工林的生物量和养分积累与分布[D].中南林学院硕士论文,2003
    [47] 刘增文,潘开文.森林养分研究国际动态[J].西北林学院学报,2004,19(3):183-187
    [48] 李飞,陈永瑞.人工马尾松阔叶混交林矿质营养循环的研究[J].林业科学,1999,35(3):16-21
    [49] 姚延傅.京西山区油松侧柏人工混交林生物量及营养元素循环的研究[J].北京林业大学学报,1989,11(2):38-46
    [50] 陈际伸.湿地松鹅掌楸混交林营养元素生物循环的研究[J].江西林业科技.2001,(2):1-3
    [51] 杨玉盛.陈光水,谢娜升等.杉木-观光木混交林群落 N、P 养分循环的研究[J].植物生态学报,2002,26(4):473-480
    [52] 谢锦升,蔡丽平,黄荣珍等.水土保持林乔灌混交林 N, P 养分循环的研究[J].南京林业大学学报(自然科学版),2002,26(5):27-31
    [53] Huggett R J. Soil chronosequences, soil development, and soil evolution: a critical review [J].Catena,1998,32:155-172
    [54] 刘苑秋.亚热带红壤区生态退化及生态恢复研究综述[J].南京林业大学学报(自然科学版),2000,24(增):53-58
    [55] Pausas J G.Liter decomposition in Pinus sylvestris forests of the dastern Pytenees Jorunal of Vegetaion Science[J].1997,8(5):643-650
    [56] 赵其国,王明珠,何园球.我国热带亚热带森林凋落物及其对土壤的影响[J].土壤,1990:8-15
    [57] Rien Aerts Climate,leaf litter chemistry and leaf litter decompositon in terrstrial ecosystems:a triangular relationship[J].Oikos1997,439-449
    [58] Corteaux, M.M., Bottner,P.,Berg,B.,Litter decomposition, climate and litter quality[J].Trend Ecol.Evo1.1995,10:63-66
    [59] K.P.Singh,P.K.Singh.S.K.tripathi Litterfall.Litter decomposition and mutrient release patterns in four mative tree species raised on coal mine spoil at Singrauli[J],India Biol Fertil Soils,1999,29:371-378
    [60] Jlio N.C.Louzada,Jose H.Schoereder, Paulo De Marco Jr.Litter decomposition in semideciduous forest and Eucalyptus spp.Crop in Brazil:a comparison.Forest Ecology and Management,1997,94:31-36
    [61] 卢俊培,刘其汉.海南岛尖峰岭热带雨林落叶分解过程的研究[J].林业科学研究,1989,2 (1):25-33
    [62] 胡肄慧,陈灵芝,孔繁志等.两种中国特有树种的枯叶分解速率[J].植物生态学与地植物学学报,1986,10(1):35-43
    [63] 陈灵芝,D. K.林德莱,英国 Hampsfell.蕨菜草地生态系统中枯叶分解作用的研究[J].植物生态学与地植物学丛刊 1982, 6(4):302-313)
    [64] Olson,J.S.1963.Energy storage and the balance of produces and decomposers in ecolotyical systems.Ecology,44:322-331
    [65] 马志贵,王金锡.大熊猫栖息环境的森林凋落物动态研究[J].植物生态学与地植物学学报,1993,17(2):155-163
    [66] Barry R.Taylor, Dennis Parkinson, and William F.,J. Parsons Nitrogen and lignin content as predictors of litter decay rates:a microcosm test.Ecology,1989,70(1)
    [67] 胡钟慧,陈灵芝,陈清朗等.几种树木枯叶分解速率的试验研究[J].植物生态学与地植物学学报,1987,11(2):124-132
    [68] 莫江明,布朗,孔国辉等.鼎湖山生物圈保护区马尾松林凋落物的分解及其背养动态研究[J].植物生态学报,1996,20(6):534-542
    [69] 田大伦,朱小年,蔡宝玉等.杉木人工林生态系统凋落物的研究[J].凋落物的养分含量及分解速率.中南林学院学报,1989,9(增)45-55
    [70] 卢俊培,刘其汉.海南岛尖峰岭热带林凋落物研究初报[J].植物生态学报,1988,2:65-70
    [71] C H E Stark,L M Condron.A Stewart.Small-scalespatial variability of selected soil biolonical properties [J].Soil Iiiolony & biochemistry,2004,36:601-608
    [72] Corre M D,Schnabel,R Stout.Spatial and seasonal variation of moss nitronen transformations and microbial biomass in a northeastern L S nrassland [J].Soil liiolonv & hiochemistrv, 2002,34:445-457
    [73] Sovik A K,Aanaard.Spatial variability of a solid porous framework with renard to chemical and physical properties [J].Geoderma,2003,113:47-76
    [74] Franklin R B, Blum L K, Amador J A,.A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments[J].FEMS Microbiolony Ecolony,2002, 42: 71 一 80.
    [75] Stein A, IJttema C H.An overview of spatial sampling procedures and experimental desinn of spatial studies for ecosystem comparisons [J].Anriculture ecosystems and Environment,2003,94:31-47
    [76] 杨玉玲,田长彦,盛建东等.灌淤土壤有机质、全量氮磷钾空间变异性初探[J].干旱地区农业研究,2002,(3):25-30
    [77] 张庆利,史学正,黄标等.南京城郊蔬菜基地土壤有效态铅、锌、铜和镉的空间分异及其驱动因子研究[J].土壤,2005,37(1):41-47
    [78] A Gallardo.Spatial variability of soil properties in a floodplain forest in northwest Spain [J].ecosystems,2003,6:564-576
    [79] Fernando T Maestre,Jordi Corona.Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe [J].Applied Soil Ecolony,2003,3:199-209
    [80] Ae N,A rihara J,O kada K,et al.Phosphorus uptake by pineonpea and its role in croppinn systems of the Indian subcontinents [J].Science,1990,248:477-480
    [81] Shen H Wann X C,Shi W M,et al.Isolation and identificacion of specific root exudates in elephant grass in response to phosphorus deficiency[J].Journal of Plant Nutrition,2001,24(7):1117-1130
    [82] Shen H Linaba A,Yamanuchi M,et al.Effect of K and abscisic acid on the efflux of cit rate from soybean roots [J].Journal of Experimental Botany,2004,55:ll3-171
    [83] Stenner,E Priesack,F Beese.Spatial variation of nitrate-N and related soil properties at the plot-scale [J].Geoderma,2002,105:259-275
    [84] N V Prasolova,Z H Xu,P C Saffinna,et.al.Spatial-temporal variability of soil moisture,nitronen availa-bility indices and other chemical properties pine(Araucaria cunninnhamii) plantations of subtropical Australia [J].Forest Ecolony and Managment,2000,136(1):741-763
    [85] 李录久,孙义祥,戚士胜等.江淮地区上壤养分空间变异性研究[[J].安徽农业科学,2004,32(5):924-925
    [86] Bo Sun,Shennlu Zhou,Qinuo Zhao.Evaluation of spatial and temporal channel of soil quality based ongeostatistical analysis in the hill renion of subtropical China [J].Geoderma,2003,115:85-99
    [87] Ettema C H,Wardle D A.Spatial Trends in Ecolony and Evolution,soil ecolony [J].2002,17:177 -183
    [88] 曹慧,杨浩,赵其国等.太湖流域丘陵地区上壤养分的空间变异[J].土壤,2002( 4): 201-205.)
    [89] 姚丽贤,周修冲,蔡永发等.香蕉园上壤养分空间变异性及适宜样本容量研究[J].土壤通报,2005(4)1l9-171
    [90] 刘冬碧,余常兵,熊桂石等.大比例尺度下土壤的养分特征及其空间变异性研究[J].华中农业大学学报,2004,23(5):524-527
    [91] 赵良菊,肖洪浪,郭天文等.甘肃灌漠土土壤肥力的空间变异性典型研究[J].中国沙漠,2004, 24(4):451-455
    [92] K Ritz,J W McNicol,N Nunan.Spatial structure in soil chemical and micro-biolonical properties in an upland grassland [J].FEMS Microbiolony Ecolony, 2004,49:191-205
    [93] L-Soo Klm,David Iv1.Weller,James Cook R Population Dynamics of Bacilus SPL324-92R12 AND Psedomonas Fluorescens 2-7RN10 in the Rhizosphere of Wheat [J]. Phytopathology,1997,87(5):559 -564
    [94] PETROVIC V.Fusarium spp.As the pathology of wheat root and foot rot.The frequency of Fusarium spp.as the pathogens of wheat root and foot rot under the influencee of monoculture and fertileization [J].Acta Biologica lugoslavica, B,1997,14(2):143-155
    [95] SCHWIEGER ETEBBE C CA new approach to utlize PCR-single strand-conformation polymorphism Microbiol.1998 for 16s Rma based microbial community analysis[J].Appl64:4870- 4876
    [96] Muwlycmnh E.H地区性规律和有关土壤微生物学说.土壤学译报,1956,4(1):19-29
    [97] Water H.Brookes DE.Fisher D. eds.1985. Partitioning in Aqueous Two-Phase System. New York:Academic Press Inc
    [98] Brow M.E.Seed and root bacterization.Annual Review of phytopathology,1974, 12:311-33
    [99] Holbern WE.Appl.Environ.microbia1,1988(54):703-711
    [100] Walter H.JohanssonGBrookes D E,1991.Partitoning in aqueous two-phase systems:Recent results.Analy Biochem,1977:1-18
    [101] BLTILER F C.Root and foot disease of wheat [J].Aust Sci Bull,1961,77:98
    [102] 陈华葵.土壤微生物学发展简史[M].上海:上海科学技术出版社,1981,1-9
    [103] 李亚莉.秸秆覆盖全程节水对春小麦土壤微生物数量区系及根病影响的研究[D].甘肃农业大学研究生学位论文,2005
    [104] 关松荫.土壤酶活性影响因子的研究[J].土壤学报.1989,3-25
    [105] 杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报 2002 ,8(5):564-570
    [106] 来航线,武永军,朱铭莪.培肥对土壤酶活性影响的研究[J].浙江大学学报(农业与生命科学版)2001,27,265-268
    [107] 许景伟,王卫东,李成.4 不同类型黑松混交林土壤微生物土壤酶和土壤养分含量的研究[J].山东林业科技 2000,(2):1-6
    [108] 董树亭,刘春生.覆膜栽培玉米的土壤生态效应研究进展[J].山东农业大学学报(自然科学版),1999,30(4):489-492
    [109] 陈会明,冯贵颖,朱铭莪.汞铬砷元素污染土壤的酶监测研究[J].环境科学学报,2000,(20)3:338-343
    [110] 李顺鹏,赵硕伟,刘进军.氯苯、硝基酚对土壤生物活性的影响沈标[J].土壤学报, 1997,34(3)309-314)
    [111] 和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,(9)2:139-142)。
    [112] Rihani M.BottonB.Villemin G.et al Ultrastructural patterns of beech leaf degradation by SPorotrichum Pulverulentum[J].Eur J Soil Biol Biochem, 2001,37:75-84
    [113] Marx M C,Wood M,Jarvis S C.A microplatc fluorimctric assay for the study of enzyme diversity in soils [J].Soil Biol Biochem,2001,33:1633-1640
    [114] Vcpsalaincn M,Kukkoncn S, Vcstbcrg M,et al.Application of soil enzyme activity test kit in a field experiment [J].Soil Biol Biochcm,2001,33:1665-1672
    [115] Berchet V,Boulanger D,Gounot A M.Use of gel electrophoresis for the study of ezymatic activities in cold-adapted bacteri [J] Microbiol Methods,2002, 40:105-110
    [116] Dc Ccsarc F,Garzillo A M V,Buonocorc V,et al.Usc of sonication for measuring acid phosphatasc activity in soil [J].Soil Bio1 Biochcm,2000,32:825-832
    [117] Hcrrcra-Ccrvcra J A,Caballcro-Mcllado J,Lagucrrc G,et al.At least five rhizobial species nodulate Plvaseolu.vulgruis in Spanish soil [J].FEMS Microbiol Ecol,1999,30:87-97
    [118] Kato Y,Asano Y.A new enzymatic method of stereoselective oxidation of raccmic 1,2-indandiols [J].Mol Catal B:Enzymatic,2001,13:27-36
    [119] Mendum T A,Sockett R E,Hirsch P R.The detection of Gramnegative bacterial mRNA from soil by RT-PCR [J].FEMS Micro Lctt,1998,164:369-373
    [120] Szafranski P,Smith C L,Cantor C R. Cloning and analysis of the nas gene encoding Pseudomonas putida DNA primasc [J].Biochim Biophys Acta,1997,1352:243-248
    [121] Carvan M J,Sonntag D M,Cmar C B,et al.Oxidative stress in zebra}sh cells: potential utility of transgenic zebra}sh as a deployable sentinel for site hazard ranking [J].Sci Total Envir,2001,274:183 -196
    [122] Schloter M,Lebuhn M,Heulin T,et al.Ecology and evolution of bacterial microdiversity [J].FEMS Micro Rev,2000,24:647-660
    [123] Hamann C,Hegemann J,Hildebrandt A.Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization [J].FEMS Micro Lett,1999,173:255-2113
    [124] Poly F,Monrozier L J,Bally R.Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil [J].Rcs Microbiol,2001,152:203
    [125] Acosta-Martincz V,Tahatahai M A.Inhihition of arylamidasc activity on soils by toluene [J].Soil Bio1 Biochem,2002,34:229-23722
    [126] Sarkar J M.Formation of C14-cellulase-humic complexes and their stability in soils [J].Soil Biol Biochcm,1981,18:251-254
    [127] Tabatabai M A,Fu M.Extraction of enzymes from soils [A].1n:Stotzky G,Bollag J M.Soil Biochemistry,Vol.7[C].New York:Marccl Dckkcr,1992.197-227
    [128] Thcng B K G,Aislabic J,Frascr R.Bioavailability of phcnanthrcnc intercalated into analkylammonium-montmorillonite clay [J].Soil Biol Biochcm,2001,33:845-848
    [129] Lozzi 1,Calamai L,Fusi P,et al.Interaction of horseradish pcroxidasc with montmorillonitc homoionic to Na+ and Ca2+ effects on enzymatic activity and microbial degradation [J].Soil Biol Biochcm,2001 ,33:1021-1025
    [130] CalamaiL,Lozzi1,Stotzky G, et al.lntcraction of catalasc with montmorillonite homoionic to canons with different hydrophobicity: effect on enzymatic activity and microbial utilization [J] Soil Biol Biochcm,2000,32:815-823
    [131] Rao M A,Violantc A,Gianfrcda L.lntcraction of acid phosphatasc with clays, organic molecules and organo-mineral complexes:kinetics and stability [J].Soil Biol Biochem,2000,32:1007-1014
    [132] Burns R G.Enzyme activity in soil:location and possible role in microbial ecology [J].Soil Biol Biochem,1982,14:423-427
    [133] Busto M D, Pcrcz-Matcos M.extraction of humic-β-glucosidasc fractions from soil [J].Biol Fert Soil,1995,20:77-82
    [134] Rao M A,Gianfreda L.Properties of acid phosphatase-tannic acid complexes formed in the presence of Fe and Mn [J].Soil Biol Biochcm,2000,32:1921-1926
    [135] Debosz K,Rasmussen P H,Pedersen A R.Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils:effects of organic matter input [J].Appl Soil Ecol,1999,13:209-218
    [136] Albiach R, Canet R, Pomanes F, et al. Microbial biomass content and enzymatic activities after the application of organic amendmcnts to a horticultural soil [J].Biorc Tcchnol,2000,75:43-48
    [137] Taylor J P,Wilson 13,Mills M S,et al.Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques [J].Soil Biol Biochem,2002,34:387-401
    [138] Moreno J L,Garcia C,Landi L,et al.The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil [J].Soil Biol Biochem,2001,33:483-489
    [139] Nausch M,Nausch G.Stimulation of peptidase activity in nutrient gradient in the Baltic Sea [J].Siol Biol Biochem,2000,32:1973-1983
    [140] Parthsarathi K,Ranganathan L S.Longevity of microbial and enzyme activity and their influence on NPK content in pressmud vcrmicasts [J]. Eur J Soil Biol,1999, 35(3):107-113
    [141] Ajwa H A,Dell C J,Rice C W.Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization [J]. Soil Biol Biochem,1999,31:769-777
    [142] Fioretto A,Papa S,Sorrentino G,et al.Decomposition of Cistus incrums leaf litter in a Mediterranean maquis ecosystem: mass loss,microbial enzyme activities and nutrient changes [J].Soil Biol Biochcm,2001,33:311-321
    [143] Henriksen T M,Breland T A.Nitrogen availability effects oncarbon minerlization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in sail [J].Soil Bio1 Biochcm,1999,31:1121-1134
    [144] 高世铭.2003.陇中黄土丘陵沟壑区生态环境建设与农业可持续发展研究[J].郑州:黄河水利出版社
    [145] 傅伯杰,陈利顶,邱扬等.2002.黄土丘陵沟壑区土地利用结构与生态过程[J].北京:商务印书馆
    [146] 罗伟祥,杨江峰.2001.黄土高原防护林在生态环境建设和防灾减灾中的作用[J].水土保持研究,8(2):119-123
    [147] 张汉熊,邵明安.2001.黄土高原生态环境建设[J].西安:陕西科学技术出版社
    [148] 韦革宏,冯立孝,罗伟样.1998.“三北”防护林永寿试区土壤类型及改良利用[J].陕西林业科技,4:45-49
    [149] Ca rlosG T et al.1999.A groforestry systeme fectso ns oilch aracteristicso fth eS arapiguire giono fCo sta R ica.Ag ric[J].Ecosys and,73(l):19-28
    [150] 南京农业大学主编.土壤农化分析[M].农业出版社,1986,33-89.
    [151] Hernandez T,Garcia C,Reinhardt I.Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils[J]. Biology and Fertility of Soils,1997,25:109-116
    [152] Doran,J W and Parkin T B. Defining and assessing soil quality.In:Doran,J W Coleman D C,Bezdicek D F and Stewart B and Defiaiag Soil Qualitry for a Substainable Enviroament. Madison[J], WI,USA:SSSA Special Publication Number 35,1994.3-21
    [153] Kandeler E,Tscaierko D,Bardgett R D,et al The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem Plant and Soil[J],1998,202:251-262
    [154] 刁治民.西宁地区春小麦土壤微生物根际效应的研究[J].土壤肥料 1996,2:27-30
    [155] 张萍.西双版纳次生林土壤微生物生态分布及其生化特性的研究[J].生态学杂志. 1996,153:64-67
    [156] 杨万勤,王开运.土壤酶究动态与展望[J].应用与环境生物学报,2002,8(5):564- 570
    [157] 胡斌,段昌群,王震洪等.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002,39(4):604-608
    [158] Balota EL,Filho AC Andrade DS et al 2004;Long-term tillage and crop rotation effects on microbial biomass and C and N mineraliznation in a Brazilian Oxisol SoilTill Res 77:137-145
    [159] 陈文新,胡正嘉.土壤和环境微生物学[M].北京:北京农业大学出版社.I990
    [160] 中国农业百科全书编辑部.中国农业百科全书(土壤卷)[M].北京:农业出版社,1996. 388-390
    [161] 戴伟,百红英.土壤过氧化氢酶活性及其动力学特征与土壤性质的关系[J].北京林业大学学报,1995,17(4):37-40
    [162] 赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995, 17(1):1-7
    [163] 黄韶华,王正荣,朱永绮.土壤微生物与土壤肥力的关系研究初报[J].新疆农垦科技 1995.(3):6-7
    [164] 李双霖,李友钦.果园土壤酶活性与肥力关系的研究[J].福建农业科技
    [165] 王洪杰,史学正,李宪文等.2004.小流域尺度土壤养分的空间分布特征及其与土地利用的关系[J].水土保持学报,Vol.18(1):15-18,42
    [166] 郭继勋,王若丹,包国章.东北羊草草原主要植物热值[J].植物生态学报,2001.25(6):746-750
    [167] 何斌,温远光,袁霞等.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):21-26
    [168] 吴忠红,杜新民,张永清等.晋南日光温室土壤微生物及土壤酶活性变化规律研究[J].土壤肥料科学,2007,23(1):296-298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700