用户名: 密码: 验证码:
平榛WRKY转录因子的克隆与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在农业生产上,低温(冻)寒害是一种严重自然灾害,世界上每年因此造成的损失巨大。因此,植物抗寒性机理研究不仅在理论上具有十分重要的意义,在生产上也具有广泛的应用价值。平榛是我国特有的抗寒种质资源,能够耐受-48℃的低温,但是关于平榛抗寒转录因子方面的研究基本上没有报道。WRKY转录因子作为一个重要的响应非生物胁迫的转录因子家族,在植物抗寒性中也发挥着十分重要的作用。本研究中就着重研究了平榛冬季花芽转录组库中筛选得到的WRKY转录因子成员及相关基因,分析了平榛中WRKY转录因子在自然条件及人工逆境胁迫下的表达情况。通过研究获得了平榛中的抗寒关键WRKY转录因子,这对于今后采取分子辅助育种手段和转基因育种工程培育抗寒榛子新品种具有重要的意义。主要研究结果如下:
     1.从平榛花芽的转录组库中共筛选得到49条WRKY转录因子的Unigene序列,其中有26条Unigene片段的序列与杨树比对上,表明平榛转录组中的WRKY序列与公共数据库中同为木本植物的杨树的WRKY转录因子家族关系较近。根据目标WRKY的Unigene序列设计3’RACE与5’RACE的引物,共克隆得到14个WRKY转录因子,分别命名为:ChWRKY1、ChWRKY2、ChWRKY28、ChWRKY7、ChWRKY13、ChWRKY10、ChWRKY11、ChWRKY18、ChWRKY32、ChWRKY9、ChWRKY33、ChWRKY20、ChWRKY4、ChWRKY6,其中13个为全长序列。获得的这14个平榛WRKY转录因子中有5个为WRKY分类中的第Ⅰ类型,有8个基因为第Ⅱ类型,ChWRKY6的结构最特殊,它属于WRKY家族类型中的第Ⅲ类型,锌指结构为C2-HC。
     2.以ChActin为内参,对平榛7个ChWRKY基因在自然越冬条件下花芽中的表达情况作了初步的研究。结果表明在自然条件下ChWRKY7、ChWRKY6、ChWRKY13在11月达到最高的表达量,ChWRKY1、ChWRKY2、ChWRKY28、ChWRKY20则在12月份达到了最高的表达量。随后ChWRKY1、ChWRKY2、ChWRKY28、ChWRKY7表达量随着季节变化表达量开始逐渐降低,但ChWRKY20、ChWRKY6、ChWRKY13这3个基因在3月份的表达量略有升高。
     3.对平榛ChWRKY基因在人工4℃低温及盐、旱处理下的表达情况进行了分析,结果表明ChWRKY2、ChWRKY28、ChWRKY7、ChWRKY6、ChWRKY13这5个基因均受4℃低温、盐及旱的诱导而上升表达,其中响应低温和旱处理的时间较早,响应盐胁迫的时间相对较晚。另外,ChWRKY1受低温胁迫的诱导,而ChWRKY20则受盐和旱的诱导而高表达,受低温胁迫的诱导作用较小。
     4.平榛WRKY转录因子的核定位分析表明,构建好的p35S-WRKY28-GFP的重组质粒侵染细胞后,只有在细胞核上有荧光信号,而对照在细胞质、细胞核中都有绿色荧光信号。说明WRKY28是核定位蛋白,与通过软件预测的结果相一致,WRKY28作为转录因子是在细胞核上起作用。
     5.构建植物表达载体PBI121-WRKY28,将构建好的表达载体通过农杆菌介导,花粉管通道法转化拟南芥,获得了WRKY28的转基因拟南芥株系。将野生型与转基因拟南芥进行4℃处理,发现野生型拟南芥在4℃处理12h后失水萎蔫现象十分明显,而转基因的拟南芥则失水萎蔫相对较少。
     6.通过RACE技术获得了平榛MAP激酶级联系统中的两个基因ChMAPKKK和ChMAPKK基因。ChMAPKKK全长2396bp,包含1个1704bp的开放阅读框,编码568个氨基酸,分子量为61.68kD,理论等电点(pI)为4.75。ChMAPKK全长1665bp,包含1个1062bp的开放阅读框,编码354个氨基酸,分子量为39.32kD,理论等电点(pI)为5.82,含有磷酸一致化序列SLADIDS。在研究中发现平榛ChMAPKKK和ChMAPKK基因在旱、盐及低温胁迫处理后的总体表达趋势与平榛WRKY在相同处理下的趋势基本上相一致。
     7.通过对生长季节平榛在低温、旱及盐胁迫下叶片中的可溶性蛋白、SOD、POD酶活性以及MDA、脯氨酸含量的分析,发现在不同逆境处理下这些生化物质具有不同的变化趋势。在低温胁迫下,上述指标在处理2h后均有不同程度的上升并达到最大值(除脯氨酸在4h、POD在8h达到最大值外),随后开始出现整体下降趋势,但SOD的活性有略微的上升。在旱胁迫处理下可溶性蛋白、POD酶活性、MDA和脯氨酸含量在处理2h后均上升,并达到最大值,脯氨酸在处理24h后达到最大值。在盐胁迫处理4h后MDA含量达到最大值,POD酶活性、可溶性蛋白和脯氨酸含量则在盐处理24h后达到最大值。SOD酶的活性在旱及盐胁迫处理下的变化趋势不明显。对野生型和转基因拟南芥在低温处理12h后叶片中的相对电导率、可溶性蛋白含量、SOD、CAT、POD酶活性及MDA的含量情况进行了对比分析,结果发现转基因拟南芥在低温处理12h后的相对电导率、MDA含量的增加程度小于野生型拟南芥,MDA含量越多,表明膜脂过氧化损伤程度越严重。转基因株系中的可溶性蛋白含量、SOD酶活性在处理12小时后的增加量要高于野生型拟南芥。转基因拟南芥中这些生化物质及指标的变化,提高了其在低温胁迫下的抗性。
In agricultural production, low temperature (frozen) cold harm is a kind of serious naturaldisasters, which give rise to gigantic loss every year in the world. Therefore, plant hardinessmechanism study not only plays an important role in the production in theory, but also have thewide application value in production. Corylus heterophylla Fisch. is the peculiar germplasmresources in China, which can tolerate low temperature-48℃, however, the research related toits transcription factors of cold resistance has been rarely reported. WRKY transcription factorsas an important transcription factor family responding to the abiotic stress, plays a fundamentalrole in plant hardiness. In this study, we focused on the members of WRKY transcriptionfactors screened from transcription library of Corylus heterophylla Fisch. winter bud, andrelated genes. Meanwhile, we analyzed its expression under natural conditions and artificialadversity stress, respectively. Finally, we obtained the key transcription factors of WRKYrelated to cold resistance from Corylus heterophylla Fisch., which possess an significantmeaning for the future breeding of new varieties resistant to cold by molecular assistedbreeding method and transgenic breeding engineering. The main results are as follows:
     1. Getting the Unigene sequence of49WRKY transcription factors, totally, in whichthere were26sequence of Unigene fragments that can be campared to poplar, indicating thatWRKY sequence of transcription library from Corylus heterophylla Fisch. has an quite closerelation with the WRKY transcription factor family of public database in poplar as woodyplants. Designing the3'RACE and5' RACE primers according to the target WRKY Unigenesequence, we cloned and obtained14WRKY transcription factors, named ChWRKY1,ChWRKY2, ChWRKY28, ChWRKY7, ChWRKY13, ChWRKY10, ChWRKY11, ChWRKY18,ChWRKY32, ChWRKY9, ChWRKY33, ChWRKY20, ChWRKY4, ChWRKY6respectively. Thereare5genes of the14WRKY transcription factors from Corylus heterophylla Fisch. belong tothe Ⅰt ype of WRKY,8genes belong to the Ⅱ type, especially theChWRKY6belongs to theⅢ type in WRKY family, moreover, zinc finger structure of which is the C2-HC.
     2. We took the ChActin as internal parameter and made a preliminary study for the expression of7ChWRKY genes in bud during the winter. The results indicate that under naturalconditions,ChWRKY7, ChWRKY6, ChWRKY13in November has the highest expression,ChWRKY1, ChWRKY2, ChWRKY28, ChWRKY20is in December.Then, ChWRKY1, ChWRKY2,ChWRKY28, ChWRKY7expression began to decrease gradually with the season change,ChWRKY20, ChWRKY6, ChWRKY13in March has a slightly increase instead.
     3. Expression of ChWRKY genes from Corylus heterophylla Fisch. were analyzed underartificial4℃low temperature, salt, drought condition, respectively. The results showed thatthe expression of ChWRKY2, ChWRKY28, ChWRKY7, ChWRKY6, ChWRKY13were allincreased induced by4℃low temperature, salt and drought stress, what’s more, the responseto low temperature and drought treatment is relative earlier, and later to salt stress. In addition,ChWRKY1expression rise induced by the low temperature stress, while ChWRKY20inducedby salt and drought stress, lesser induced by the former stress.
     4. Nucleus location analysis of WRKY transcription factor from Corylus heterophyllaFisch. showed that after infecting cells, p35S-WRKY28-GFP restructured plasmid only hadgreen fluorescent signals in the nucleus,while in both cytoplasm and nucleus in the control,which indicating WRKY28is an Nucleus location protein that is consistent to forecastingresults through the software. In other words, WRKY28as transcription factors, play part in thenucleus.
     5. Build plant expression vector PBI121-WRKY28, will build a good expression vectorby agrobacterium mediated, pollen tube channel method into arabidopsis, won the WRKY28transgenic arabidopsis strain. Will the wild type and genetically modified arabidopsis4℃processing, found that wild type arabidopsis at4℃processing after12h wilting phenomena arevery obvious, and genetically modified arabidopsis wilting is relatively small.
     6. Obtained the two genes ChMAPKKK and ChMAPKK of MAP kinase cascade systemfrom Corylus heterophylla Fisch. through the RACE technology.The overall length ofChMAPKKK was2396bp, including one1704bp open reading frame, coding568amino acids,and the molecular weight was61.68kD, and theory isoelectric point (pI) was4.75. The overalllength of ChMAPKK was1665bp, including one1062bp open reading box, coding354aminoacids, and the molecular weight was39.32kD, and theory isoelectric point (pI) was5.82. The typical phosphoric acid consistent sequence of ChMAPKK was the SLADIDS. In our study wealso found that the general expression trends of ChMAPKKK and ChMAPKK was basicallyconsistent with WRKY of Corylus heterophylla Fisch. under drought,salt,and low temperaturestress.
     7. The soluble protein, SOD and POD enzyme activity, MDA, proline content in leaf ofCorylus heterophylla Fisch. under low temperature, drought and salt stress were analysesed,which had different variation trend under different adeversity treatment. Analysing the relativeelectric conductivity, soluble protein content, SOD, CAT, POD enzyme activity and the contentof MDA in leaf of the wild type and transgenetic arabidopsis after12h by low temperaturetreatment, the results showed that the relative electrical conductivity, the increase of the contentof MDA in transgenetic arabidopsis were less than wild type.The more the content of MDA,the more serious the degree of Lipid peroxidation in membrane. The incrase in soluble proteincontent, SOD enzyme activity in transgenetic arabidopsis were higher than wild typearabidopsis thaliana after12hours of treatment. The different changes of biochemical indicatorhappened in transgenetic arabidopsis so that to improve the resistance to low temperaturestress.
引文
陈新.榛子花芽转录组文库的Solexa测序及冷调节基因的表达谱分析[D].北京:中国林业科学研究院,2011.
    陈儒钢,巩振辉,逯明辉,等.植物抗逆反应中的转录因子网络研究进展[J].农业生物技术学报,2010,18(1):126-134.
    常朝阳,张明理.锦鸡儿属植物幼茎及叶的解剖结构及其生态适应性[J].植物研究,1997,17(1):65-71.
    陈青君,张福埙,王永健,等.临界低温弱光对黄瓜光合特性及其酶变化的影响[J].华北农学报,2003,18(4):31-34.
    丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展[J].中国农学通报,2003,19(6):33-39.
    董合铸,孙龙华,简令成.不同抗寒性小麦品种的麦苗在冰冻-化冻后叶片细胞亚微结构的变化[J].植物学报,1980,22:339-342.
    杜永吉,于磊,孙吉雄.结缕草3个品种抗寒性的综合评价[J].草业学报,2008,17(3):6-16.
    费松林,方精云,樊拥军.贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系[J].植物学报,1999,41(9):1002-1009.
    付乾堂,余迪求.拟南芥AtWRKY25、AtWRKY26和AtWRKY33在非生物胁迫条件下的表达分析[J].遗传,2010,32(8):848-856.
    高俊凤.植物生理学实验技术.西安:世界图书出版社,2000,201-202.
    黄晓钰.香蕉冷害征状及生理指标和有效防寒措施研究[J].华南农学院学报,1982,3(4):1-12.
    黄义江.苹果属果树抗寒性的细胞学鉴定[J].园艺学报,1982,9(3):23-30.
    黄敏,陈杰忠.果树抗寒性研究进展[J].亚热带植物科学,2011,40(1):80-84.
    胡小丽,董德坤,杨海英,等.转化GmWRKY21基因提高大豆耐低温性的研究[J].浙江农业学报,2011,23(4):661-666.
    郝士琴,阮圣冬.苹果幼树越冬生理的研究[J].园艺学报,1985,2(3):159-165.
    金慧,栾雨时.番茄WRKY基因的克隆与分析[J].西北农业学报,2011,20(4):96-101.
    金建凤,高强,陈勇,等.转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高[J].细胞生物学杂志,2005,27:73-76.
    纪忠雄.柑橘抗寒性的生理生化指标[J].园艺学报,1983,10(4):239.
    简令成,王红.逆境植物细胞生物学[M].北京:科学出版社,2008.
    简令成.生物膜与植物寒害和抗寒性的关系[J].植物学通报,1983,(1):17-23.
    李春明.杨树品系低温生理响应及相关差异蛋白分析[D].北京:北京林业大学,2011.
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    李荣富.葡萄抗寒性研究进展[J].内蒙古农业科技,1997,(6):24-26.
    刘星辉.龙眼、荔枝叶片膜脂肪酸与耐寒性的研究[J].福建农业大学学报,1996,25(3):297-301.
    李玉梅.梨品种枝条膜透性和水分状态与抗寒性的关系[J].北方果树,2005,(1):3-5.
    李正理,张新英.植物解剖学[M].北京:高等教育出版社,1983,261-266.
    刘祖棋.植物抗性生理学[M].北京:中国农业出版社,1994.
    吕跃东,董凤祥,王贵禧,等.平欧杂交榛抗寒性综合评价体系的建立与应用[J].林业科学,2008,44(9):31-35.
    刘建秀,贺善安.华东地区狗牙根外部形态变异规律的研究[A].中国草原学会,中国草地科学进展[C].北京:中国农业大学出版社,1998,240-244.
    马英姿,梁文斌,陈建华.经济植物的抗寒性研究进展[J].经济林研究,2005,23(4):89-94.
    李秀霞,牛成功,邵红,等.佳木斯地区榛子引种试验初报[J].中国野生植物资源,2005,24(6):72-74.
    刘伟,曲凌慧,刘洪庆.低温胁迫对葡萄保护酶和氧自由基的影响[J].北方园艺,2008,(5).
    梁维坚,解明,董德芬,等.榛子新品种选育研究[J].中国果树,2000,(2):4-6.
    彭伟秀,杨建民,张芹,等.不同抗寒性的杏品种叶片组织结构比较[J].河北林果研究,2001,6(2):145-147.
    仇玉萍,荆邵娟,付坚,等.13个水稻WRKY基因的克隆及其表达谱分析[J].科学通报,2004,49(18):1860-1869.
    佘文琴.荔枝叶片膜透性和束缚水/自由水与耐寒性的关系[J].福建农业大学学报,1995,24(1):14-18.
    田云,卢向阳,彭丽莎,等.植物WRKY转录因子结构特点及其生物学功能[J].遗传,2006,28(12):1607-1612.
    田文瀚,梁丽松,王贵禧,等.不同品种榛子营养品质差异性分析[J].食品科学,2012,33(8):250-254.
    吴国良.核桃实生苗叶性状与抗寒性关系[J].植物学通报,1998,15(增):111-113.
    万清林.草每抗寒特性分析[J].北方园艺,1990,(8):4-7.
    武维华.植物生理学[M].北京:科学出版社,2003.
    王育娜.辣椒WRKY转录因子cDNA的分离与功能鉴定[D].福州:福建农林大学,2008.
    王海华,郝中娜,谢科.水稻WRKY89中的亮氨酸拉链结构增强蛋白与W盒元件的相互作用[J].科学通报,2005,50(10):970-978.
    王燕凌,廖康,刘君.越冬前低温锻炼期间不同品种葡萄枝条中渗透性物质和保护酶活性的变化[J].果树学报,2006,23:(3).
    韦善君,孙振元,巨关升,等.冷诱导基因转录因子CBF1的组成型表达对植物的抗寒性及生长发育的影响[J].核农学报,2005,19(6):465-468.
    玉云祎,张启翔,高亦珂.转基因技术在观赏植物育种中的应用[J].北京林业大学学报,2004,26(2):102-108.
    杨建民.几个仁用杏品种抗寒性比较研究[J].中国农业科学,1999,32(1):46-50.
    阳文龙,刘敬梅,刘强,等.高羊茅DREB类转录因子基因的分离及鉴定分析[J].核农学报,2006,20(3):187-192.
    严海燕, Steponkus P. CBF3基因过量表达的拟南芥细胞质膜组分的变化[J].武汉植物学研究,2004,22(6):529-533.
    易建华,孙在军.烟草光合作用对低温的响应[J].作物学报,2004,30(6):582-588.
    杨向娜,魏安智,杨途熙,等.仁用杏3个生理指标与抗寒性的关系研究[J].西北林学院学报,2006,21(3).
    赵金梅,周禾,孙启忠,等.植物脂肪酸小饱和性对植物抗寒性影响的研究[J].草业科学,2009,26(9):129-134.
    曾光辉,郭延平,王法格,等.冬、春季节柑桔叶片光合机构运转的研究[J].浙江大学学报(农业与生命科学版),2006,32(4):410-14.
    张颖,蒋卫杰,凌键,等. WRKY转录因子表达谱的研究进展[J].基因组学与应用生物学,2009,28(4):803-808.
    张中保,李会勇.应用实时荧光定量PCR技术分析玉米水分胁迫诱导基因的表达模式[J].植物遗传资源学报,2007,8(4):421-425.
    张宇和,柳鎏,梁维坚,等.中国果树志板栗榛子卷[M].北京:中国林业出版社,2005.
    张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003,138-140.
    周琳,王雁,彭镇华.牡丹查耳酮合酶基因Ps-CHS1的克隆及其组织特异性表达[J].园艺学报,2010,37(8):1295-1302.
    张晗,信月芝,郭惠明,等. CBF转录因子及其在植物抗冷反应中的作用[J].核农学报,2006,20(5):406-409.
    庄静,熊爱生,周熙荣,等.甘蓝型油菜沪油15中BnaRAV-2-HY15转录因子的克隆及表达分析[J].核农学报,2010,24(5):941-947.
    Anisko T, Lindstrom O. Reduced Water Supply Induces Fall Acclimation of Evergreen Azaleas[J]. J. AmerSoc Hort. Sci,1995,120(3):429-434.
    Ashida Y, Nishimoto M, Matsushima A,et al. Molecular cloning and mRNA expression of geraniol-induciblegenes in cultured shoot primordia of Matricaria chamomilla[J]. Biosci. Biotechnol. Biochem.,2002,66:2511-2514.
    Asai T, Tena G, Plotnikova J. MAP kinase signalling cascadein Arabidopsis innateimmunity[J]. Nature,2002,415(6875):977-983.
    Benedict C, Skinner J, Meng R. The CBF1-dependent low temperature signalling pathway, regulon andincrease in freeze tolerance are conserved in Populus spp. Plant cell and environment,2006,29:1259-1272.
    Borrone J, Kuhn D, Schnell R. Isolation, characterization, and development of WRKY genes as usefulgenetic markers in Theobroraa cacao [J]. Theor. Appl. Genet,2004,109(3):495-507.
    Chen C, Chen Z. Isolation and characterization of two pathogen-and salicylic acid-induced genes encodingWRKY DNA binding proteins from tobacco[J]. Plant Mol. Biol.,2000,42:387-396.
    Champ K, Febres V, Moore B. The role of CBF transcriptional activators in two Citrus species (Poncirus andCitrus) with contrasting levels of freezing tolerance. Physiologia Plantarum,2007,129:529-541.
    Cronn R, Liston A, Parks M, et al. Multiplex sequencing of plant chloroplast genomes using Solexasequencing-by-synthesis technology[J]. Nucleic Acids Res,2008,36:e122.
    Chen X, Li Q, Wang J, et al. Identification and characterization of novel amphioxus microRNAs by Solexasequencing[J]. Genome Biol,2009,10:878.
    Chen Y, Li L, Xu Q, et al. The WRKY6transcription factor modulates PHOSPHATE1expression inresponse to low Pi stress in Arabidopsis[J]. Plant cell,2009,21(11):3554-3566.
    Chujo T, Takai R, Akimoto T. Involvement of the elicitor induced gene OsWRKY53in the expression ofdefense related genes in rice [J]. Biochemica et Biophysica Acta,2007,1769(7-8):497-505.
    Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene suerfamily during plantdefense response[J]. Plant Mol Biol,2003,51(1):21-37.
    Devaiah B, Karthikeyan A, Raghothama K. WRKY75transcription factor is a modulator of phosphateacquisition and root development in Arabidopsis[J]. Plant Physiology,2007,143(4):1789-1801.
    Eshchar M, Charles A, Martin R, et al. De novo assembled expressed gene catalog of a fast-growingEucalyptus tree produced by lllumina mRNA-Seq[J]. BMC Genomics,2010,11:681.
    Eulgem T, Rushton P, Robatzek S, et al. The WRKY superfamily of plant transcription factor[J]. Trends inPlant Sci,2000,5:199-206.
    Eulgem T, Rushton P, Schmelzer E, et al. Early nuclear events in plant defense:rapid gene activation byWRKY transcription factors[J]. EMBOJ.,1999,18(17):4689-4699.
    Fukuda Y. Interaction of tobacco nuclear protein with an elicitor-responsive element in the promoter of abasic class I chitinase gene[J]. Plant Mol Biol,1997,34(1):81-87.
    Falquet L, Pagni M, Bucher P et al. The PROSTTE database,its status in2002[J]. NucieicAcids Res,2002,30(1):235-238.
    Guy C, Niemi K, Brambl R. Altered gene expression during cold acclimation of spinach[J]. Proc Natl AcadSci,1985,82:3673-3677.
    Huang T, Duman J. Cloning and characterization of a thermal hysteresis (antifreeze)protein withDNA-binding activity from winter bittersweet nightshade, Solanum dulcamara[J]. Plant Mol Biol,2002,48(4):339-350.
    Hanriot L, Keime C, Gay N, et al. A combination of LongSAGE with Solexa sequencing is well suited toexplore the depth and the complexity of transcriptome[J]. BMC Genomics,2008,9:418.
    Hwang E, Kim K, Park S, et al. Expression profiles of hot pepper (Capsicum annum) genes under cold stressconditions[J]. J. Biosci.,2005,30(5):657-667.
    Hackenberg M, Stunn M, Langenberger D, et al. miRanalyzer:a microRNA detection and analysis tool fornext-generation sequencing experiments[J]. Nucleic Acids Res,2009,37:68-76.
    Hara K, Yagi M, Kusano T. Rapid systemic accumulation of transcripts encoding a tobacco WRKYtranscription factor on wounding[J]. Mol Gen Genet,2000,263:30-37.
    Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, thatrecognizes SP8sequences in the50upstream regions of genes coding for sporamin and beta-amylasefrom sweet potato,Mol[J]. Gen Genet,1994,244(6):563-571.
    Johnson C, Kolevski B, Smyth D. TRANSPARENT TESTA GLABRA2, a trichome and seed coatdevelopment gene of Arabidopsis, encodes a WRKY transcription factor[J]. Plant Cell,2002,14:1359-1375.
    Kalde M, Barth M, Somssich I. Members of the Arabidopsis WRKY group III transcription factors are partof different plant defense signaling pathways[J]. Molecular Plant Microbe Interactions,2003,16(4):295-305.
    Kratsch H, Wise R. The Ultrasturceture of Chilling Stress [J]. Plant Cell Environ,2000,23:337-350.
    Kim C, Zhang S. Activation of a mitogen-activated protein kinase cascade induces WRKY family oftranscription factors and defense genes in tobacco[J]. PLant J,2004,38(1):142-151.
    Lambais M. In silico differential display of defense-related expressed sequence tags from sugarcane tissuesinfected with diazotrophic endophytes[J]. Genet. Mol. Biol.,2001,24:103-111.
    Li J, Brader C, Palva E. The WRKY70transcription factor: a node of convergence for jasmonate-mediatedand salicvlate-mediated signals in plant defense[J]. Plant cell,2004,16(2):319-331.
    Liu X, Bai X, Wang X. OsWRKY71, a rice transcription factor, is involved in rice defense response[J].PlantPhysiol,2006:17.
    Lagace M, Matton D. Characterization of a WRKY transcription factor expressed in late torpedo-stageembryos of Solanum chaooense[J]. Plarua,2004,219(1):185-189.
    Ludwig A, Romeis T, Jones J. CDPK-mediated signalling pathways: specificity and cross-talk[J]. J. Exp.Bot.,2004,55:181-188.
    Liang W. Studies on Hazelnut breeding in northern China. International Congress on Hazelnut, Torino, Italy.
    Masaya I, Albert J, Lawrence V. Comparison of viability tests for assessing cross-adaptation to freezing heatand salt stresses induced by abscisic acid in bromegrass (Bromus inermis Leyss) suspension culturedcells[J]. Plant Science,1995,107:83-93.
    Mizoguchi T, Ichimura K, Irie K, et al. Identification of a possible MAP kinase cascade of Arabidopsisthaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeastmutants[J]. FEBS Letters,437:56-60.
    Mare C, Mazzucotelli E, Crosatti C, et al. HvWRKY38: a new trapscription factor involved in cold anddrought response in barley[J]. Plant Molecular Biology,2004,55:399-416.
    Patton A, Cuningham S, Volenec J, et al. Differences in freeze tolerance of zoysiagrasses:II.Carbohydrateand praline accumulation[J]. Crop Science,2007,47(5):2170-2181.
    Pnueli L, Hallak H, Rozenberg M, et al. Molecular and biochemical mechanisms associated with dormancyand drought tolerance in the desert legume Retarna raetmre[J]. Plant J.,2002,31(3):319-330.
    Ryu H, Han M, Lee S, et al. A comprehensive expression analysis of the WRKY gene superfamily in riceplants during defense response[J]. Plant Cell Rep.,2006,25:836-847.
    Ramamoorthy R, Jiang S, Kumar N, et al. A comprehensive transcriptional profiling of the WRKY genefamily in rice under various abiotic and phytohormone treatments[J]. Plant Cell Physiol,2008,49(6):865-879.
    Robatzek S, Somssich I. A new member of the Arabidopsis WRKY transcription factor family,AtWRKY6isassociated with both senescence and defence-related processes[J]. Plant J.,2001,28(2):123-133.
    Rinne P, Welling A, Kaikuranta P. Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involvesLEA proteins and osmoregulation and is impaired in an ABA-deficient genotype[J]. Plant Cell andEnvironment,1998,21(6):601-611.
    Sara Z, Alberto F, Enrico G, et al. Characterization of Transcriptional Complexity during Berry Developmentin Vitis vinifera Using RNA-Seq[J]. Plant Physiology,2010,152(4):1787-1795.
    Sanger F, Nicklen S, Coulson A. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad SciUSA,1977,74:5463-7.
    Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of7000Arabidopsis genes underdrought, cold and high-salinity stresses using a full-length cDNA microarray[J]. Plant J.,2002,31(3):279-292.
    Sun C, Palinqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, Participates in sugarsignaling in barley by binding to the sugar-responsive elements of the isol promoter[J]. Plant Cell,2003,15:2076-2092.
    Steuernagel B, Taudien S, Gundlach H, et al. De novo454sequencing of barcoded BAC pools forcomprehensive gene survey and genome analysis in the complex of barley[J]. BMC Genomics,2009,10:547.
    Thomashow M..So what’S new in the field of plant cold acclimation? Lots![J]. Plant Physiol,2001,125(1):89-93.
    Tosti N, Pasqualini S, Borgogni A, et al. Gene expression profiles of O3treated Arabidopsis plants[J]. PlantCell and Environment,2006,29(9):1686-1702.
    Teige M, Scheikl E, Eulgem T, et al. The MKK2pathway mediates cold and salt stress signaling inArabidopsis[J]. Mol Cell,2004,15(1):141-152.
    Ulker B, Somssich I. WRKY transcription factors:from DNA binding towards biological function[J]. CurrentOpinion in Plant Biology,2004,7(5):491-498.
    Welling A, Palva E. Molecular control of cold acclimation in trees[J]. Physiol Plant,2006,127:167-181.
    Wang Z, Yang P, Fan B. An oligo selection procedure for identification of sequence-specific DNA-bindingactivities associated with plant defense[J]. Plant J.,1998,16(4):515-522.
    Wei W, Zhang Y, Han L, et al. A novel WRKY transcriptional factor from thlaspi caerulescens negativelyregulates the osmotic stress tolerance of transgenic tobacco[J]. Plant Cell Rep,2008,27(4):795-803.
    Xiao H, Siddiqua M, Braybrook S. Three grape CBF/DREB1genes respond to low temperature, drought andabscisic acid[J]. Plant Cell and Environment,2006,29:1410-1421.
    Xu Y, Wang J, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates thesesquiterpene synthase gene(+)-cadinene synthase-A[J]. Plant Physiol,2004,135:507-515.
    Yamasaki K, Kigawa T, Inoue M, et al. Structures and evolutionary origins of plant-specific transcriptionfactor DNA-binding domains[J].Plant Physiology and Biochemistry,2008,46(3):394-401.
    Yoda H, Ogawa M, Yamaguchi Y. Identification of early-responsive genes associated with the hypersensitiveresponse to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobaccoplants[J]. Mol Genet Genomics,2002,267:154-161.
    Zhang Z, Rozowsky J, Snyder M, et al. Modeling ChIP sequencing in silico with applications[J]. PLoSComput Biol,2008,4:e1000158.
    Zhou Q, Tian A, Zou H, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J].Plant Biotechnology Journal,2008,6(5):486-503.
    Zhang Z, Xie Z, Zou X, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellinsignaling pathway in aleurone cells[J]. Plant Physiol,2004,134:1500-1513.
    Zhang H, Yang J, Zheng Y, et al. Genome-wide analysis of small RNA and novel MicroRNA discovery inhuman acute lymphoblastic leukemia based on extensive sequencing approach[J]. PLoS One,2009,4:e6849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700