用户名: 密码: 验证码:
水杨酸对干旱胁迫下柑橘生理生化特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水杨酸(Salicylic acid,SA)是广泛分布于植物体内的一种小分子酚类化合物,被认为是一种新的植物激素,参与调节植物的许多生理过程。近年来SA被认为是一种信号传递分子。目前的研究主要集中在SA对植株抗病性方面,即诱导植物体内病程相关蛋白基因表达以及产生系统获得抗病性。SA对植物抗逆境方面的影响虽有不少研究,但有关SA对柑橘的抗旱性的系统研究在国内外尚未见报道。
     本试验以红肉脐橙(Citrus sinensis cv.Cara cara)、‘国庆4号’温州蜜柑(C.unshiucv.Guoqing No.4)和枳(Poncirus trifoliata)盆栽幼树为试材,采用3个SA水平(0.1、0.5和2.5mmol/L)叶面喷施并结合根部灌溉后进行干旱处理,探讨外源SA对干旱胁迫下柑橘生理生化特性的影响,以为SA在柑橘抗旱性方面的应用提供参考。其主要研究结果如下:
     1.干旱胁迫下,柑橘叶片和根系的细胞膜透性增大,MDA含量增多,Pro和H_2O_2的积累增加,叶片相对含水量和叶绿素含量减少,SOD,POD,CAT保护酶活性变化显著,有少量干旱蛋白被诱导表达。
     2.SA处理对柑橘根系细胞膜透性的影响不显著,但在一定程度上降低了叶片细胞膜透性,且降低的程度与SA浓度、试验材料以及处理时间有关。其中0.1 mmol/LSA处理使红肉脐橙叶片细胞膜透性在处理9 d时降低了23.63%,0.5 mmol/L SA处理使‘国庆4号’温州蜜柑叶片细胞膜透性在处理7 d降低了15.81%,2.5 mmol/L SA处理使枳叶片细胞膜透性在处理7 d降低了20.06%。同时,SA处理增强了柑橘叶片和根系渗透调节物质Pro的积累。不同材料根系中Pro含量均以0.5mmol/L SA处理最高,而在红肉脐橙和‘国庆4号’温州蜜柑叶片中Pro含量在干旱胁迫9 d时也以0.5mmol/LSA处理最高。
     3.在干旱胁迫期间,不同浓度SA处理均降低了柑橘叶片和根系MDA含量。其中红肉脐橙与‘国庆4号’温州蜜柑的叶片和根系MDA含量在不同浓度之间无显著差异,而枳叶片和根系中MDA含量在不同处理间存在显著差异;另一方面,SA处理在一定程度上减少柑橘叶片H_2O_2含量,但在根系上得到了相反的结果;此外,SA处理能缓解干旱胁迫下柑橘叶片相对含水量和叶绿素下降速率。
     4.SA处理增加了干旱胁迫下柑橘叶片和根系SOD,POD活性,同时也能增加柑橘叶片CAT活性,但降低根系CAT活性;经SDS-PAGE电泳图蛋白质组分分析,发现SA处理后,有新蛋白带出现和原有蛋白带加深,而这些特异蛋白的产生,可能增强了柑橘抗旱能力及适应性。
Salicylic acid (SA) belongs to a group of phenolics widely distributed in plants and is now considered a hormone-like substance, which plays an important role in the regulation of plant growth and development. In the recent years, It has received particular attention to be a signal molecule in acquired resistance to pathogens in several species, its is can be used toinduced both the synthesis of certain pathogenesis related proteins and systemic acquired resistance. Several studies also supported a major role of SA in modulating the plants response to several abiotic stresses. There has no systemic study on drought resistance of citrus treated with SA in and abroad.
     Potted experiment materials in greenhouse were Cara cara navel and Guoqing No.4 satsuma mandarin grafted as trifoliate stocks and trifoliate. They were treated with three levels concentration (0.1, 0.5 and 2.5 mmol/L) SA hydroponic solution by spraying onto leaves and irrigating to roots, and then were treated drought stress. This research studied the effects of physiology and biochemistry of Citrus streatment with exogenous SA under drought stress, and provide a reference to SA application in resistance of Citrus to drought.
     The main results in the present study are as follows:
     1. Under drought stress, cell membrane permeability and the content of MDA, Pro and H_2O_2 in citrus leaf and root increased. However, the relative water and chlorophyll content in leaf decreast with drough stress. At the same time, the changes of SOD, POD and CAT activity were significant and some drought protein expression was induced under drought stress.
     2. SA treatment had no significant influence on cell membrane permeability in citrus root, whereas it could decrease cell membrane permeability in citrus leaf. Furthermore, the degree of decrease in leaf was relative to SA concentration, test material and treatment time. For example, the cell membrane permeability in Cara cara navel orange leaf which treated with 0.1 mmol/L SA decreased by 23.63% with drought stress on 9-day. With drought stress on 7-day, the cell membrane permeability in leaf of Guoqing No.4 satsuma mandarin with 0.5 mmol/L SA treated and trifoliate with 2.5 mmol/L SA treated decreased by 15.81% and 20.06%, respectively. At the same time, SA treatment promoted accumulating in Pro which has osmotic and adjustive ability. Pro in the all Citrus root was the highest when the concentration of SA was 0.5 mmol/L. In addition, the content of Pro in Cara cara navel orange and Guoqing No.4 satsuma mandarin leaf with 0.5 mmol/L SA treated was also higher than other treatment with drough stress on 9-day.
     3. During the drough stress, SA treatment decreased the content of MDA in the Citrus leaf and root. But there was no significant difference between various SA concentrations in Cara cara navel orange leaf or root, respectively. The same status was found in Guoqing No.4 satsuma mandarin. However, various SA concentrations had a significant difference in trifoliate leaf or root, respectively. On the other hand, SA treatment decreased the content of H_2O_2 in Citrus leaf by SA application, and the opposition was present in Citrus root. In addition, SA treatment could solwer the rate of this decline of relative water content of leaves and chlorophyll content.
     4. SA treatment increased the activity of SOD and POD in Citrus leaf and root. On the other hand, though the activity of CAT was increased in Citrus leaf by SA application, but decreased in Citrus root. By SDS-PAGE electrophoresis analysis, the results showed that some new protein band was found and the intrinsic protein band was enhanced, which could improve Citrus the resistance against drought stress.
引文
1.蔡新忠,郑重.水杨酸诱导水稻幼苗抗病性的生化机制.植物病理学报,1997,27(3):231-236
    2.曹翠玲,刘林丽,田强兵.水杨酸对玉米幼苗抗旱性的影响.玉米科学,2004,12(增刊):103-104
    3.常红军,刘兰霞.植物抗旱分子机理研究进展.安徽农业科学,2006,34(18):4509-4510,4514
    4.陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响.园艺学报,1998,25(3):241-246
    5.陈少裕.膜质过氧化对植物细胞的伤害.植物生理学通讯,1991,27(4):84-89
    6.陈少裕.甘蔗叶片衰老与膜脂过氧化.作物学报,1992,18(2):111-115
    7.程瑞平,束怀瑞,顾曼如.水分胁迫对苹果树生长和叶片中矿质元素含量的影响.植物生理学通讯,1992,28(1):32-34
    8.何承坤,郭素枝,李家慎.干旱胁迫对番茄活性氧代谢的影响.福建农业大学学报,1996,25(3):307-311
    9.胡新生,王世绩.木水分胁迫生理与耐旱性研究进展及展望.林业科学,1998,34(2):77-89
    10.黄仁华,夏仁学,陆云梅,胡利明.红肉脐橙发育过程中抗氧化系统与活性氧的变化.园艺学报,2006,33(6):1287-1290
    11.姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响.作物学报,2004,30(2):169-174
    12.姜中珠,陈祥伟.水杨酸对灌木幼苗抗旱性的影响.水土保持学报,2004,18(2):166-185
    13.景蕊莲.作物抗旱节水研究进展.中国农业科技导报,2007,9(1):1-5
    14.康国章,段中岗,王正询,孙谷畴.水杨酸提高香蕉幼苗抗冷性初探.植物生理学通讯,2003,39(2):122-124
    15.柯世省.水分胁迫下夏蜡梅光合作用的气孔和非气孔限制。浙江林业科技,2006,26(6):1-5
    16.兰彦平,周军,曹慧,许雪峰,韩振海.茉莉酸对苹果幼树抗旱效应的研究.干旱地区农业研究,2001,19(2):71-74
    17.赖声渭,曹兵.浅谈林木抗旱性评价方法.防护林科技,2002(3):48-49
    18.李德全,邹琦,程炳蒿.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,1993,18(1):37-44
    19.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    20.李嘉瑞,任小林,王民柱.干旱对果树光合的影响及水分胁迫信息的传递.干旱地区农业研究,1996,14(3):67-72
    21.李雪萍,庞学群,张昭其,季作梁.水杨酸对玫瑰切花保鲜机理的研究.福建农业学报,1999,14(3):38-42
    22.李在军,冷平生,丛者福.黄连木对干旱胁迫的生理响应.植物资源与环境学报,2006,15(3):47-50
    23.李兆亮,原永兵,刘成连,曹宗巽.水杨酸对黄瓜叶片抗氧化剂酶系的调节作用.植物学报,1998,40(4):356-361
    24.李兆亮,原永兵,刘成连,曹宗巽.黄瓜细胞中水杨酸的信号传递研究.植物学报,1998,40(5):430-436
    25.林植芳,李双顺,林桂珠,郭俊彦.衰老叶片和叶绿体中H202的积累与膜脂过氧化的关系.植物生理学报,1988,14(1):16-22
    26.林植芳,李双顺,林桂珠.水稻叶片的衰老与超氧化物歧化酶活性及膜脂过氧化作用的关系.植物学报,1984,26(6):605-615
    27.林忠平,胡鸢雷.植物抗逆性与水杨酸介导的信号转导途径的关系.植物学报,1997,39(2):185-188
    28.刘大永,王维香.过氧化氢对水稻幼苗中CAT和POD活性的影响.作物学报,1998,24(3):320-324
    29.刘成连,战吉成,原永兵,于翠彬,于龙飞.水杨酸对苹果叶片光合作用的影响.园艺学报,1999,26(4):261-262
    30.刘丹.植物生长调节剂对几种灌木树种抗旱性的影响.[硕士学位论文].哈尔滨:东北林业大学图书馆,2004:1-50
    31.刘学师.野生酸枣抗旱性研究.[硕士论文].杨陵:西北农林科技大学图书馆,2003,1-40
    32.卢从明,张其德,匡廷云,高煜珠.水分胁迫对甘薯叶肉细胞光合电子传递的影响.植物学通报,1994,11(1):43-47
    33.卢萍,卢青,杜荣骞.LEA基因及Lea蛋白的研究进展.内蒙古师范大学报,1999,28(2):138-141
    34.陆受华,褚梦源.水分胁迫后梅杏桃脯氨酸积累及其与抗旱性的关系.华南农业大学报,1989,12(3):29-32
    35.吕长平,石雪辉.水分胁迫对草莓叶片SOD活性及MDA及Vc含量影响.湖南农业大报,1996,22(5):452-455
    36.吕庆,郑荣梁.干旱及活性氧引起小麦膜脂过氧化和脱脂化.中国科学(C辑),1996,26:26-30
    37.马新蕾,王玉军,谢胜利,李峰,王玮.根施甜菜碱对水分胁迫下烟草幼苗光合机构的保护.植物生理与分子生物学学报,2006,32(4):465-472
    38.潘东明,潘良镇.水分胁迫对龙眼幼苗多胺等生理生化指标的影响.福建农业大学学报,1997,26:277-282
    39.潘东明,郑国华,谢厚钗.水分胁迫与枇杷叶片SOD及脂质过氧化作用.福建农学院学报,1993,22(2):254-257
    40.齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的生理响应.生态环境,2006,15(6):1264-1268
    41.邱全胜,李林,粱厚果,焦新之.水分胁迫对小麦根细胞质膜氧化还原系统的影响.植物生理学报,1994,20:145-151
    42.尚庆茂,陈淑芳,张志刚.硒对高温胁迫下辣椒叶片抗氧化酶活性的调节作用.园艺学报,2005,32(1):35-38
    43.尚庆茂,宋士清,张志刚,郭世荣.水杨酸增强黄瓜幼苗耐盐性的生理机制.中国农业科学,2007,40(1):147-152
    44.邵艳军,山仑.植物耐旱机制研究进展.中国生态农业学报,2006,14(4):16-20
    45.石书兵,徐文修,张强,克尤木,高文伟.早作春小麦品种高产抗旱特性的综合评价.干旱地区农业研究,2001,19(2):14-20
    46.宋士清,郭世荣,尚庆茂,张志刚.外源SA对盐胁迫下黄瓜幼苗的生理效应.园艺学报,2006,3(1):68-72
    47.宋志荣.干旱胁迫对辣椒生理机制的影响.西南农业学报,2003,16(2):53-55
    48.孙立平.渗透胁迫下玉米根系热稳定蛋白的分离及信号物质对其调控作用研究.[硕士学位论文].泰安:山东农业大学图书馆,2004,1-68
    49.孙艳,马艳蓉,崔鸿文,丁勤.水杨酸对黄瓜幼苗光合作用的影响.西北农业学报,2000,9(3):110-111
    50.汤章城.植物抗逆性生理生化研究的某些进展.植物生理学通讯,1991(2):146-148
    51.汤章程,余淑文主编.植物生理与分子生物学.北京:科学出版社,1998
    52.唐先兵,赵恢武,林忠平.植物耐旱基因工程研究进展.首都师范大学学报(自然科学版),2002,23(3):47-51
    53.陶宗娅,邹琦,彭涛,程水源.水杨酸在小麦幼苗渗透胁迫中的作用.西北植物报,1999,19 (2):296-302.
    54.王朝云,揭雨成.水分胁迫对红麻生理特性和产量的影响.作物学报,1995,21(6):746-751
    55.王洪春.植物抗性生理研究进展&植物生理学专题讲座.北京:科学出社,1987,320-356
    56.王利军,李家永,战吉成,黄卫东.水杨酸对受高温胁迫的葡萄幼苗光合作用和同化物分配的影响.植物生理学通讯,2003,39(3):215-216
    57.王利军,战吉成,黄卫东.水杨酸与植物抗逆性.植物生理学通讯,2002,38(6):619-624
    58.王川.中国柑橘生产与消费现状分析.经济分析,2006,2(1):8-12
    59.王淑芬,贾炜珑,杨丽莉.药剂处理玉米种子对种子萌发及苗期抗旱力的影响.中国植物生理学会.中国植物生理第七次全国会议学术论文汇编.太原:中国植物生理学会,1996,331
    60.王伟.植物水分亏缺的某些生理变化.植物生理学通讯,1998,34(5):388-393
    61.王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递.植物生理学通讯,1992,28(6):397-402
    62.王胤,杨章旗.木本植物耐盐抗旱机理研究及评价方法.广西林业科学,2006,35(3):117-122
    63.韦莉莉,张小全,侯振宏,徐德应,余雪标.物分配对水分胁迫的响应.植物生态学报,2005,29(3):394-402
    64.吴开勇,陈根成.FA旱地龙对旱地桑园的影响.北方蚕业,1999,20(1):10
    65.吴能表,曹潇潇,阳义健,王小佳.外源水杨酸对甘蓝生理指标的影响(英文).西南师范大学学报(自然科学版),2003,28(2):275-278
    66.吴强盛.丛枝真菌对柑橘抗旱性的作用及其机理研究.[博士学位论文].武汉:华中农业大学图书馆,2006:1-131
    67.吴学友.逆境条件下玉米幼苗根系69.5KD热稳定蛋白的分离提取及其表达调控.[硕士学位论文].泰安:山东农业大学图书馆,2005,1-62
    68.魏炜,赵欣平,吕辉,刘克武,喻东.三种抗氧化酶在小麦抗干旱逆境中的作用初探.四川大学学报(自然科学版),2003,40(6):1172-1175
    69.向致林.外源水杨酸对干旱胁迫下小麦H_2O_2代谢及膜稳定性的影Ⅱ向.[硕士学位论文].南京:南京农业大学图书馆,2001
    70.许大全,沈允钢.光合作用的限制因素.科学出版社,1997
    71.杨敏生,裴保华,张树常.树木抗旱性研究进展.河北林果研究,1997,12(1):87-93
    72.姚允聪,王有年,周向东.土壤干旱与艳红苹果叶片几个生理指标的变化.园艺学进展,1994:417-421
    73.于同泉,秦岭,陈静,王有年.水分胁迫对板栗幼苗抗氧化酶及丙二醛的影响.北京农学院学报,1996,11(1):48-52
    74.于同泉,秦岭,王有年.渗透胁迫对板栗幼苗可溶性糖的积累及组分变化的研究.北京农学院学报,1996,11(1):43-47
    75.原永兵,曹宗巽.水杨酸在植物体内的作用(综述).植物学通报,1994,11(3):1-9
    76.张士功,高吉寅,宋景芝.水杨酸对小麦高盐毒害的缓解作用.应用与环境生物学报,1999,5(3):264-267
    77. Ahman A, Alegrand T, Pelah D, Tzfira T, Vincvur B, Wang W, Yarhitzky O. Molecularbioloy of drought tolerance and transformation of Populus and Pinus at the Hebrew university of Jerusalem. Dendrom, 1996, 3 (2): 5-7
    78. Basiouny F M. Responses of peach seedlings to water-stress and saturation conditions. Proc Fla State Hort Sci, 1997, 90: 261-263
    79. Blackman SA, Wettlaufer SH, Obendorf RL, Leopold AC. Maturation proteins association with desiccation tolerance in soybean seeds. Plant Physiol, 1991, 96: 868-874
    80. Bowler C, van Motagu M, Inze D. Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol, 1992, 43: 83-116
    81. Chasan R, Eliciting phyosphorylation. The Plant Cell, 1995, 7: 589-598
    82. Chen Z, Ricigliano J W, Klessig D F. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA, 1993,90: 9533-9537
    83. Chen Z and Klessig D F. Identification of a soluble salicylic acid-binding. Protein that may function in signal transduction in the plant disease resistance response. Proc Natl Acad Sci USA. 1991,88:8179-8183
    84. Dure L. Plant responses dehydration during environment stress. Plant physiology, 1993, (10) : 91-93.
    85. Estrada-Luna A A, Davies Jr F T. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of microprogated chile ancho peper (Capsicum annuum) plantlets during acclimatization and postacclimatization. J Plant Physiol, 2003,160: 1073-1083
    86. Farquar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol., 1982,33:317-345
    87. Goldsbrough A P, Albrecht H, Strayford R. Salicylic acid 2in2 ducible binding of a tabacco nuclear protein to a bp sequence which is highly conserved amongst stress inducible genes. Plant J, 1993,3:563-571
    88. Hosokawa D, Ohashi Y. Immunochemical localization of pathogenesis related proteins secreted into the intercellular spaces of salicylated2treated tobacco leaves. Plant Cell Physiol, 1998, 29(6): 1035-1040
    89. Janda T, Szalai G, Tari I . Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 1999, 208: 175-180
    90. Kang G, Wang C H, Sun G.C, Wang Z X. Salicylic acid changes activities of H_2O_2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ-mental and Experimental Botany, 2003, 50: 9-15
    91. Kar M, Mishra, D. Catalase, peroxidase and polyphenoloxidant activities during rice leaf senescence. Plant Physiol, 1976, 57: 315-319
    92. Klessig D F, Malamy J. The salicylic acid signal in plants. Plant Mol. Biol. 1994,26, 1439-1458.
    93. Kratsch H A, Wise R R. The ultrastructure of chilling stress. Plant Cell and Environ, 2000, 23: 337-350
    94. Laemmli UK. Cleavage of structural proteins during the assembly of the heat of bacteriophage T4. nature, 1970,227:680-685
    95. Luo J P, Jiang S T, Pan L J. Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens pall: relationship with H_2O_2 production and H_2O_2 metabolizing enzyme activities. Plant Sci, 2001,161: 125-132
    96. Mckersie B D , Bowley SR , Harjanto E . Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol, 1996,111 : 1177-1181.
    97. Mckersie B D , Chen Y, De Beus M . Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol, 1993 ,103 : 1155-1163.
    98. Miyagawa Y, Tamoi M , Shigeoka S. Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol, 2000 ,41:311-320.
    99. Morgan J M. Osmoregulation and water stress in higher plan. Ann Rev Plant Physiol, 1984, 35: 299-319
    100. Morgan J M. Differences in osmoregulation between wheat genotypes. Nature, 1977, 270: 234-235
    101. Munns P, Brady, C J, Barlow, E W R. Solute auumulation in the apex and leaves of wheat during water stress. Aust J Plantphysiol, 1979, 6: 379-289
    102. Ohashi Y, Matsuoka M. Localization of pathogenesis related proteins in the epidermis and intercellur spaces of tobacco leaves after their induction by potassium salicylate or tobacco mosaic virus infection. Plant Cell Physiol, 1997,28 (7) : 1227-1235
    103. Prasad T K, Anderson M P, Martin B A. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6: 65-74
    104. Panavas T, Walker E L, Rubinstein B. Possible involvement of abscisic acid in senescence of daylily petals. Journal of Experimental Botany, 1998,49(329): 1987-1997
    105. Raskin I. Salicylate, a new hormone. Plant physiol, 1992,90: 799-803
    106.Rhoads D M, McIntosh L. The salicylic acid inducible alternative oxidase gene asol and genes encoding pathogenesis related proteins share regions of sequence similarity in their promoters. Plant Mol Biol, 1993,21: 615-624
    107. Sakamoto A, MurataN. The role of glycine betaine in protection of plants from stress: clues from transgenic plants. Plant, Cell and Environment, 2002, 25: 163-171.
    108. Salin M L. Toxic Oxygen Species and Protective System of the Chloroplast. Physiol Plant, 1988, 25 (3) : 241-246
    109. Shirasu K, Nakajima H, Rajashekar K. Salicylic acid potentiates an agonist2dependent gain control that amplifies pathogen signal in the activation of defense mechanisms. Plant Cell, 1997, 9: 261-270
    110. Speer M I, Harwood J L, Walton T J. Plant Membranes Structure, Assembly and Fuction. The Biochemical Society. London, 1988,209
    111. Stewert R C, Bewley J D. Lip id peroxidation associated with accelerated aging of soybean axes. Plant Physiol, 1980,65: 245-248
    112. Stewart C R ,Lee J A. The role of proline accumulation in halophytes.Planta ,1974 ,120 : 279
    113.Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzymes efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci, 2001,161: 613-619
    114. Sutherland M W. The generation or oxygen radieals during host plant responses to infection. Physiol Mol Plant Path, 1991. 39: 27-93
    115. Tan C S, Buttery B R. Response of stomatal conductance, transpiration, photosynthesis and leaf water potential in peach seedlings to different watering regimes. Hortscience, 1982, 17: 222-223
    116. Tarczynski MC , Jensen RG, Bohnet HJ . Science, 1993 , 259 : 508-511
    117.Tasgin E, Atici O, Nalbantoglu B, Popova L P. Effects of salicylic acid and cold treatments on protein levels and on theactivities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry, 2006,67: 710-715
    118. Vieira D. Water and Plant Life. Berlin Springer Verlag, 1976, 224-227
    119. Wallin G, Karlsson P E, Sellden G. Impact of four years exposure to different levels of ozone, phosphorus and drought on chlorophyll, mineral nutrients, and stem volume of Noway spruce, Picea abies. Physiol Plant, 2002, 114:192-206
    120. Watad A A , Reinhold L, Lerner H R. Comparision between a stable NaCl_2 selected Nicotiana cell line and wild type. Plant Physiol ,1983 , 73 : 624
    121. Ye X S, Pan S Q, Kuc J. Pathogensis related proteins and systemic resistance to blue mould and tobacco mosaic virus induced by tobacco mosaic virus, peronospora tabacina and aspirin. Physiol MolPlant Pathol, 1989, 35: 161-175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700