用户名: 密码: 验证码:
利福平引起的肝内胆汁淤积及其分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利福平是临床上广泛使用的一线抗结核药物,也是我国急性药物性肝损伤的主要病因。本文首次系统观察了体内条件下利福平引起的肝内胆汁淤积及其动态过程,并在成功建立利福平致小鼠肝内胆汁淤积动物模型的基础上,从肝细胞紧密连接蛋白基因表达和完整性改变、肝细胞胆汁酸合成与分解代谢以及胆汁酸的转运过程等不同途径,初步探讨了利福平致肝内胆汁淤积的部分分子机理。
     1.利福平引起的小鼠肝内胆汁淤积
     为研究利福平致小鼠肝内胆汁淤积的剂量-效应关系,分别给予小鼠利福平(100 mg/kg·d,150 mg/kg·d,200 mg/kg·d)灌胃,连续1周;为研究不同给药时间对小鼠肝生化指标的影响,分别给予小鼠利福平(200 mg/kg·d)灌胃,连续1周或两周,末次给药后6 h取材。血清生化检测发现,利福平(200 mg/kg·d)1周所致的胆汁淤积性肝损伤最明显。因此,本研究着重探讨连续1周给予利福平(200 mg/kg·d)引起的小鼠肝内胆汁淤积及其分子机理。
     经口给予利福平(200 mg/kg·d)1周后,小鼠血清总胆红素(TB)上升近70倍,结合胆红素(DB)上升约82倍,碱性磷酸酶(ALP)上升约1.5倍,血清总胆汁酸(TBA)上升约8倍并伴有小鼠血清丙氨酸氨基转移酶(ALT)和天门冬氨酸氨基转移酶(AST)轻度升高,这些结果与临床胆汁淤积性肝损伤病人的肝生化指标一致。此外,小鼠肝脏组织TBA上升约2.5倍,肝脏组织HE染色显示肝细胞出现脂肪变性、轻度坏死和炎症。
     为探讨胆汁淤积发生与发展的时间过程,单次给予利福平(200 mg/kg)后于不同时点(0.5 h,2 h,6 h,12 h)取材,血清生化检测发现,单次给予利福平0.5 h后血清ALT、AST和ALP即开始轻度上升,2-6 h后达到高峰,12 h开始呈下降趋势;而单次给予利福平后血清TB、DB和TBA的变化趋势与血清ALT、AST和ALP一致,但是上升幅度更加明显;单次给予利福平所有时点均未见小鼠肝脏组织病理学损害。这些研究结果提示,单次或连续1周给予利福平(200 mg/kg)均引起小鼠肝内胆汁淤积,并造成轻度的肝细胞损伤。
     2.肝细胞紧密连接完整性破坏在利福平致小鼠肝内胆汁淤积中的作用
     为探讨肝细胞紧密连接蛋白相关基因表达的改变在利福平致小鼠肝内胆汁淤积中的作用,采用RT-PCR技术检测肝细胞紧密连接蛋白(ZO)-1、2、3,occludin和claudin-1 mRNA水平。结果显示,尽管单次给予利福平(200 mg/kg)引起ZO-1和ZO-2 mRNA水平短暂下调,但连续给予利福平(200 mg/kg·d)1周对ZO-1、2、3,occludin和claudin-1 mRNA表达水平无明显影响。
     为探讨肝细胞紧密连接完整性改变在利福平致肝内胆汁淤积中的作用,采用免疫荧光技术检测利福平对ZO-1和occludin定位及完整性的影响。结果显示,给予利福平(200 mg/kg·d)1周后,ZO-1和occludin蛋白条带完整性受损,出现扭曲、断裂和不完整的荧光条带,胞浆内ZO-1和occludin荧光强度明显增强,提示ZO-1和occludin发生细胞内陷;单次给予利福平(200 mg/kg)后0.5 h,ZO-1和occludin荧光条带即出现变形、扭曲和不完整等改变,这些改变至少持续12 h。免疫荧光强度定量分析显示,给予利福平(200 mg/kg·d)1周后, ZO-1荧光强度无明显变化,而occludin荧光强度明显下降;进一步观察发现,单次给予利福平(200 mg/kg)后0.5 h,ZO-1和occludin荧光强度即明显下降,这种改变也至少持续12 h。这些研究结果提示,利福平通过改变肝细胞紧密连接完整性引起小鼠肝内胆汁淤积,未见利福平引起的肝内胆汁淤积与肝细胞紧密连接蛋白基因表达有明显的关联。
     3.胆汁酸合成和代谢过程在利福平致小鼠肝内胆汁淤积中的作用
     胆固醇7α羟化酶(CYP7A1)是肝细胞胆汁酸合成关键酶,而细胞色素P450 3A (CYP3A)是肝细胞胆汁酸分解关键酶。为探讨胆汁酸合成和代谢过程在利福平致小鼠肝内胆汁淤积中的作用,用RT-PCR技术检测肝脏cyp7a1和cyp3a11 mRNA水平;用Western blotting技术检测CYP7A1和CYP3A蛋白表达水平。结果显示,给予利福平(200 mg/kg·d)1周后,肝脏cyp7a1 mRNA水平和CYP7A1蛋白水平均明显下降,而cyp3a11 mRNA和CYP3A蛋白水平显著升高。进一步研究显示,cyp7a1 mRNA和蛋白表达水平在给予单剂量利福平(200 mg/kg)后0.5 h出现短暂升高但迅速下降;而cyp3a11 mRNA和CYP3A蛋白表达水平在给予单剂量利福平(200 mg/kg)后表现为迅速而持久的上升。这些研究结果提示,利福平引起的小鼠肝内胆汁淤积与胆汁酸合成及代谢无关。
     4.利福平对肝细胞胆汁酸转运体的影响
     为探讨胆汁酸转运体在利福平致小鼠肝内胆汁淤积中的作用,用RT-PCR技术检测了小鼠肝细胞转运体bsep、mrp2、mrp3、ntcp、oatp1和oatp2的mRNA表达水平。初步研究结果显示,给予利福平(200 mg/kg·d)1周后,肝细胞毛细胆管膜侧的转运体bsep、mrp2和mrp3 mRNA表达水平无明显变化;肝细胞基底膜侧转运体ntcp mRNA表达水平轻度下调,而oatp1和oatp2 mRNA表达水平无明显变化。进一步观察发现,给予单剂量利福平(200 mg/kg)后,ntcp mRNA表达水平表现为快速而持久的下降;而bsep、mrp2、mrp3、oatp1和oatp2 mRNA水平均无明显变化。
     根据以上研究结果,本文得出以下结论:(1)连续多次及单次给予利福平均引起小鼠肝内胆汁淤积;(2)利福平所致的小鼠肝内胆汁淤积与肝细胞紧密连接蛋白ZO-1和occludin的完整性破坏有关;(3)利福平引起的小鼠肝内胆汁淤积与胆汁酸合成及代谢过程无关;(4)利福平对小鼠肝细胞胆汁酸转运体基因表达无明显影响,利福平是否通过改变胆汁酸转运体在肝细胞膜的定位和功能引起胆汁淤积尚需在下一步研究中进一步探讨。
Rifampicin, one of the most commonly used anti-tubercular drugs, has been known to be hepatotoxic, but little is known about the mechanism of rifampicin-induced hepatotoxicity. Rifampicin is the main reason of acute drug-induced liver injury in China. Based on establishing a mouse model of rifampicin-induced intrahepatic cholestasis, the present study investigated molecular mechanism of rifampicin-induced cholestasis.
     1. Rifampicin induced intrahepatic cholestasis in mice
     To investigate dose-effect relationships on rifampicin-induced intrahepatic cholestasis, mice were administered with different doses of rifampicin (100 mg/kg·d, 150 mg/kg·d, 200 mg/kg·d) by gastric intubation for 7 consecutive days. To investigate effects of different time of rifampicin on biochemical indicators, mice were administered with rifampicin (200 mg/kg·d) for 7 or 14 consecutive days. All mice were sacrificed at 6 h after the last administration to collect sera and liver tissues. Results showed that serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), conjugated bilirubin (DB), total bile acid (TBA) and alkaline phosphatase (ALP) were significantly increased in a dose - dependent manners. In the rifampicin (200 mg/kg·d for a week) group, serum ALT and AST were increased about 1.5-fold. Importantly, the levels of serum TB, DB, TBA and ALP were increased about 70-fold, 82-fold, 8-fold and 1.5-fold, respectively. Hepatic histology showed a steatosis associated with mild necrosis and inflammation. These results are in agreement with clinical signs of cholestasis. To investigate time-course on rifampicin-induced intrahepatic cholestasis, mice were administered with a single dose of rifampicin (200 mg/kg) by gastric intubation. Serum ALT, AST, ALP, TB, DB and TBA were measured at 0.5, 2, 6 and 12 h after administration of rifampicin. Results showed that all biochemical indicators were significantly increased, beginning at 30 min, being at the highest level from 2 h to 6 h and returning to basal level at 12 h after a single dose of rifampicin. In addition, the level of TBA in liver tissue was also significantly increased after a single dose of rifampicin, whereas a single dose of rifampicin did not result in any pathological damage in mouse liver. These results suggest that either a single dose of rifampicin or a seven-day treatment with rifampicin causes cholestatic liver damage.
     2. Role of hepatic tight junction on rifampicin-induced cholestasis
     Hepatocyte tight junctions are the only intercellular barriers between the sinusoidal and the canalicular spaces, whose integrity is essential for holding back diffusion of bile constituents from the canalicular spaces to the sinusoidal spaces. To study the effects of rifampicin on the hepatic tight junction, mice were orally administered with either rifampicin (200 mg/kg·d) for 7 consecutive days or a single dose of rifampicin (200 mg/kg). RT-PCR was used to detect the expression of the hepatic ZO-1, 2, 3, occludin and claudin-1 mRNA. Immunofluorescence was used to investigate the effects of rifampicin on the localization and integrity of the hepatic ZO-1 and occludin. Results showed that administration of rifampicin for 7 consecutive days had no effect on the expression of hepatic tight junction mRNA, whereas a single dose of rifampicin induced a slight decrease in hepatic ZO-1 and ZO-2 mRNA, beginning at 30 min, being at the lowest level at 2 h and returning to basal level 12 h after rifampicin administration. Immunofluorescence showed that staining of ZO-1 and occludin in control liver tissue was predominantly limited to focal regions of hepatocyte-hepatocyte contact. ZO-1 and occludin staining in rifampicin-treated mice was tortuous and discontinuous. Densitometric analysis of ZO-1 fluorescence profile showed that although there was no difference on ZO-1 staining intensity in mice treated with rifampicin for 7 consecutive days, a significant broadening of ZO-1 peak was observed in mice treated with rifampicin. In addition, rifampicin treatment for 7 consecutive days induced an obvious decrease in occludin staining intensity with an increased immunostaining of occludin in the intracellular area. A significant broadening of occludin peak was also observed after a week of treatment with rifampicin. In a single dose of rifampicin-treated mice, ZO-1 and occludin staining was tortuous, discontinuous in liver specimens. In addition, the intensity of staining was significantly decreased, beginning at 30 min, and remaining a lower level 12 h after a single dose of rifampicin. These results suggest that rifampicin-induced cholestasis is associated with the altered integrity of hepatocyte tight junctions.
     3. Role of bile acid synthesis and metabolism on rifampicin-induced choleatasis
     In order to explore the effects of rifampicin on bile acid synthesis and metabolic enzyme, RT-PCR and Western blotting were used to detect the levels of cholesterol- 7α-hydroxylase (cyp7a1) and cytochrome P450 3a (cyp3a) mRNA and protein. The results showed that administration of rifampicin for 7 days significantly reduced the level of cyp7a1 mRNA and CYP7A1 protein. By contrary, the expressions of cyp3a11 mRNA and CYP3A protein were obviously up-regulated after a week of treatment with rifampicin. To investigate the effects of a single dose of rifampicin on the expressions of cyp7a1 and cyp3a11, mice were orally administered with 200 mg/kg of rifampicin. Results showed that the levels of cyp7a1 mRNA and protein were slightly increased at 0.5 h, and then decreased quickly. By contrary, the levels of cyp3a11 mRNA and protein were increased, beganing at 0.5 h, and remaining a higher level at 12 h after rifampicin administration. Taken together, these results indicate that rifampicin-induced cholestasis is independent of bile acid synthesis and metabolism in mouse liver.
     4. Effects of rifampicin on hepatobiliary transporters
     To study the role of hepatobiliary transporters in rifampicin-induced intrahepatic cholestasis, mice were administered with rifampicin (200 mg/kg·d) by gastric intubation for 7 consecutive days. The levels of bsep, mrp2, mrp3, ntcp, oatp1 and oatp2 mRNA in mouse liver were determined using RT-PCR. Results showed that no significant difference was observed on the expression of bsep, mrp2 and mrp3 mRNA between rifampicin-treated mice and controls. Although mRNA expression of hepatic ntcp, a basolateral hepatobiliary transporter, was slightly downregulated in rifampicin-treated mice, but rifampicin treatment had no effect on mRNA level of other basolateral hepatobiliary transporters including oatp1 and oatp2. To investigate the effects of a single dose of rifampicin on hepatobiliary transporters, mice were administered with rifampicin (200 mg/kg) by gastric intubation. Results showed that ntcp mRNA level was slightly downregulated, whereas a single dose of rifampicin had no effect on the levels of bsep, mrp2, mrp3, oatp1 and oatp2 mRNA in mouse liver.
     In summary, we concluded that (1) a single dose of rifampicin or a seven-day administration of rifampicin can induce cholestatic liver damage in mice; (2) rifampicin-induced cholestasis is associated with the altered integrity of hepatocyte tight junctions; (3) rifampicin-induced cholestasis is independent of bile acid synthesis and metabolism in mouse liver; (4) the expression of ntcp mRNA was slightly downregulated in rifampicin-treated mice, whereas rifampicin treatment had no effect on the levels of bsep, mrp2, mrp3, oatp1 and oatp2 mRNA. Further studies are necessary for the role of hepatobiliary transporters in rifampicin-induced choleatasis.
引文
1. Cheng MH. Ministerial meeting agrees plan for tuberculosis control. Lancet 2009; 373: 1328.
    2. The Lancet. Crunch time for tuberculosis control. Lancet 2009; 373:1145.
    3. Dossing M, Wilcke JT, Askgaard DS, Nybo B. Liver injury during antituberculosis treatment: an 11-year study. Tuber Lung Dis 1996; 77: 335–340.
    4. Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med 2003; 167:1472-1477.
    5. Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WC, van der Ven AJ, Dekhuijzen R. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol 2008; 23: 192-202.
    6. Tost JR, Vidal R, Cayla J, Diaz-Cabanela D, Jimenez A, Broquetas JM. Severe hepatotoxicity due to anti-tuberculosis drugs in Spain. Int J Tuberc Lung Dis 2005; 9: 534–540.
    7. Huang YS. Genetic polymorphisms of drug-metabolizing enzymes and the susceptibility to antituberculosis drug-induced liver injury. Expert Opin Drug Metab Toxicol 2007; 3: 1-8.
    8.中华医学会消化病学分会肝胆疾病协作组.全国多中心急性药物性肝损伤住院病例调研分析.中华消化杂志2007; 27: 439-442.
    9. Villarino ME, Ridzon R, Weismuller PC, Elcock M, Maxwell RM, Meador J, Smith PJ, Carson ML, Geiter LJ. Rifampin preventive therapy for tuberculosis infection: experience with 157 adolescents. Am J Respir Crit Care Med1997; 155: 1735-1738.
    10. Steele MA, Burk RF, DesPrez RM. Toxic hepatitis with isoniazid and rifampin. A meta-analysis. Chest 1991; 99:465-471.
    11. Westphal JF, Vetter D, Brogard JM. Hepatic side-effects of antibiotics. J Antimicrob Chemother 1994; 33:387-401.
    12.杨慧媛,宋育林,许建明,胡乃中,查正伟,王道斌.异烟肼利福平合用致大鼠肝损伤的实验模型.安徽医科大学学报2008; 43: 185-189.
    13. Meng Q, Zhang G, Shen C, Qiu H. Sensitivities of gel entrapped hepatocytes in hollow fibers to hepatotoxic drug. Toxicol Lett 2006; 166:19-26.
    14. Shen C, Cheng X, Li D, Meng Q. Investigation of rifampicin-induced hepatotoxicity in rat hepatocytes maintained in gel entrapment culture. Cell Biol Toxicol 2009; 25:265-274.
    15. Loots DT, Wiid IJ, Page BJ, Mienie LJ, van Helden PD. Melatonin prevents the free radical and MADD metabolic profiles induced by antituberculosis drugs in an animal model. J Pineal Res 2005; 38: 100-106.
    16. Chowdhury A, Santra A, Bhattacharjee K, Ghatak S, Saha DR, Dhali GK. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J Hepatol 2006; 45: 117-126.
    17. Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol 1998; 60:121-142.
    18. Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 1999; 274: 35179-35185.
    19. Mottino AD, Hoffman T, Crocenzi FA, Sánchez Pozzi EJ, Roma MG, Vore M. Disruption of function and localization of tight junctional structures and Mrp2 in sustained estradiol-17beta-D-glucuronide-induced cholestasis. Am J Physiol Gastrointest Liver Physiol 2007; 293: G391-402.
    20. Kawaguchi T, Sakisaka S, Mitsuyama K, Harada M, Koga H, Taniguchi E, Sasatomi K, Kimura R, Ueno T, Sawada N, Mori M, Sata M. Cholestasis with altered structure and function of hepatocyte tight junction and decreased expression of canalicular multispecific organic anion transporter in a rat model of colitis. Hepatology 2000; 31:1285-1295.
    21. Kawaguchi T, Sakisaka S, Sata M, Mori M, Tanikawa K. Different lobular distributions of altered hepatocyte tight junctions in rat models of intrahepatic and extrahepatic cholestasis. Hepatology 1999; 29: 205-216.
    22. Schuetz EG, Schuetz JD, Strom SC, Thompson MT, Fisher RA, Molowa DT, Li D, Guzelian PS. Regulation of human liver cytochromes P-450 in family 3A in primary and continuous culture of human hepatocytes. Hepatology 1993; 18: 1254 -1262.
    23. Xu DX, Wei W, Sun MF, Wu CY, Wang JP, Wei LZ, Zhou CF. Kupffer cells and ROS partially mediate LPS-induced down-regulation of nuclear receptor Pregnane X receptor and its target gene CYP3A in mouse liver. Free Radic Biol Med 2004;37:10-22.
    24. Nannelli A, Chirulli V, Longo V, Gervasi PG. Expression and induction by rifampicin of CAR- and PXR-regulated CYP2B and CYP3A in liver, kidney and airways of pig. Toxicology 2008; 252:105-112.
    25. Li T, Chiang JY. Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol. 2005; 288:G74-84.
    26. Christiane PM, Peter JM. Hepatobiliary transporters and drug-induced cholestasis. Hepatology 2006; 44: 778-787.
    27. Capelle P, Dhumeaux D, Mora M, Feldmann G, Berthelot P. Effect of rifampicin on liver function in man. Gut 1972; 13: 366-371.
    28. Galeazzi R, Lorenzini I, Orlandi F. Rifampicin-induced elevation of serum bile acids in man. Dig Dis Sci 1980; 25:108-112.
    29. Berg JD, Pandov HI, Sammons HG. Serum total bile acid levels in patients receiving rifampicin and isoniazid. Ann Clin Biochem 1984; 21: 218-222.
    30. Stieger B, Fattinger K, Madon J, Kullak-ublick GA,Meier PJ. Drug- and estrogen- induced cholestasis through inhibition of the bile salt export pump (Bsep) of rat liver. Gastroenterology 2000; 118: 422-430.
    31. Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, Sugiyama Y. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos 2006; 34:1575-1581.
    32. Karin F, Valentino C, Bruno H, Peter JM, Bruno S. Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology 2000; 32: 82-86.
    33. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 2002; 36:164-172.
    34.沈雪林,毕丽娜.腺苷蛋氨酸治疗药物性淤胆型肝炎13例临床分析.临床内科杂志2002; 19: 151.
    35.李道芬.药物性黄疸45例临床分析.临床肝胆病杂志1989; 5: 49-50.
    36.郝志洲.以结合性胆红素升高为主的高黄疸125例分析.中国误诊学杂志2007; 7: 6849-6850.
    37.邢同京,陈加保,张光曙,甘天福,丁明权,阎承玉.利福平与异烟肼合用致肝损害的临床与病理分析.中华结核和呼吸杂志1997; 20: 33-35.
    38. Zinchuk V, Zinchuk O, Okada T. Experimental LPS-induced cholestasis alters subcellular distribution and affects colocalization of Mrp2 and Bsep proteins: a quantitative colocalization study. Microsc Res Tech 2005; 67: 65-70.
    39. Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P, Stauber RE, Krejs GJ, Denk H, Zatloukal K, Trauner M. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 2001; 33: 633–646.
    40. Rana SV, Pal R, Vaiphie K, Singh K. Effect of different oral doses of isoniazid-rifampicin in rats. Mol Cell Biochem 2006; 289:39-47.
    41. Pal R, Vaiphei K, Sikander A, Singh K, Rana SV. Effect of garlic on isoniazid and rifampicin-induced hepatic injury in rats. World J Gastroenterol 2006;12: 636-639.
    42. Xu DX, Wei W, Sun MF, Wei LZ, Wang JP. Melatonin counteracts against LPS-induced oxidative stress and attenuates LPS-induced down-regulation of nuclear receptor pregnane X receptor and its target gene CYP3A in mouse liver. J Pineal Res 2005; 38: 27-34.
    43. Han X, Fink MP, Uchiyama T, Yang R, Delude RL. Increased iNOS activity is essential for hepatic epithelial tight junction dysfunction in endotoxemic mice. Am J Physiol Gastrointest Liver Physiol 2004; 286:G126-136.
    44. Hartmann G, Cheung AK, Piquette-Miller M. Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther 2002; 303: 273-281.
    45. Kitada H, Miyata M, Nakamura T, Tozawa A, Honma W, Shimada M, Nagata K, Sinal CJ, Guo GL, Gonzalez FJ, Yamazoe Y. Protective role of hydroxysteroid sulfotransferase in lithocholic acid-induced liver toxicity. J Biol Chem 2003; 278:17838-17844.
    46. Miyata M, Tozawa A, Otsuka H, Nakamura T, Nagata K, Gonzalez FJ, Yamazoe Y. Role of farnesoid X receptor in the enhancement of canalicular bile acid output and excretion of unconjugated bile acids: a mechanism for protection against cholic acid-induced liver toxicity. J Pharmacol Exp Ther 2005; 312:759-766.
    47. Kojima M, Sekikawa K, Nemoto K, Degawa M. Tumor necrosis factor -alpha-independent downregulation of hepatic cholesterol 7alpha -hydroxylase genein mice treated with lead nitrate. Toxicol Sci 2005; 87:537-542.
    48. Kim MS, Shigenaga J, Moser A, Feingold K, Grunfeld C. Repression of farnesoid X receptor during the acute phase response. J Biol Chem 2003; 278: 8988-8995.
    49. Williams GM, Iatropoulos MJ. Alteration of liver cell function and proliferation: differentiation between adaptation and toxicity. Toxicol Pathol 2002; 30:41-53.
    50. Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, Peloquin CA, Gordin FM, Nunes D, Strader DB, Bernardo J, Venkataramanan R, Sterling TR; ATS (American Thoracic Society) Hepatotoxicity of Antituberculosis Therapy Subcommittee. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med 2006; 174: 935-952.
    51. FDA Working Group. CDER- phRMA- AASLD Conference 2007: Premarketing evaluation of drug-induced liver injury. http:// www. fda. gov/ cder/ livertox/ concept-paper 2007.pdf.
    52. Benichou C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol 1990; 11:272-276.
    53. Chitturi S, Farrell G. Drug-induced liver disease. In: Schiff ER, Sorrell MF, Maddrey WC, editors. Schiff’s diseases of the liver, 9th ed. Philadelphia: Lippincott, Williams & Wilkins; 2002. pp. 1059–1128.
    54. F?rster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 2008; 130:55-70.
    55. Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S. Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 1996; 133:43-47.
    56. Krell H, H?ke H, Pfaff E. Development of intrahepatic cholestasis by alpha-naphthylisothiocyanate in rats. Gastroenterology 1982; 82:507-514.
    57. Rahner C, Stieger B, Landmann L. Structure-function correlation of tight junctional impairment after intrahepatic and extrahepatic cholestasis in rat liver. Gastroenterology 1996; 110:1564-1578.
    58. Fallon MB, Mennone A, Anderson JM. Altered expression and localization of the tight junction protein ZO-1 after common bile duct ligation. Am J Physiol 1993; 264:C1439-1447.
    59. Fallon MB, Brecher AR, Balda MS, Matter K, Anderson JM. Altered hepaticlocalization and expression of occludin after common bile duct ligation. Am J Physiol 1995; 269 :C1057-1062.
    60. Benedicto I, Molina-Jiménez F, Barreiro O, Maldonado-Rodríguez A, Prieto J, Moreno-Otero R, Aldabe R, López-Cabrera M, Majano PL. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum. Hepatology 2008; 48:1044-1053.
    61. Takakuwa Y, Kokai Y, Sasaki K, Chiba H, Tobioka H, Mori M, Sawada N. Bile canalicular barrier function and expression of tight-junctional molecules in rat hepatocytes during common bile duct ligation. Cell Tissue Res 2002; 307:181-189.
    62. Maly IP, Landmann L. Bile duct ligation in the rat causes upregulation of ZO-2 and decreased colocalization of claudins with ZO-1 and occludin. Histochem Cell Biol 2008; 129:289-299.
    63. Norlin M, Wikvall K. Enzymes in the conversion of cholesterol into bile acids. Curr Mol Med 2007; 7:199-218.
    64. Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005; 433:397-412.
    65. Chen J, Raymond K. Nuclear receptors, bile-acid detoxification, and cholestasis. Lancet 2006; 367:454-456.
    66. Tandon P, Rowe BH, Vandermeer B, Bain VG. The efficacy and safety of bile Acid binding agents, opioid antagonists, or rifampin in the treatment of cholestasis-associated pruritus. Am J Gastroenterol 2007; 102:1528-1536.
    67. Oo YH, Neuberger J. Options for treatment of primary biliary cirrhosis. Drugs 2004; 64:2261-2271.
    68. Prince MI, Burt AD, Jones DE. Hepatitis and liver dysfunction with rifampicin therapy for pruritus in primary biliary cirrhosis. Gut 2002; 50:436-439.
    69. Woolf GM, Reynolds TB. Failure of rifampin to relieve pruritus in chronic liver disease. J Clin Gastroenterol 1990; 12:174-177.
    70. Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83:633-671.
    71. Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ. The human bile salt export pump: characterization of substrate specificity andidentification of inhibitors. Gastroenterology 2002; 123:1649-1658.
    72. Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-777.
    73. Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, Müllhaupt B, Meier PJ, Pauli-Magnus C.Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 2005; 43: 536-543.
    74. van Mil SW, van der Woerd WL, van der Brugge G, Sturm E, Jansen PL, Bull LN, van den Berg IE, Berger R, Houwen RH, Klomp LW. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenter- ology 2004; 127:379-384.
    75. Lee JH, Chen HL, Chen HL, Ni YH, Hsu HY, Chang MH. Neonatal Dubin-Johnson syndrome: long-term follow-up and MRP2 mutations study. Pediatr Res 2006; 59:584-589.
    76. Machida I, Wakusawa S, Sanae F, Hayashi H, Kusakabe A, Ninomiya H, Yano M, Yoshioka K. Mutational analysis of the MRP2 gene and long-term follow-up of Dubin-Johnson syndrome in Japan. J Gastroenterol 2005; 40:366-370.
    77. Keitel V, Vogt C, H?ussinger D, Kubitz R. Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 2006; 131:624-629.
    78. Keitel V, Burdelski M, Warskulat U, Kühlkamp T, Keppler D, H?ussinger D, Kubitz R. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology2005; 41:1160-1172.
    79. Crocenzi FA, Mottino AD, Cao J, Veggi LM, Pozzi EJ, Vore M, Coleman R, Roma MG. Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats. Am J Physiol Gastrointest Liver Physiol 2003; 285:G449-459.
    80. Mottino AD, Cao J, Veggi LM, Crocenzi F, Roma MG, Vore M. Altered localization and activity of canalicular Mrp2 in estradiol -17 beta–D–glucuronide–induced cholestasis. Hepatology 2002; 35:1409-1419.
    81. Trauner M, Arrese M, Lee H, Boyer JL, Karpen SJ. Endotoxin downregulates rat hepatic ntcp gene expression via decreased activity of critical transcription factors. J Clin Invest 1998; 101:2092-2100.
    82. Ruiz ML, Villanueva SS, Luquita MG, Ikushiro S, Mottino AD, Catania VA. Beneficial effect of spironolactone administration on ethynylestradiol-induced cholestasis in the rat: involvement of up-regulation of multidrug resistance-associated protein 2. Drug Metab Dispos 2007; 35:2060-2066.
    83. Lengyel G, Veres Z, Tugyi R, Vereczkey L, Molnár T, Glavinas H, Krajcsi P, Jemnitz K. Modulation of sinusoidal and canalicular elimination of bilirubin-glucuronides by rifampicin and other cholestatic drugs in a sandwich culture of rat hepatocytes. Hepatol Res 2008; 38:300-309.
    1. Ishak KG, Zimmerman HJ. Morphologic spectrum of drug-induced hepatic disease. Gastroenterol Clin North Am 1995; 24:759-786.
    2. Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis 2002; 22:169-183.
    3. Bissell DM, Gores GJ, Laskin DL, Hoofnagle JH. Drug-induced liver injury: mechanisms and test systems. Hepatology 2001; 33:1009-1013.
    4. Benichou C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol 1990; 11:272-276.
    5. Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Archiv 2004; 447:566-570.
    6. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO super-family, new nomenclature and molecular/functional properties. Pflugers Archiv 2004; 447:653-665.
    7. Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 2005; 203:257-263.
    8. Meier-Abt F, Faulstich H, Hagenbuch B. Identification of phalloidin uptake systems of rat and human liver. Biochim Biophys Acta 2004; 1664:64-69.
    9. Letschert K, Faulstich H, Keller D, Keppler D. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci 2006; 91:140-149.
    10. Homolya L, Varadi A, Sarkadi B. Multidrug resistance-associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 2003; 17:103-114.
    11. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92: 1295-1302.
    12. Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004; 126:322-342.
    13. Noe J, Stieger B, Meier PJ. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 2002; 123:1659-1666.
    14. van Erpecum KJ. Biliary lipids, water and cholesterol gallstones. Biol Cell 2005; 97:815-822.
    15. Borst P, Zelcer N, van de Wetering K. MRP2 and 3 in health and disease. Cancer Lett 2006; 234:51-61.
    16. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101:289-294.
    17. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, Roden MM, Belas F, Chaudhary AK, Roden DM, Wood AJ, Wilkinson GR. Interrelation ship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16:408-414.
    18. Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 2003; 278: 22644-22649.
    19. Hirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, Sugiyama Y. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 2005; 68:800-807.
    20. Kosters A, Kunne C, Looije N, Patel SB, Oude Elferink RP, Groen AK. The mechanism of Abcg5/Abcg8 in biliary cholesterol secretion in mice. J Lipid Res 2006; 47:1959-1966.
    21. Klett EL, Patel S. Genetic defenses against noncholesterol sterols. Curr Opin Lipidol 2003; 14:341-345.
    22. Park YJ, Qatanani M, Chua SS, LaRey JL, Johnson SA, Watanabe M, Moore DD, Lee YK. Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis. Hepatology 2008; 47: 1578-86.
    23. Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-777.
    24. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 1365-1368.
    25. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362-1365.
    26. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3: 543-553.
    27. Teng S, Piquette-Miller M. Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br J Pharmacol 2007; 151:367-376.
    28. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 2001; 98: 3369-3374.
    29. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 2001; 121: 140-147.
    30. Jung D, Kullak-Ublick GA. Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 2003; 37:622-631.
    31. Jung D, Hagenbuch B, Gresh L, Pontoglio M, Meier PJ, Kullak-Ublick GA. Characterization of the human OATP-C (SLC21A6) gene promoter and regulation of liver-specific OATP genes by hepatocyte nuclear factor 1 alpha. J Biol Chem 2001; 276:37206-37214.
    32. Jung D, Podvinec M, Meyer UA, Mangelsdorf DJ, Fried M, Meier PJ, Kullak- Ublick GA. Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 2002; 122:1954-1966.
    33. Schuetz EG, Strom S, Yasuda K, Lecureur V, Assem M, Brimer C, Lamba J, Kim RB, Ramachandran V, Komoroski BJ, Venkataramanan R, Cai H, Sinal CJ, Gonzalez FJ, Schuetz JD.Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 2001; 276: 39411-39418.
    34. Teng S, Jekerle V, Piquette-Miller M. Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab. Dispos 2003; 31, 1296-1299.
    35. Mukhopadhyay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS.Sodium taurocholate cotransporting polypeptide is a serine, threonine phosphoprotein and is dephosphorylated by cyclic adenosine monophosphate. Hepatology 1998; 28:1629-1636.
    36. Webster CR, Blanch C, Anwer MS. Role of PP2B in cAMP-induced dephosphorylation and translocation of NTCP. Am J Physiol 2002; 283: G44-G50.
    37. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 2001; 276:28857-28865.
    38. Huang L, Zhao A, Lew JL, Zhang T, Hrywna Y, Thompson JR, de Pedro N, Royo I, Blevins RA, Peláez F, Wright SD, Cui J. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 2003; 278: 51085-51090.
    39. Plass JR, Mol O, Heegsma J, Geuken M, Faber KN, Jansen PL, Müller M. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 2002; 35: 589-596.
    40. Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA. Regulation of multidrug resistance- associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 2002; 277: 2908-2915.
    41. Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, Kroemer HK. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104:147-153.
    42. Durr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, Fattinger K.St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000; 68:598-604.
    43. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001; 276:14581-14587.
    44. Yu L, York J, von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH. Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem 2003; 278: 15565-15570.
    45. Kurz AK, Graf D, Schmitt M, Vom Dahl S, Haussinger D. Tauroursodesox- ycholate - induced choleresis involves p38(MAPK) activation and translocation ofthe bile salt export pump in rats. Gastroenterology 2001; 121: 407-419.
    46. Misra S, Ujhazy P, Gatmaitan Z, Varticovski L, Arias IM. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP dependent canalicular transporters in rat liver. J Biol Chem 1998; 273: 26638-26644.
    47. Misra S, Ujhazy P, Varticovski L, Arias IM. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc Natl Acad Sci U S A 1999; 96:5814-5819.
    48. Stieger B, Fattinger K, Madon J, Kullak-ublick GA,Meier PJ. Drug- and estrogen- induced cholestasis through inhibition of the bile salt export pump (Bsep) of rat liver. Gastroenterology 2000; 118: 422-430.
    49. Karin F, Valentino C, Bruno H, Peter JM, Bruno S. Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology 2000; 32: 82-86.
    50. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 2002; 36:164-172.
    51. Iwanaga T, Nakakariya M, Yabuuchi H, Maeda T, Tamai I. Involvement of bile salt export pump in flutamide-induced cholestatic hepatitis. Biol Pharm Bull 2007; 30:739-744.
    52. Smith AJ, van Helvoort A, van Meer G, Szabo K, Welker E, Szakacs G, Varadi A, Sarkadi B, Borst P. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 2000; 275:23530-23539.
    53. Fouassier L, Kinnman N, Lefevre G, Lasnier E, Rey C, Poupon R, Elferink RP, Housset C. Contribution of mrp2 in alterations of canalicular bile formation by the endothelin antagonist bosentan. J Hepatol 2002; 37:184-191.
    54. Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ. Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 2005; 43:342-357.
    55. Christiane PM, Peter JM. Hepatobiliary transporters and drug-induced cholestasis. Hepatology 2006; 44: 778-787.
    56. Tirona RG, Leake BF, Merino G, Kim RB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activityamong European- and African-Americans. J Biol Chem 2001; 276: 35669-35675.
    57. Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, Backman JT, Kerb R, Schwab M, Neuvonen PJ, Eichelbaum M, Kivist? KT. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004; 14:429-440.
    58. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 2005; 33: 434-439.
    59. Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, Müllhaupt B, Meier PJ, Pauli-Magnus C.Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 2005; 43: 536-543.
    60. van Mil SW, van der Woerd WL, van der Brugge G, Sturm E, Jansen PL, Bull LN, van den Berg IE, Berger R, Houwen RH, Klomp LW. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenter- ology 2004; 127:379-384.
    61. Pauli-Magnus C, Lang T, Meier Y, Zodan Marin T, Jung D, Breymann C, Zimmermann R, Kenngott S, Beuers U, Reichel C, Kerb R, Penger A, Meier PJ, Kullak-Ublick GA. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 2004; 14:91-102.
    62. Pauli-Magnus C, Kerb R, Fattinger K, Lang T, Anwald B, Kullak-Ublick GA, Beuers U, Meier PJ. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 2004; 39:779-791.
    63. Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, Kullak-Ublick GA, Meier PJ, Pauli-Magnus C. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 2007, 17:47-60.
    64. Hitzl M, Drescher S, van der Kuip H, Schaffeler E, Fischer J, Schwab M, Eichelbaum M, Fromm MF. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 fromCD56+ natural killer cells. Pharmacogenetics 2001;11:293-298.
    65. Cai SY, Boyer JL. FXR: a target forcholestatic syndromes? Expert Opin Ther Targets 2006; 10:409–421.
    66. Paumgartner G, Pusl T. Medical treatment of cholestatic liver disease. Clin Liver Dis 2008; 12:53-80
    67. Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003; 112: 1678-1687.
    68. Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM. 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem 2002; 45: 3569–3572.
    69. Fiorucci S, Clerici C, Antonelli E, Orlandi S, Goodwin B, Sadeghpour BM, Sabatino G, Russo G, Castellani D, Willson TM, Pruzanski M, Pellicciari R, Morelli A.Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther 2005; 31:604-612.
    70. Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pellicciari R, Morelli A. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004; 127:1497-1512.
    71. Marschall HU, Wagner M, Zollner G, Fickert P, Diczfalusy U, Gumhold J, Silbert D, Fuchsbichler A, Benthin L, Grundstr?m R, Gustafsson U, Sahlin S, Einarsson C, Trauner M. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 2005; 129:476-485.
    72. Beuers U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol 2006; 3:318–328.
    73. Prieto J, Garcia N, Marti-Climent JM, et al. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology 1999; 117:167–72.
    74. Benz C, Angermuller S, Otto G, et al. Effect of tauroursodeoxycholic acid on bile acid-induced apoptosis in primary human hepatocytes. Eur J Clin Invest 2000; 30:203–209.
    75. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid mechanisms of action and clinical use in hepatobiliary disorders. J Hepatol 2001; 35:134–146.
    76. Smith LA, Ignacio JR, Winesett MP, et al. Vanishing bile duct syndrome: amoxicillinclavulanic acid associated intra-hepatic cholestasis responsive to ursodeoxycholic acid. J Pediatr Gastroenterol Nutr 2005; 41:469–473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700