用户名: 密码: 验证码:
量子限制杂质能级间跃迁及其在太赫兹发光器的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹(THz)辐射波具有很多极其优越的特性,在基础科学研究和实际应用等众多领域具有重要的学术和应用价值,对THz辐射源的研究受到了广泛关注。半导体量子点的电荷载流子在三维方向上受到限制,具有类原子的量子化分立能级结构,可以抑制各种非辐射散射。通过改变量子点的形状和尺寸,可以调节和控制其能级结构,因此量子点THz激光器倍受人们重视。但是,目前量子点的制备技术还不成熟,不能准确地控制量子点生长的尺寸、形状、分布和定位,还会引入缺陷,从而产生非均匀的能级展宽,严重影响THz激光器的单频性。
     我们提出了一种实现零维量子点结构的新渠道:用量子限制杂质原子来实现量子点的特性。通过对量子限制在GaAs/AlAs多量子阱中受主杂质态的静力学性质和动力学性质的研究,证明了量子限制杂质原子具有量子点的特性,可以看作是一个单电子(空穴)量子点。采用MBE和δ-掺杂方式实现了杂质原子在量子阱中的精确定位生长。
     建立了P型δ-掺杂量子阱的势模型,数值计算了量子阱中δ-掺杂势对量子阱中价带子带的影响。
     量子限制杂质原子能级间隔一般是在儿个meV到儿十个meV之间,正处于THz范围内。本文提出了一种产生THz辐射的新途径:利用量子限制杂质内能级之间的跃迁实现THz激光器。
     本文从实验和理论两方面对限制在GaAs/AlAs量子阱子中的量子限制铍(Be)受主的能级结构和受主能级之间的跃迁进行了研究,研究了量子限制效应对受主能级结构和受主态寿命的影响和调制作用,展示了量子限制受主杂质具有量子点的特性,研究了利用量子限制杂质能级之间的跃迁实现太赫兹发光的新途径。
     1.通过光致发光谱和傅里叶变换远红外吸收光谱测量实验,研究了阱中央6-掺杂Be受主的GaAs/AlAs多量子阱系统的光学性质,研究了GaAs/AlAs多量子阱中受主的能级结构及其在量子限制效应作用下的可调性。
     测量了一系列不同阱宽的δ-掺杂Be原子的GaAs/AlAs多量子阱样品和GaAs:Be外延单层样品的光致发光(PL)谱和远红外(FIR)吸收谱。在PL谱中清楚地观察到了束缚激子受主的两空穴跃迁,测量了受主态1s-2s跃迁能随量子阱宽度变化的关系。在FIR谱中清楚地观察到了来源于Be受主1s基态到它的三个奇宇称激发态的受主带内跃迁吸收线。结果发现,Be受主束缚能、1s基态跃迁到2s和各2p激发态的跃迁能均随着量子阱宽度的减小而增大。
     2.建立了P型δ-掺杂量子阱的势模型,采用有效质量包络函数近似理论和有限差分打靶迭代算法,计算了量子阱中δ-掺杂杂质电离势和量子阱阱宽对量子阱中价带子带的影响,得出以下结论:
     随着Be受主δ-掺杂浓度的增加,受主电离引起的V形势阱深度增加,使重空穴子带HH0和轻空穴子带LH0的能量增大而向阱底方向移动。随着受主掺杂浓度的增加,HH0和LH0的能量增量增加,HH0,与LH0的能级间隔增大。低温下、掺杂浓度较低时,这种影响很小。当量子阱宽度较窄、受主掺杂浓度大、电离程度高时,δ-掺杂杂质的电离势对量子阱中价带态的影响非常明显,HH0能量增加几十meV, LH0能量增加超过100meV。在相同的Be受主δ-掺杂浓度下,随着GaAs量子阱阱宽的减小,空穴子带HHo和LH0的能量增大而远离阱底,HH0与LH0的能级间隔也增大。
     3.在有效质量包络函数近似下,采用变分法理论计算了限制在GaAs/AIAs量子阱中央的Be受主的束缚能和受主能级间的跃迁能。
     计算结果表明,随着量子阱宽度的减少,处在GaAs/AlAs多量子阱中央的Be受主的束缚能逐渐增大,在阱宽为0.7nm时,束缚能出现了一个峰值,然后随着量子阱宽度的进一步减小,受主束缚能又单调下降;限制在量子阱中央的Be受主1 s-2s、1s-2p、1 s-2pz的跃迁能均随着量子阱宽度的减小而单调增大。理论计算结果与PL谱和FIR吸收谱的实验测量结果一致。
     4.采用皮秒自由电子激光时间分辨平衡泵浦-探测方法,对δ-掺杂在GaAs/AIAs多量子阱中央的Be受主内空穴从2p激发态跃迁到1s基态的弛豫动力学进行了研究。
     改变测量温度和泵浦激发光波长,对多量子阱样品进行了平衡泵浦-探测实验。结果发现,多量子阱中Be受主的2p激发态寿命随着量子阱宽的下降而减小,而且与温度无关,但却强烈地受激发光波长影响。研究表明,量子阱中Be受主2p→1s跃迁的弛豫过程主要是由布区折叠声学声子的散射引起的。随着量子阱宽度的减小,量子限制效应对布区折叠声学声子模的影响增强,提高了受主内空穴驰豫过程中声学声子的非辐射散射率,降低了受主激发态的寿命。量子阱限制势使阱中大波矢杂质态波函数哀减减慢,也加快了受主杂质2p→1s的跃迁,导致了量了阱中2p激发态寿命显著降低。
     5.首次设计制备了基于量子限制Be受主内能级之间跃迁的电注入三量子阱THz远红外原型发光器。测量了发光器的电流-电压特性,观察到了明显的负微分电阻现象。在低温下,测量了发光器件的电致发光光谱,观察到了来自量子阱中Be受主从2p激发态跃迁到1s基态的THz辐射发光峰。
     研究结果展示出利用量子限制杂质能级间的跃迁是实现THz发光器和激光器的一种非常有前景的新途径。
Terahertz (THz) science and technology have attracted much attention on account of the potential applications of THz radiation in many domains recently. Due to the truly discrete electronic spectra of quantum dots (QDs). most of the undesired scattering and relaxation processes are suppressed. The energy levels of QD can be controlled by varying the dimensions and shapes, the QD based terahertz emitters have been a subject of considerable interest. However, controllability of dot dimensions is not mature, QD based devices are subject to large distributions in sizes and hence significant inhomogeneous line broadening which is very severe in THz range.
     A new way to realize QD using quantum confined impurity atoms is proposed. By investigating the energy states, optical properties and dynamic properties of impurity atoms confined in quantum wells (QWs), it is proved that the quantum confined impurity atoms have the characteristics of QD. The impurity atoms confined in QWs can be thought of as individual single-electron (or single-hole) QDs. The QW systems confining impurity atoms can be grown to high quality by using delta doping and Molecular Beam Epitaxy.
     A potential model ofδ-doped quantum well is established. The numerical calculations of the influences of delta-doping potential on the energy profile of QW have been performed.
     The impurity energy spacing in quantum well just falls into the THz range. A new approach is proposed which of achieving THz laser or emission by using transitions between the impurity states in semiconductor QW system.
     The energy level structure, transitions between the impurity states, and the lifetime of the excited state of beryllium (Be) acceptor atoms confined in GaAs/AlAs QWs are studied both theoretically and experimentally. A Beδ-doped GaAs/AlAs three quantum wells emitter in the terahertz range is fabricated, and electroluminescence is investigated.
     1. The optical properties of the GaAs/AlAs multiple quantum wells (MQWs) with Be acceptorsδ-doped at the centre of the GaAs wells have been investigated with photoluminescence (PL) and far-infrared (FIR) absorption spectra respectively. The two-hole transition of the acceptor-bound exciton from the ground state, Is. to the excited state,2s, has been clearly observed in PL spectrum. The binding energy and the 1s-2s transition energy of Be in GaAs/AlAs MQWs was measured. Far-infrared absorptions were measured, and three principal absorption lines were observed clearly, which correspond to the transitions of Be from the ground state 1s to the three excited odd-parity states respectively. It is found that the acceptor binding energy and internal transition energies increase with decreasing quantum-well width.
     2. The influences of ionized impurity delta-layer potential and quantum well width on the energy profile of a QW are calculated by an iterative shooting algorithm under the single-band effective mass and envelop function approximations. As the delta-doping concentration increases, the well depth increases, the energies of HHo and LH0 increase and go to the well bottom, and the energy separation between HHo and LH0 increases. The impacts of ionized impurity delta-layer potential on the impurity state are strong when the well is narrow, the delta-doping concentration is great, and the degree of impurity ionization is high. The energies of the valance subband HHo and LHo increase and go away from the well bottom with decreasing quantum well width for the same delta-doping concentration. The energy separation between HHo and LHo increases also.
     3. Using a variational method, the binding energy and the internal transition energies of the Be acceptors at the centre of the GaAs/AlAs MQWs have been calculated as a function of the well width under the single-band effective mass and envelop function approximations. The acceptor binding energy increases as the QW width decreases, and has a peak with a maximum at the QW width of 0.7nm. For very narrow wells, the binding energy decreases. The 1s-2s,1s-2px, and 1s-2pz transition energies increase as the QW width decreases. It is found that the theoretical calculations are in good agreement with the experiment results.
     4. The dynamics of intra-acceptor hole relaxation in Beδ-doped GaAs/AIAs MQWs with doping at the centre is studie by time-resolved pump-probe spectroscopy using the picosecond free electron laser for infrared experiments. The pump-probe experiments are performed at different temperatures and different pump pulse wavelengths. The 2p excited state lifetime of Be in MQWs decreases with decreasing well width, and is shown to be independent of temperature but strongly dependent on wavelength. The zone-folded acoustic phonon emission and slower decay of the wave functions of impurity states are suggested to account for the reduction of the 2p excited state lifetime in MQWs.
     5. A Beδ-doped GaAs/AIAs three quantum wells emitter in the terahertz range is fabricated and investigated. The current-voltage characteristics of the device measured at different temperatures demonstrate a strong negative differential resistance and temperature dependence. An electroluminescence peak is observed at low temperature (T=4.5K). The THz emission peak is attributed to the 2p to 1s internal transitions of the Be acceptors in the centre ofδ-doped GaAs quantum well.
     The result shows the potential of achieving THz laser or emission using transitions between the impurity states in semiconductor QW system.
引文
[1]刘盛纲,钟任斌,电子科技大学学报,38,481,2009
    [2]汪一帆,尉万聪,周凤娟,薛照辉,生物化学与生物物理进展,37,484,2010
    [3]Kodo Kawase, Yuichi Ogawa, Yuuki Watanabe, and Hiroyuki Inoue, Optics Express 11,2549,2003
    [4]Qing-li Zhou, Cun-lin Zhang, Kai-jun Mu, Bin Jin, Liang-liang Zhang, Wei-wei Li, and Rui-shu Feng, Appl. Phys. Lett.92,101106,2008
    [5]Guangqin Wang, Jingling Shen, and Yan Jia., J. Appl. Phys 102,013106,2007
    [6]刘欢,用于差频产生THz波的激光器及THz光子晶体带隙特性的研究,天津大学博士论文,2007.12
    [7]谷智,陈沅,李焕勇,介万奇,红外技术33,252,2011
    [8]刘盛纲,中国基础科学·科学前沿2006(1),7
    [9]D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Physics & Technology 36,297,1995
    [10]O. A. Klimenko, Yu A. Mityagin, S. A. Savinov, V. N. Murzin, N. V. Dyakonova, P. Solignac and W. Knap, Journal of Physics:Conference Series 193,012064, 2009
    [11]A. Bergner, U. Heugen, E. Brundermann, G. Schwaab, M. Havenith, D. R. Chamberlin, and E. E. Haller, Rev. Sci. Instrum.76,063110,2005
    [12]J. N. Hovenier, M. C. Diez, T.O. Klaassen, W. T. Wenckebach, A. V. Muravjov, S. G. Pavlov, and V. N. Shastin, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,48,670,2000
    [13]Carlo Sirtori. and Julien Nagle. Comptes Rendus Physique 4,639,2003
    [14]R.F.Kazannov and R.A.Suris. Sov.Phys.Semieond.5.707.1971
    [15]Jerome Faist. Federico Capasso. Deborah L. Sivco, Carlo Sirtori, Albert L Hutchinson, and Alfred Y. Cho, Science 264,553,1994
    [16]J. Faist, F. CaPasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. YCho, Appl. phys. Lett.66.538,1995
    [17]C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beckm, J. Faist, and U. Oesterle, Appl. Phys. Lett.73,3486,1998
    [18]R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. lotti, and F. Rossi, Nature 417,156,2002
    [19]B. S.Williams, S. Kumar, Q. Hu, and J. L. Reno, Optics Express 13,3331,2005
    [20]H. C. Liu, M. Waechter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, Appl. Phys. Lett.87,141102,2005
    [21]G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, Laser & photon. Rev.3,45,2009
    [22]E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winnerl. M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, Nature materials 8,803,2009
    [23]N. Vukmirovic, D. Indjin, Z. Ikonic, and P. Harrison, IEEE Photonics Technol. Lett.20,129,2008
    [24]D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, Appl. Phys. Lett.94,061101,2009
    [25]P. Harrison, M. P. Halsall, W. M. Zheng, J. P. R. Wells, and I. V. Bradley, Materials Science Forum 384/5,165,2002
    [26]K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Bohm, G. Trankle, and G. Weimann, Phys. Rev. Lett.69,3216,1992
    [27]Yu. P. Gousev, I. V. Altukhov, K. A. Korolev, V. P. Sinis, M. S. Kagan, E. E. Haller, M. A. Odnoblyudov, I. N. Yassievich, and K.-A. Chao, Appl. Phys. Lett. 75,757,1999
    [28]S. V. Demihovsky, A. V. Murav'ev, S. G. Pavlov, and V. N. Shastin, Semicond. Sci. Technol.7 B622,1992
    [29]H.-W. Hubers, K. Auen, S. G. Paviov, E. E. Orlova, R. Kh. Zhukavin, and V. N. Shastin, Appl. Phys. Lett.74,2665,1999
    [30]M. S. Kagan, I. V. Altukhov, E. G. Chirkova, V. P. Sinis, R. T. Troeger, S. K. Ray, and J. Kolodzey, Phys. Stat. Sol.(b) 235,135,2003
    [31]G. Bastard, Phys. Rev. B 24,4714,1981
    [32]C. Mailhiot, Yia-Chung Chang, and T. C. McGill, Phys. Rev. B 26,4449,1982
    [33]Ronald L. Greene, K.K. Bajaj, Solid State Communications 45,825,1983
    [34]Ronald L. Greene, K.K. Bajaj, Phys. Rev. B 31,4006,1985
    [35]W. T. Masselink, Yia-Chung Chang, H. Morkoc, Phys. Rev. B 32,5190,1985
    [36]A. A. Reeder, B. D. McCombe, F. A. Chambers, G. P. Devane, Phys. Rev. B 38, 4318,1988
    [37]Samuele Fraizzoli, Alfredo Pasquarello, Phys. Rev. B 44,1118,1991
    [38]J. Kundrotas, A. Cerskus, S. Asmontas, and G. Valusis, B. Sherliker and M. P. Halsall, M. J. Steer, E. Johannessen, P. Harrison, Phys. Rev. B 72,235322,2005
    [39]R. C. Miller, A. C. Gossard, W. T. Tsang, and O. Munteanu, Phys. Rev. B 25, 3871,1982
    [40]N. C. Jarosik, B. D. McCombe, B. V. Shanabrook, J. Comas, John Ralston and G. Wicks, Phys. Rev. Lett.54,1283,1985
    [41]D.Gammon, R. Merlin, W.T.Masselink, H.Morkoc, Phys.Rev. B 33,2919,1986
    [42]B.V. Shanabrook, J. Comas, Surface Science,142,504,1984
    [43]P. O. Holtz, M. Sundaram, K. Doughty, J. L. Merz, A. C. Gossard, Phys. Rev. B 40,12338,1989
    [44]P. O. Holtz, B. Monemar, M. Sundaram, J. L. Merz, and A. C. Gossard, Phys. Rev. B,47,10596,1993
    [45]Q. X. Zhao, S. Wongmanerod, M. Willander, P. O. Holtz, S. M. Wang, and M. Sadeghi, Phys. Rev. B 63,195317,2001
    [46]G.A. Balchin, L.M. Smith, A. Petrou, and B.D. McCombe, Superlattices and Microstructures.18.291.1995
    [47]J. P. Bergman. P. O. Holtz, B. Monemar, M. Sundaram, J. L. Merz, and A. C. Gossard Phys. Rev. B 43,4765,1991
    [48]Q. X. Zhao, P. O. Holtz, C. I. Harris, B. Monemar, and E. Veje, Phys. Rev. B 50, 2023,1994
    [49]J. M. Rorison and D. C. Herbert, Superlattices and Microstructures,1,423,1985
    [50]M. P. Halsall, P. Harrison, J.-P. R. Wells, I. V. Bradley, and H. Pellemans, Phys. Rev. B 63,155314,2001
    [1]沈学础,半导体光谱和光学性质(第二版),科学出版社,2002.7
    [2]M. Henini, Thin Solid Films 306,331,1997
    [3]John R. Arthur, Surface Science 500,189,2002
    [4]刘国军,张千勇,杨晗,张兴德,李学谦宋晓伟,曲轶,王晓华,长春光 学精密机械学院学报,20.6,1997
    [5]P.O.Holtz and Q.X.Zhao, Impurities Confined in Quantum Structures, Springer-Verlag,2004.10
    [6]A. A. Reeder, B. D. McCombe, F. A. Chambers, and G. P. Devane, Phys. Rev. B 38,4318.1988
    [7]I. Galbraith. R. Chari, S. Pellegrini. P. J. Phillips. C. J. Dent. A. F. G. van der Meer, D. G. Clarke, A. K. Kar, G. S. Buller, C. R. Pidgeon. B. N. Murdin, J. Allam, and G. Strasser, Phys. Rev. B 71,073302,2005
    [8]D. Boffety, A.Vasson, A-M Vasson, J. Leymarie, T. S. Cheng, C. A. Bates, and J. M.Chamberlain, Semicond. Sci. Technol.11,340,1996
    [9]徐仲英,谢茂海,徐强,郑宝真,孔梅影,半导体学报,11,316,1990
    [10]P. O. Holtz, Q. X. Zhao, B. Monemar, M. Sundaram, J. L. Merz, and A.C.Gossard, Phys.Rev.B,47,15675,1993
    [11]W. T. Masselink, Yia-Chung Chang, and H. Morkoc, Phys. Rev. B 32,5190, 1985
    [12]J. P. Contour, G. Neu, M. Leroux, C. Chaix, B. Levesque, and P. Etienne, J. Vac. Sci. Technol. B,1,811,1988
    [13]J. C. Garcia, A. C. Beye, J. P. Contour, G. Neu, J. Massies, and A. Barski. Appl. Phys.Lett.52,1596,1988
    [14]R. C. Miller, A. C. Gossard, W. T. Tsang, and O. Munteanu, Phys Rev B,25, 3871,1982
    [15]L. C. Andreani, and A. Pasquarello Phys Rev B,42,8928,1990
    [16]P. O. Holtz, M. Sundaram, K. Doughty, J. L. Merz, and A. C. Gossard, Phys. Rev. B 40,2338,1989
    [17]范松灿,傅立叶变换红外光谱仪的原理与特点,高分子材料研究,11,40,2007
    [18]R. A. Lewis, T. S. Chang, M. Henini and J. M. Chamberlain, Phys. Rev. B,53, 12829,1996
    [19]Vincenzo Fiorentini, Phys. Rev. B 51,10161,1995
    [20]Yia-Chung Chang and R. B. James, Phys. Rev. B 39,12672,1989
    [211W. M. Zheng, M. P. Halsall, P. Harmer. P. Harrison and M. J. Steer. J. Appl. Phys.92.6039,2002
    [22]N. C. Jarosik. B. D. McCombe, B. V. Shanabrook, J. Comas, John Ralston and G. Wicks, Phys Rev Lett,54,1283,1985
    [1]叶良修,半导体物理(第二版)上,高等教育出版社,2007.10
    [2]夏建白,朱邦芬,半导体超晶格物理,上海科学技术出版社,1995.4
    [3]Gregory H. Wannier, Phys. Rev.52,191,1937
    [4]J. M. Luttinger and W. Kohn, Phys. Rev.97,869,1955
    [5]沈学础,半导体光谱和光学性质(第二版),科学出版社,2002.7
    [6]Yia-Chung Chang, Huade Yao and M. Mohiuddin, J. Appl. Phys.85,1616,1999
    [7]G. Li and C. Jagadish, Solid State Electronics,41,1207,1997
    [8]E. F. Schubert, J. B. Stark, B. Ullrich, and J. E. Cunningham, Appl. Phys. Lett. 52,1508,1988
    [9]G. Gillman, B. Vinter, E. Barbier, and A. Tardella, Appl. Phys. Lett.52,972, 1988
    [10]L. Ioriatti, Phys. Rev. B 41,8340,1990
    [11]L. M. Gaggero-Sager, M. E. Mora-Ramos, and D. A. Contreras-Solorio, Phys. Rev. B 57,6286,1998
    [12]L. M. Gaggero-Sager, Phys.stat.sol. (b) 231,243,2002
    [13]S. Vlave and L. M. Gaggero-Sager, Phys.Rev.B 58,1142,1998
    [14]L. E. Oliveira, Phys. Rev. B 38,10641,1988
    [15]S. Fraizzoli, F. Bassani and R. Buczko, Phys.Rev.B 41,5096,1990
    [16]P. Harrison, Quantum wells, Wires and Dots:Theoretical and Computational Physics. England:John Wiley & Sons Ltd.2000
    [17]郑卫民,宋淑梅,吕英波,王爱芳,陶琳,半导体学报,29,310,2008
    [18]C.Mailhiot, Y.C.Chang, and T.C. McGill. Phys Rev B 26.4449,1982
    [19]R. L. Greene, and K. K. Bajaj, Solid State Commun 45,831,1983
    [20]W. T. Masselink, Yia-Chung Chang, H. Morkoc, Phys. Rev. B 32,5190,1985
    [21]李素梅,宋淑梅,吕英波,王爱芳,吴爱玲,郑卫民,物理学报,58,4936,2009
    [22]郑卫民,M. P. HALSALL, P. HARRISON, and M. J. STEER,中国科学G辑:物理学.力学.天文学,37,60,2007
    [1]D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Physics & Technology 36,297,1995
    [2]金华,低维半导体复合结构的光学性质,吉林大学出版社,2009.6
    [3]Wen Lei and Chennupati Jagadish, J. Appl. Phys.104,091101,2008
    [4]M. P. Halsall, P. Harrison, J. P. R. Wells, I. V. Bradley and H. Pellemans, Phys. Rev. B 63,155314,2001
    [5]P. C. Findlay, C. R. Pidgeon, R. Kotitschke, A. Hollingworth, B. N. Murdin, C.J. G. M. Langerak, A. F. G. van der Meer, C. M. Ciesla, J. Oswald, A. Homer, G. Springholz and G. Bauer, Phys. Rev. B 58:12908,1998
    [6]B. N. Murdin, G. M. H. Knippels, A. F. G. van der Meer, C. R. Pidgeon, C. J. G. M. Langerak, M. Helm, W. Heiss, K. Unterrainer, E. Gornik, K.K.Geerinck, N. J. Hovenier and W Th Wenckebach, Semicond. Sci. Technol.9,1554,1994
    [7]W. M. Zheng, M. P. Halsall, P. Harrison, J. P. R. Wells,I. V. Bradley and M. J. Steer, Appl. Phys. Lett.83,3719,2003
    [8]Goswami, Quantum Mechanics,2nd edition, W. C. Brown. Dubuque,1997
    [9]C. Colvard, R. Merlin, M. V. Klein and A. C. Gossard, Phys. Rev. Lett.45, 298,1980
    [10]J. E. Zucher, A. Pinczuk, D. S. Chemla, A. C. Gossard and W. Wiegmann, Phys. Rev. Lett.53,1280,1984
    [11]E. E. Orlova and P. Harrison, Appl. Phys. Lett.85,5257,2004
    [12]W. T. Masselink, Yia-Chung Chang, and H. Morkoc, Phys. Rev. B 32,5190, 1985
    [13]Bastard, Phys. Rev. B 24,4714,1982
    [1]P. Mounaix, J. M. Libberecht, and D. Lippens, Solid-State Electronics 38,1899, 1995
    [2]Yia-Chung Chang, Huade Yao and M. Mohiuddin, J. Appl. Phys.85,1616,1999
    [3]S. Ozaki, J. M. Feng, J. H. Park, S. i. Osaco, H. Kubo, M. Morifuji, N. Mori, and C. Hamaguchi, J. Appl. Phys.83,962,1998
    [4]Z. W. Yan, and X. X. Liang, Phys. Rev. B 66,235324,2002
    [5]J. Gong, X. X. Liang, and S. L. Ban, J. Appl. Phys.100,023707,2006
    [6]Y. Qu, J. X. Zhang, A. Uddin, C. Y. Liu, S. Yuan, M. C. Y. Chan, B. Bo, G. Liu, and H. Jiang, Appl. Phys. A 82,305,2006
    [7]E. Kasapoglu, Physics Letters A 373,140,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700