用户名: 密码: 验证码:
中国柑橘黑斑病相关的叶点霉属真菌种类、遗传多样性和快速诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘黑斑病(Citrus Black Spot, CBS),也称黑星病,病原的有性态为柑橘球座菌(Guignardia citricarpa Kiely),属子囊菌门,座囊菌目;无性态为柑橘叶点霉菌(Phyllosticta citricarpa (McAlpine) van der Aa),属半知菌类,腔孢纲,球壳孢目。病菌主要危害果实,在果皮上形成病斑导致鲜果的商品性下降,甚至无法上市鲜售。CBS病菌被欧盟列为A1类严禁入境的有害生物,也是美国严禁入境的有害生物,因此是包括我国在内有黑斑病发生国家柑橘鲜果出口的重要障碍。尽管我国是柑橘的原产地之一,栽培柑橘种类繁多,黑斑病发生普遍,但对不同类型柑橘的黑斑病菌病原种类是否一致,以及病菌的生物学特性和分子变异并无研究。本研究从我国柑橘主产区几大栽培柑橘上收集黑斑病或疑似黑斑病症状的果实和叶片,分离培养获得代表性菌株若干,在此基础上开展这些代表性菌株的种类鉴定、种内遗传多样性分析,以及种特异性引物的筛选和相关的PCR鉴定体系的建立。主要研究结果如下:
     1.建立了P. citriasiana的分子鉴定技术在ITS1区域设计了针对于亚洲柑橘叶点霉菌P. citriasiana的特异性上游引物Pca8,结合下游引物ITS4,建立了准确、灵敏和快速鉴定P. citriasiana的PCR体系。利用该体系可从P. citriasiana菌株中扩增出488bp的特异性条带,而不能从柑橘叶点霉菌P. citricarpa和首都叶点霉菌P. capitalensis(-一种内生菌),以及其他柑橘常发病害病原菌中扩增出条带。该体系检测P. citriasiana DNA最低为12pg,整个过程可在3小时内完成。
     2.明确了中国柑橘上叶点霉属真菌种类自2007-2011年,从我国10个省市的宽皮橘(Citrus reticulata)、柚(C. maxima)、葡萄柚(C. paradisi)、甜橙(C. sinensis)以及柠檬(C. limon)等具典型或非典型黑斑病症状的果实和叶片上分离获得496个Phyllosticta菌株。通过形态学比较,可将这些菌株分为4类。选择74个代表性菌株,克隆测定其18S rDNA和28S rDNA的部分区域、核糖体DNA的两个转录间隔区及其中的5.8S亚基(internal transcribed spacer, ITS)、肌动蛋白(Actin,ACT),延长因子(translation elongation factor-1alpha, TEF1),β微管蛋白(β-tubulin, Tub)和钙调蛋白(calmodulin, Cal)基因的部分序列,单独或合并后构建系统进化树,结果发现这74个菌株分为4个明显的分支。其一为P. citricarpa,即被欧盟和美国列为检疫对象的柑橘叶点霉菌。该病菌的寄主有宽皮橘、甜橙和柠檬,但没有从柚上发现;其二为P. citriasiana,引起柚黑斑病(也被称为棕褐斑病,‘'tan spot"),寄主为沙田柚和琯溪蜜柚,但未从其他柑橘种上发现;其三是P. capitalensis,即一种内生菌,可从本研究中的各种柑橘的有症或无症材料上获得;其四是一个有别于已有的Phyllosticta spp.,本文暂时将之定为Phyllosticta citrichinaensis X.H. Wang, K.D. Hyde&H.Y. Li。该菌可从本研究中的各种柑橘的非典型黑斑病症状的材料上获得。
     在这4个Phyllosticta spp中,P. citrichinaensis的分生孢子最小,附属丝最长,短杆状孢子和子囊孢子最大;P. citrichinaensis在PDA, CMA和MEA培养基表面形成具有多个环形凹槽的菌落,在OA培养基上不产生黄色素;当以葡萄糖、蔗糖、果糖、半乳糖、甘露醇、山梨醇、麦芽糖分别作为唯一碳源时,P.citrichinaensis生长较差,菌落直径小于其他三种Phyllosticta;当以尿素、酒石酸铵、天门冬氨酸、乙酸铵、(NH4)2SO4、NH4NO3、NaNO3、胰蛋白胨、脯氨酸、甘氨酸分别作为唯一氮源时,P. citrichinaensis生长最差,菌落直径均小于其他三个Phyllosticta种,且P. citrichinaensis几乎不能利用尿素、酒石酸铵、天门冬氨酸、乙酸铵、(NH4)2SO4、NH4NO3; P. citrichinaensis生长pH范围为3.0-6.0,最适为4.0,其次为3.0。在pH为3.0-5.0的PDA培养基上, P. citrichinaensis比P.citriasiana和P. citricarpa生长快,但比P. capitalensis生长慢。
     3.建立巢式多重PCR鉴定柑橘上四种叶点霉属真菌的技术体系比较4种叶点霉属真菌的ITS1及18S区域序列,设计并筛选了针对P. citrichinaensis、P. citricarpa、P. capitalensis和P. citriasiana特异性上游引物Pcc1、Pc1、Pct4和Pea8(见1),并均以通用引物ITS4作为下游引物。以已知该4种菌的菌株DNA作为对照,首先使用ITS4/ITS5对供试菌株进行第一轮扩增,PCR产物稀释50-100倍后,同时加入引物对Pcc1/ITS4、Pc1/ITS4、Pct4/ITS4和Pca8/ITS4,在退火温度为60℃条件下进行第二轮PCR扩增,通过扩增条带与已知种菌株的相应扩增条带大小的比较,确定待测样品所属的叶点霉属菌的种类。该体系的灵敏度达到2ag的DNA。与传统PCR相比其灵敏度至少提高106倍。不仅可用于试验室培养的待测菌株的鉴定,还可以用于果实疑似黑斑病的病斑快速鉴定。
     4.明确了中国柑橘叶点霉属真菌遗传多样性通过对影响PCR反应的主要成分模板DNA、Mg2+、dNTPs、TaqDNA聚合酶及引物等条件的优化,建立了适合柑橘叶点霉菌的ISSR-PCR反应体系。利用该体系从100条引物中筛选出11条扩增条带稳定、清晰、重复性好和多态性高的引物。利用筛选的11条引物和优化的ISSR-PCR体系,对供试的110个来自柑橘的叶点霉属菌株进行扩增,共扩增出197个条带,多态性条带为194个,多态率为98.5%,证明中国柑橘上叶点霉属真菌遗传多样性丰富。利用NTSYS-pc2.10软件对扩增的条带进行分析并构建UPGMA聚类图,显示中国柑橘叶点霉属真菌可以分为四个分支,每分支对应着P. citricarpa, P.citriasiana, P. capitalensis和P. citrichinaensis。P. citricarpa的遗传分化与寄主种类相关,而与地理来源无关。来自甜橙和柠檬的菌株与来自宽皮柑橘的菌株分布在不同的分支中,而来自砂糖橘的菌株又聚为一个分支。而P. citriasiana, P. capitalensis和P. citrichinaensis(?)中群内的遗传变异与地理距离和寄主均无相关性。
Citrus Black Spot (CBS) caused by Guignardia citricarpa (Dothideales, Loculoascomycetes in Ascomycota) Kiely. The anamorph of this pathogen is Phyllosticta citricarpa (McAlpine) van der Aa, belongs to Sphaeropsidales, Coelomycetes in Fungi Imperfecti. CBS is a common disease in China, mainly causes diverse spots on the rind of Citrus fruit, results in the fruits become unsightly and unsuitable for the fresh fruit market. The pathogen of CBS P. citricarpa is an Al quarantine pathogen for countries of the European Union, and it is also regulated as a quarantine pest in the USA. The export of citrus fruits from China and other countries where CBS is present is heavily regulated. As one of the origin places, there are many cultivated Citrus species and varieties in China, and many Citrus species are susceptible to CBS. However, there is no research to demonstrate whether the pathogen on different Citrus species is belonged to the same species. The biological and molecular characteristics of the pathogen from China are remaining unknown. In the study, Phyllosticta strains were obtained from infected fruits and leaves of the majority of the cultivated Citrus species and varieties across the main citrus producing regions of China, and identified using the methods of morphological and molecular biology. A nested-multiple PCR technology for diagnosing the4Phyllosticta species from citrus was established. Genetic diversity of4Phyllosticta species were further studied, the results were described as follows.
     1. Establishment of identification system of P. citriasiana By comparing the differences of the internal transcribed spacer region of Phyllosticta spp., specific upstream primer Pca8for P. citriasiana was designed. By combining the downstream primer ITS4, an accurate, sensitive and fast identification system of P. citriasiana was established. By using the established PCR identification system, diagnostic fragments of488bp were consistently amplified from P. citriasiana, but were never amplified from P. citricarpa and endophytic P. capitalensis, nor from the common pathogens for citrus. This method is highly sensitive (12pg of genomic DNA) and rapid (with in3 hour) for detection of P. citriasiana.
     2. Clarification of Phyllosticta species associated with citrus diseases in China Samples of citrus fruits and leaves with black spot or black spot-like symptoms were collected from cultivated Citrus species including mandarins, oranges, pomeloes and lemons in the ten citrus-producing provinces of China during2007to2011. Four hundred and ninety six Phyllosticta strains were isolated from these samples. These isolates were divided into four morphological groups, and74representative strains of these four groups were selected for phylogenetic analysis. Analyses inferred from the sequences of the internal transcribed spacer region of nuclear ribosomal DNA (ITS), partial actin gene (ACT), partial translation elongation factor1-alpha (TEF1),β-tubulin (Tub) and Calmodulin (Cal) showed these representative Phyllosticta isolates clustered in four distinct clades corresponding to three known, and an undescribed species. Phylogenetic trees based on individual gene and combined genes resolved the same results. Clade-I corresponded to P. citricarpa, the pathogen of black spot (the species regulated by EU and USA). It was found on oranges, mandarins and lemons, but was not found on pomeloes; Clade-Ⅱ corresponded to P. citriasiana, the pathogen of pomeloe black spot (also named as tan spot), was only found from pomeloes, but not from the other Citrus; Clade-Ⅲ corresponded to P. capitalensis, the endophytic fungus with a wide host range, was found on all citrus fruits and leaves with black spot or black spot-like symptoms in this study; Clade-IV corresponded to Phyllosticta citrichinaensis X. H. Wang, K. D. Hyde&H.Y. Li, sp. nov., a novel species described in this study, obtained from all four Citrus species with atypical citrus black spot symptoms.
     Among four Phyllosticta species, P. citrichinaensis has the smallest conidia, longest mucoid apical appendage, largest spermatia and ascospores. P. citrichinaensis could be distinguished from P. citricarpa, P. citriasiana and P. capitalensis by producing colonies with multiple annular ridges on PDA, cornmeal agar (CMA), and malt extract agar (MEA), and by not producing yellow pigment in OA. On media using sucrose, fructose, galactose, mannitol, sorbitol, glucose or maltose (1%w/v) as a sole carbon source, P. citrichinaensis grew slower than the other three Phyllosticta species from Citrus. On media using urea, tartaric acid ammonium, aspartic acid, CH3COONH4,(NH4)2SO4, NH4NO3, NaNO3, tryptone, proline or glycine as a sole nitrogen source, P. citrichinaensis grew slowest than the other three Phyllosticta species from Citrus. P. citrichinaensis almost could not grow on media using urea, tartaric acid ammonium, aspartic acid, CH3COONH4,(NH4)2SO4or NH4NO3as sole nitrogen source. P. citrichinaensis could grow at pH value of3.0-6.0, but grew the best at pH4.0, followed by3.0. At pH value of3.0-5.0, P. citrichinaensis grew faster than P. citricarpa and P. citriasiana, but slower than P. capitalensis.
     3. Establishment of nested-multiple PCR identification system of four Phyllosticta species By comparing the sequence differences of the first internal transcribed spacer region and18s region of four Phyllosticta species associated with citrus, species-specific upstream primers Pccl, Pcl, Pct4and Pca8(above1) for P. citrichinaensis, P. citricarpa, P. capitalensis and P. citriasiana were designed. By combination with ITS4as downstream primer, an individual PCR diagnosis of each species was established and optimized. For diagnosis of a suspect Phyllosticta culture or a lesion that was suspected to be related to Phyllostica, the DNA of the culture or lesion was used as template, ITS4/ITS5was used to the first round amplification, the amplified product (diluted by50-100fold) was then used as template, and using mixture of primers Pccl/ITS4, Pcl/ITS4, Pct4/ITS4and Pca8/ITS4was used for the second round PCR amplification at annealing temperature of60℃. Meanwhile, the DNA of standard isolate belonging to P. citrichinaensis, P. citricarpa, P. capitalensis and P. citriasiana respectively was used as positive control. The exact Phyllosticta species was identified by comparison the diagnosis bands with standard isolate of each species after electrophoresis. The nested-multiple PCR could detect the fungal DNA as low as2ag and increased the detection sensitivity at least106-fold compared to the traditional PCR method. The established nested-multiple PCR system in the study could not only identify Phyllosticta spp. culture, but also could identify suspect Phyllosticta spp.-associated lesion on citrus rind.
     4. Genetic diversity of Phyllosticta associated with citrus By optimization the concentration of DNA templates, Mg2+, dNTPs, TaqDNA polymerase and primers, a suitable ISSR-PCR system for Phyllosticta was established.11primers amplified stable, clear, repeatable, high polymorphism productions were screened from100primers. Eleven primers and the optimized ISSR-PCR system were used to investigate the genetic diversity of110isolates of Phyllosticta, and197bands were amplified, of which194polymorphism bands. The polymorphism rate was98.5%, showing rich genetic diversity of Phyllosticta. NTSYS-pc2.10was used to build UPGMA dendrogram. It showed that the isolates of Phyllosticta were divided into four clades, corresponded to P. citricarpa, Pcitriasiana, P. capitalensis and P. citrichinaensis. Genetic differentiation of P. citricarpa was host-related, not geographical distance-related. Isolates collected from sweet oranges and lemons were distinct from isolates from mandarins, they gathered in different clades. Isolates collected from Citrus reticulata cv. Shatangju were different from isolates from other mandarins, and those isolates gathered in another clade. The genetic variation of P. citriasiana, P. capitalensis and P. citrichinaensis was not related to host and geographical distance.
引文
Aaron, R., Anna, T., Maria, V. and Arunmozhi, B. S. (2011). Global population structure of Aspergillus terreus inferred by ISSR typing reveals geographical subclustering. BMC Microbiology 11:1-25.
    Agostini, J. P., Peres, N. A., Mackenzie, S. J., Adaskaveg, J. E. and Timmer, L. W. (2006). Effect of fungicides and storage conditions on postharvest development of citrus black spot and survival of Guignardia citricarpa in fruit tissues. Plant Disease 90(11):1419-1424.
    Baayen, R. P., Bonants, P. J. M., Verkley, G., Carroll, G. C., Van der Aa, H. A., De Weerdt, M., Van Brouwershaven, I. R., Schutte, G. C., Maccheroni Jr, W. and de Blanco, C. G. (2002). Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92(5):464-477.
    Baldassari, B. R., Wickert, E. and Goes, d. A. (2008). Pathogenicity, colony morphology and diversity of isolates of Guignardia citricarpa and G. mangiferae isolated from Citrus spp. European Journal of Plant Pathology 120:102-110.
    Baldassari, R. B., Reis, R. F. and de Goes, A. (2009). A new method for inoculation of fruit with Guignardia citricarpa, the causal agent of citrus black spot. European Journal of Plant Pathology 123(1):1-4.
    Bayraktar, H., Dolar, F. S. and Maden, S. (2008). Use of RAPD and ISSR markers in detection of genetic variation and population structure among Fusarium oxysporum f. sp. ciceris isolates on chickpea in Turkey. Journal of Phytopathology 156(3):146-154.
    Benson, A. H. (1895). Black spot of the orange. Agric. Gaz. NSW.6:249.
    Berbee, M. L. and Taylor, J. W. (2001). Fungal molecular evolution:gene trees and geological time. In: McLaughlin, D. J., McLaughlin, E.G., Lemke, P. A. (eds) The mycota, vol.7B, systematics and evolution.Springer, New York, pp 229-245.
    Bissett, J. (1979). Coelomycetes on Liliales:the genus Phyllosticta. Canadian Journal of Botany 57(19): 2082-2095.
    Bonants, P. J. M., Carroll, G. C., de Weerdt, M., van Brouwershaven, I. R. and Baayen, R. P. (2003). Development and validation of a fast PCR-based detection method for pathogenic isolates of the citrus black spot fungus, Guignardia citricarpa. European Journal of Plant Pathology 109(5):503-513.
    Boyd, M. L., Carris, L. M. and Gray, P. M. (1998). Characterization of Tilletia goloskokovii and allied species. Mycologia 90(2):310-322.
    CABI (2006). Crop protection compendium edition. CAB International, Wallingford (GB).
    CABI/EPPO (1998). Distribution maps of plant diseases. No.204. CAB International, Wallingford (GB).
    Cai, L., Udayanga, D., Manamgoda, D. S., Maharachchikumbura, S. S. N., McKenzie, E. H. C., Guo, L. D., Liu, X. Z., Bahkali, A. and Hyde, K. D. (2011). The need to carry out re-inventory of plant pathogenic fungi. Tropical Plant Pathology 36(4):205-213.
    Carbone, I. and Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553-556.
    Chung, K. R., Peres, N. and Timmer, L. W. (2005). Citrus diseases exotic to Florida:Black Spot[R].UF/IFAS EDIS(Electronic Data Information Systems) Database (http://edis.ifas.ufl.edu/PP135) (Fact Sheet PP-213).
    Crous, P. W. and Groenewald, J. Z. (2005). Hosts, species and genotypes:opinions versus data. Australasian Plant Pathology 34(4):463-470.
    Crous, P. W., Slippers, B., Wingfield, M. J., Rheeder, J., Marasas, W. F. O., Philips, A. J. L., Alves, A., Burgess, T., Barber, P. and Groenewald, J. Z. (2006). Phylogenetic lineages in the Botryosphaeriaceae. Studies in mycology 55(1):235-253.
    Cullen, D. W., Lees, A. K., Toth, I. K. and Duncan, J. M. (2002). Detection of Colletotrichum coccodes from soil and potato tubers by conventional and quantitative real-time PCR. Plant pathology 51(3):281-292.
    Culley, T. M. and Wolfe, A. D. (2001). Population genetic structure of the cleistogamous plant species Viola pubescens Aiton (Violaceae), as indicated by allozyme and ISSR molecular markers. Heredity 86(5): 545-556.
    Desmazieres, J. (1847). Quatorzieme notice sur les plantes cryptogames recemment decouvertes en France. Ann Sci Nat Bot Biol Serie 3(8):9-37.
    Dewdney M. (2010). Citrus Black Spot. Citrus Research and Education Center (CREC), University of Florida. http://www.crec.ifas.ufl.edu/extension/black spot/citrus black spot.
    Di Pietro, A. and Roncero, M. I. G. (1996). Endopolygalacturonase from Fusarium oxysporum f. sp. lycopersici: Purification, characterization, and production during infection of tomato plants. Phytopathology 86(12): 1324-1330.
    Doidge, E. M. (1929). Some diseases of Citrus prevalent in South Africa. S. Afr. J. Sci.26:324.
    Donk, M. A. (1968). Report of the Committee for Fungi and Lichens 1964-1969. Conservation of Generic Names. Taxon 17(5):578-581.
    EFSA (2008). Pest risk assessment and additional evidence provided by South Africa on Guignardia citricarpa Kiely, citrus black spot fungus-CBS. The EFSA Journal 925:1-108.
    EPPO/CABI (1997). Guignardia citricarpa. In:Quarantine Pests for Europe,(Eds. Smith, I.M., McNamara, D.G., Scott, P.R.& Holderness, M.).2nd edn,1425pp.1997.CAB International, Wallingford (GB).
    EPPO/CABI (2009). Guignardia citricarpa. Bulletin OEPP/EPPO Bulletin 39:318-327.
    Everett, K. R. and Rees-George, J. (2006). Reclassification of an isolate of Guignardia citricarpa from New Zealand as Guignardia mangiferae by sequence analysis. Plant pathology 55(2):194-199.
    Fang, D. Q. and Roose, M. L. (1997). Identification of closely related citrus cultivars with inter-simple sequence repeat markers. TAG Theoretical and Applied Genetics 95(3):408-417.
    Fawcett, H. S. and Howard, A. L. (1926). Citrus diseases and their control.
    Figueiredo, J. G., Goulin, E. H., Tanaka, F., Stringari, D., Kava-Cordeiro, V., Galli-Terasawa, L. V. and Staats, C. C. (2010). Agrobacterium tumefaciens-mediated transformation of Guignardia citricarpa. Journal of microbiological methods 80(2):143-147.
    Gardes, M. and Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular ecology 2(2):113-118.
    Glass, N. L. and Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323-1330.
    Glienke-Blanco, C., Aguilar-Vildosom, C. I., Vieira, M. L. C., Barroso, P. A. V. and Azevedo, J. L. (2002). Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genetics and molecular biology 25:251-256.
    Glienke, C., Pereira, O. L., Stringari, D., Fabris, J., Kava-Cordeiro, V., Galli-Terasawa, L., Cunnington, J., Shivas, R., Groenewald, J. Z. and Crous, P. W. (2011a). Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot. Persoonia 26:47-56.
    Goes, A. and Feichtenberger, E. (1993). Ocorrencia da mancha preta causada por Phyllosticta citricarpa (Guignardia citricarpa) em pomares citricos do Estado de Sao Paulo. Fitopatol. Bras.15:73-75.
    Goh, T. K. (1999). Single-spore isolation using a hand-made glass needle. Fungal Diversity 2:47-63.
    Hadidi, A.(1990). Detection of pome fruit viroids by enzymatic cDNA amplification. Virol. Met.30:261-270.
    Hawksworth, D. L. (2011). Naming Aspergillus species:progress towards one name for each species. Medical Mycology 49(S1):70-76.
    Hyde, K. D., Abd-Elsalam, K. and Cai, L. (2010a). Morphology:still essential in a molecular world. Mycotaxon 114(1):439-451.
    Hyde, K. D., Chomnunti, P., Crous, P. W., Groenewald, J. Z., Damm, U., Ko, T. W. K., Shivas, R. G., Summerell, B. A. and Tan, Y. P. (2010b). A case for re-inventory of Australia's plant pathogens. Persoonia:Molecular Phylogeny and Evolution of Fungi 25:50-60.
    Hyde, K. D., McKenzie, E. H. C. and KoKo, T. W. (2011). Towards incorporating anamorphic fungi in a natural classification-checklist and notes for 2010. Mycosphere 2(1):1-88.
    Kickx, J. (1849). Recherches pour servir a la flore cryptogamiqe des Flandres, Cent. Mem Acad R Sci Lett Arts Belg 4:1-59.
    Kiely, T. B. (1948). Preliminary studies on Guignardia citricarpa:The ascigerous stage of Phoma citricarpa McAlp. and its relation to black spot of citrus. P. Linn. Soc.N.S.W.73:249-292.
    Kiely, T. B. (1950). Control and epiphytology of black spot of citrus on the central coast of New South Wales. Science Bulletin, Department of Agriculture New South Wales 71:88.
    Kiely, T. B. (1960). Speckled blotch of citrus. Agricultural Gazette of NewSouth Wales 71:474-476.
    Kim, J. A., Takahashi, Y., Tanaka, R., Fukushima, K., Nishimura, K. and Miyaji, M. (2001). Identification and subtyping of Trichophyton mentagrophytes by random amplified polymorphic DNA. Mycoses 44(5): 157-165.
    Kirk, P. M., Cannon, P. F., Minter, D. W. and Stalpers, J. A. (2008). Ainsworth & Bisby's dictionary of the fungi,10th edn. CAB International, Wallingford, Cabi Publishing.
    Kirkpatrick, L. A. and Feeney, B. C. (2009). A simple guide to SPSS:for version 16.0, Wadsworth Pub Co.
    Kotze, J. M. (1963). Studies on the black spot disease of citrus caused by Guignardia citricarpa Kiely with particular reference to its epiphytology and control at Letaba. Pretoria, South Africa:University of Pretoria, PhD thesis
    Kotze, J. M. (1981). Epidemiology and control of citrus black spot in South Africa. Plant Disease 65(12): 945-950.
    Kotze, J. M. (1996). History and epidemiology of citrus black spot in South Africa Proceedings of the International Society of Citriculture 2:1296-1299.
    Kotze, J. M. (2000). Black spot. In:Whiteside, J.O., Garsney, S.M., Timmer, L.W. (eds) Compendium of citrus diseases. The American Phytopathological Society Press, St. Paul, pp 23-25.
    Kupper, K. C., Bettiol, W., De Goes, A., De Souza, P. S. and Bellotte, J. A. M. (2006). Biofertilizer for control of Guignardia citricarpa, the causal agent of citrus black spot. Crop protection 25(6):569-573.
    Lee, H. A. (1921). Phoma citricarpa:A deutromycete parasitic on Citrus sinensis and C. nobilis in China. Rev. Sci. & Prac. Agric.12(7):926-927.
    Lee, Y. S. (1969). Pathogenicity of different isolates of Guignardia citricarpa Kiely from various sources to Ponkan fruit. J. Taiwan Agric. Res.18:45-50.
    Lee, Y. S. and Huang, C. S. (1973). Effect of climatic factors on the development and discharge of ascospores of the citrus black spot fungus. Journal of Taiwan Agricultural Research 22(2):135-144.
    Liu, A. R., Chen, S. C., Wu, S. Y., Xu, T., Guo, L. D., Jeewon, R. and Wei, J. G. (2010). Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Molecular Phylogenetics and Evolution 57(2):528-535.
    Liu, K., Ding, X., Deng, B. and Chen, W. (2009). Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. Journal of industrial microbiology & biotechnology 36(9):1171-1177.
    LoBuglio, K. F., Pitt, J. I. and Taylor, J. W. (1993). Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85(4):592-604.
    Luttrell, E. (1946). Black rot of muscadine grapes. Phytopathology 36:905-924.
    Luttrell, E. S. (1948). Physiological specialization in Guignardia bidwellii, cause of black rot of Vitis and Parthenocissus species. Phytopathology 38:716-723.
    Marmeisse, R., Debaud, J. C. and Casselton, L. A. (1992). DNA probes for species and strain identification in the ectomycorrhizal fungus Hebeloma. Mycological research 96(3):161-165.
    Martinez-Culebras, P. V., Querol, A., Suarez-Fernandez, M. B., Garcia-Lopez, M. D. and Barrio, E. (2003). Phylogenetic relationships among Colletotrichum pathogens of strawberry and design of PCR primers for their identification. Journal of Phytopathology 151(3):135-143.
    Martins, M., Tenreiro, R. and Oliveira, M. M. (2003). Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers. Plant cell reports 22(1):71-78.
    McAlpine, D. (1899). Fungus diseases of citrus tree in Australia and their treatment. Agric. Dep. Victoria, Melbourne, Australia.
    McManus, P. S. (1998). First report of early rot of cranberry caused by Phyllosticta vaccinii in Wisconsin. Plant disease 82(3):350.
    McNeil, J., Barrie, F. R., Burdet, H. M., Demoulin, V, Hawksworth, D. J., Marhold, K., Nicolson, D. H., Prado, J., Silva, P. C., Skog, J. E., Wiersema, J. H. and Turlane, N. J. (2006). International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventh International Botanical Congress Vienna, Australia, July 2005. ARG Gantner Velag, Ruggel, Liechtenstein:1-568.
    McOnie, K. C. (1964). Source inoculum of Guignardia citricarpa, the citrus black spot pathogen Phytopathology 54:64-67.
    Meyer, L., Sanders, G. M., Jacobs, R. and Korsten, L. (2006). A one-day sensitive method to detect and distinguish between the citrus black spot pathogen Guignardia citricarpa and the endophyte Guignardia mangiferae. Plant Disease 90(1):97-101.
    Meyer, L., Slippers, B., Korsten, L., Kotze, J. M. and Wingfield, M. J. (2001). Two distinct Guignardia species associated with citrus in South Africa. South African Journal of Science 97:191-194.
    Mostafa, N., Omar, H., Tan, S. G. and Napis, S. (2011). Studies on the Genetic Variation of the Green Unicellular Alga Haematococcus pluvialis (Chlorophyceae) Obtained from Different Geographical Locations Using ISSR and RAPD Molecular Marker. Molecules 16(3):2599-2608.
    Motohashi, K., Inaba, S., Anzai, K., Takamatsu, S. and Nakashima, C. (2009). Phylogenetic analyses of Japanese species of Phyllosticta sensu stricto. Mycoscience 50(4):291-302.
    Motohashi, K., Nishikawa, J., Akiba, M. and Nakashima, C. (2008). Studies on the Japanese species belonging to the genus Phyllosticta (1). Mycoscience 49(1):11-18.
    Nag Raj, T. R. and Morelet, M. (1979). Observations on Mucosetospora (Coelomycetes). Canadian Journal of Botany 57(11):1295-1297.
    Nelson, R. J., Baraoidan, M., Vera Cruz, C. M., Yap, I. V, Leach, J. E., Mew, T. W., and Leung, H. (1994). Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl. Environ. Microbiol.60:3275-3283.
    Okane, I., Lumyong, S., Nakagiri, A. and Ito, T. (2003). Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph:Phyllosticta capitalensis). Mycoscience 44:353-363.
    Okane, I., Nakagiri, A. and Ito, T. (2001). Identity of Guignardia sp. inhabiting ericaceous plants. Canadian Journal of Botany 79(1):101-109.
    Olatinwo, R. O., Hanson, E. J. and Schilder, A. M. C. (2003). A first assessment of the cranberry fruit rot complex in Michigan. Plant disease 87(5):550-556.
    Pandey, A. K., Reddy, M. S. and Suryanarayanan, T. S. (2003). ITS-RFLP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees. Mycological research 107(4):439-444.
    Paul, A. P. and Blackburn, M. D. (1986). Phyllosticta beaumarisii sp. nov.:a cause of leafspot on Muehlenbeckia adpressa. Australasian Plant Pathology 15(2):40-41.
    Paul, I., Van Jaarsveld, A. S., Korsten, L. and Hattingh, V. (2005). The potential global geographical distribution of Citrus Black Spot caused by Guignardia citricarpa (Kiely):likelihood of disease establishment in the European Union. Crop protection 24(4):297-308.
    Peres, N. A., Harakava, R., Carroll, G. C., Adaskaveg, J. E. and Timmer, L. W. (2007). Comparison of molecular procedures for detection and identification of Guignardia citricarpa and G. mangiferae. Plant Disease 91(5):525-531.
    Persoon, C. H. (1818). Traite sur les champignons comestibles, contenant l'undication des especes nuisible precede d'une introduction a l'historie des Champignons-Paris.
    Phillips, A., Alves, A., Correia, A. and Luque, J. (2005). Two new species of Botiyosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia 97(2):513-529.
    Wang, X., Chen, G., Huang, F., Zhang, J., Kevin, D. H. and Li, H. (2012). Phyllosticta species associated with citrus diseases in China. Fungal Diversity 52(1):209-224.
    Prevost, A. and Wilkinson, M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. TAG Theoretical and Applied Genetics 98(1):107-112.
    Prihastuti, H., Cai, L., Chen, H., McKenzie, E. H. C. and Hyde, K. D. (2009). Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Diversity 39:89-109.
    Punithalingam, E. (1974). Studies on Sphaeropsidales in Culture,2, Commonwealth Mycological Institute.
    Qiang, Y. Z., Qin, T., Fu, W., Cheng, W. P., Li, Y. S. and Yi, G. (2002). Use of a rapid mismatch PCR method to detect gyrA and parC mutations in ciprofloxacin-resistant clinical isolates of Escherichia coli. Journal of Antimicrobial Chemotherapy 49(3):549-552.
    Qiu, F., Fu, J. M., Jin, D. M. and Wang, B. (1998). The molecular detection of genetic diversity. Biodiversity Science 6(02):143-150.
    Reusser, F. A. (1964). Ueber einige Arten der Gattung Guignardia Viala et Ravaz. Phytopathol Z 51:205-240.
    Rodrigues, K. F., Sieber, T. N., GruNig, C. R. and Holdenrieder, O. (2004). Characterization of Guignardia mangiferae isolated from tropical plants based on morphology, ISSR-PCR amplifications and ITS1-5.8 S-ITS2 sequences. Mycological research 108(1):45-52.
    Rohlf, F. J. (2000). Ntsys-Pc Numerical taxonomy and multivariate analysis system version 2.1. Exeter Software, Setauket, NY.[Links].
    Rossman, A. Y. and Palm-Hernandez, M. E. (2008). Systematics of plant pathogenic fungi:why it matters. Plant Disease 92(10):1376-1386.
    Roy, A. J. (1968). Some fungi from Almora. Indian Phytopathology 20:340-348.
    Saccardo, P. A. (1878). Fungi Veneti novi vel critici, series 7. Michelia 1:133-161.
    Saccardo, P. A. (1884). Sylloge Fungorum omnium hicusque cogniotrum, vol 3. Padova.
    Scarano, M. T., Abbate, L., Ferrante, S., Lucretti, S. and Tusa, N. (2002). ISSR-PCR technique:a useful method for characterizing new allotetraploid somatic hybrids of mandarin. Plant cell reports 20(12):1162-1166.
    Schubert, R., Bahnweg, G., Nechwatal, J., Jung, T., Cooke, D. E. L., Duncan, J. M., Muller-Starck, G., Langebartels, C. and OBwald, W. (1999). Detection and quantification of Phytophthora species which are associated with root-rot diseases in European deciduous forests by species-specific polymerase chain reaction. European Journal of Forest Pathology 29(3):169-188.
    Schubert, T. and Sutton, B. (2010). Citrus Black Spot (Guignardia citricarpa) discovered in Florida. Pest Alert.
    Schutte, G. C., Mansfield, R. I., Smith, H. and Beeton, K. V. (2003). Application of azoxystrobin for control of benomyl-resistant Guignardia citricarpa on'Valencia'oranges in South Africa. Plant Disease 87(7): 784-788.
    Seifert, K. A. and Rossman, A. Y. (2010). How to describe a new fungal species. IMA Fungus 1(2):109-116.
    Sharma, T. R. and Tewari, J. P. (1998). RAPD analysis of three Alternaria species pathogenic to crucifers. Mycological research 102(7):807-814.
    Shenoy, B. D., Jeewon, R. and Hyde, K. D. (2007). Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Diversity 26(1):1-54.
    Sivanesan, A. (1984). The bitunicate ascomycetes and their anamorphs. Cramer, Lehre, Germany.
    Slippers, B., Crous, P. W., Denman, S., Coutinho, T. A., Wingfield, B. D. and Wingfield, M. J. (2004). Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia 96(1):83-101.
    Sposito, M. B. (2003). Dinamica temporal e especial da mancha preta (Guignardia citricarpa) e quantificacao de danos causados a cultura dos citros. Ph.D. thesis, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de Sao Paulo, Piracicaba, Brasil.
    Sposito, M. B., Amorim, L., Bassanezi, R. B. and Hau, B. (2008). Spatial pattern of black spot incidence within citrus trees related to disease severity and pathogen dispersal. Plant pathology 57(1):103-108.
    Sreenivasaprasad, S., Sharada, K., Brown, A. E. and Mills, P. R. (1996). PCR-based detection of Colletotrichum acutatum on strawberry. Plant pathology 45(4):650-655.
    Stewart, V. B. (1916). The leaf blotch of horse-chestnut, Cornell University.
    Stringari, D., Glienke, C., Christo, D., Maccheroni Jr, W. and Azevedo, J. L. (2009). High molecular diversity of the fungus Guignardia citricarpa and Guignardia mangiferae and new primers for the diagnosis of the citrus black spot. Brazilian Archives of Biology and Technology 52(5):1063-1073.
    Sutton, B. C. and Waterston, J. M. (1966). Guignardia citricarpa.[Descriptions of Fungi and Bacteria]. IMI Descriptions of Fungi and Bacteria(9).
    Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution 24(8):1596-1599.
    Timmer, L. W., Garnsey, S. M. and Graham, J. H. (2000). Compendium of citrus diseases, American Phytopathological Society (APS Press).
    Truter, M., Labuschagne, P. M., Kotze, J. M., Meyer, L. and Korsten, L. (2007). Failure of Phyllosticta citricarpa pycnidiospores to infect Eureka lemon leaf litter. Australasian Plant Pathology 36(1):87-93.
    Tsumura, Y., Ohba, K. and Strauss, S. H. (1996). Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). TAG Theoretical and Applied Genetics 92(1):40-45.
    Uchida, J. Y. and Aragaki, M. (1980). Nomenclature, pathogenicity, and conidial germination of Phyllostictina pyriformis. Plant Disease 64(8):786-788.
    Udayanga, D., Liu, X, McKenzie, E. H. C, Chukeatirote, E., Bahkali, A. H. A. and Hyde, K. D. (2011). The genus Phomopsis:biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50:189-225.
    USDA(2010). Guignardia citricarpa (Citrus Black Spot, CBS) technical working group final report.
    van der Aa, H. A. (1973). Studies in Phyllosticta. Stud. Mycol.5:1-110.
    van der Aa, H. A. and Vanev, S. (2002). A revision of the species described in Phyllosticta, Centraalbureau voor Schimmelcultures, Utrecht.
    Van Gent-Pelzer, M. P. E., Van Brouwershaven, I. R., Kox, L. F. F. and Bonants, P. J. M. (2007). A TaqMan PCR method for routine diagnosis of the quarantine fungus Guignardia citricarpa on citrus fruit. Journal of Phytopathology 155(6):357-363.
    Van Gent-Pelzer, M. P. E., Van Brouwershaven, I. R., Kox, L. F. F. and Bonants, P. J. M. (2007). A TaqMan PCR method for routine diagnosis of the quarantine fungus Guignardia citricarpa on citrus fruit. Journal of Phytopathology 155(6):357-363.
    Vicent, A. and Garcia-Jimenez, J. (2008). Risk of establishment of non-indigenous diseases of citrus fruit and foliage in Spain:An approach using meteorological databases and tree canopy climate data. Phytoparasitica 36(1):7-19.
    Volossiouk, T., Robb, E. J. and Nazar, R. N. (1995). Direct DNA extraction for PCR-mediated assays of soil organisms. Applied and Environmental Microbiology 61(11):3972-3976.
    Wager, V. A. (1952). The black spot disease of citrus in South Africa. Sci. Bull. Dep. Agric. S. Afr.303:1-52.
    White, T. J., Bruns, T., Lee, S. and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, Academic Press.
    Wikee, S., Udayanga, D., Crous, P. W., Chukeatirote, E., McKenzie, E. H. C., Bahkali, A. H., Dai, D. Q. and Hyde, K. D. (2011). Phyllosticta—an overview of current status of species recognition. Fungal Diversity 51: 43-61.
    Wulandari, N. F., To-Anun, C., Hyde, K. D., Duong, L. M., De Gruyter, J., Meffert, J. P., Groenewald, J. Z. and Crous, P. W. (2009). Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Diversity 34:23-39.
    Wulandari, N. F., To-Anun, C., Lei, C., Abd-Elsalam, K. A. and Hyde, K. D. (2010). Guignardia/Phyllosticta species on banana. Cryptogamie, Mycologie 31(4):403-418.
    Zhang, A. W., Riccioni, L., Pedersen, W. L., Kollipara, K. P. and Hartman, G. L. (1998). Molecular identification and phylogenetic grouping of Diaporthe phaseolorum and Phomopsis longicolla isolates from soybean. Phytopathology 88(12):1306-1314.
    Zhang, X. G., Han, T., He, Z. G., Zhang, Q. Y., Zhang, L., Rahman, K. and Qin, L. P. (2011). Genetic diversity of Centella asiatica in China analyzed by inter-simple sequence repeat (ISSR) markers:combination analysis with chemical diversity. Journal of Natural Medicines:1-7.
    Zhang, Z., Zhang, J., Wang, Y. and Zheng, X. (2005). Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS microbiology letters 249(1):39-47.
    Zhou, S., Smith, D. R. and Stanosz, G. R. (2001). Differentiation of Botryosphaeria species and related anamorphic fungi using Inter Simple or Short Sequence Repeat (ISSR) fingerprinting. Mycological research 105(8):919-926.
    Zietkiewicz, E., Rafalski, A. and Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2):176-183.
    卜木祥,房志芬,黄洪泉,梁送祥,张凤明,钟丽萍(1999).沙田柚黑斑病的发生与防治.植保技术与推广19(4):25-26.
    三浦道哉(1928).满蒙植物志。第三辑。隐花植物志。,南满铁道株式会社.
    中国柑橘学会(2008).中国柑橘品种,中国农业出版社.
    毛岚,宋培玲,杨家荣(2009).陕西关中棉花黄萎病菌遗传多样性的ISSR分析.西北农林科技大学学报37(5):149-154.
    王金利,秦国夫,贺伟,赵俊,宋玉双(2003).葡萄座腔菌属及其相关真菌的系统学研究进展.中国森林病虫22(3):32-35.
    王源超,张正光,郑小波(2000).核糖体基因ITS作为苎麻疫霉、恶疫霉分类辅助性状的研究.菌物系统19(4):485-491.
    王卫芳,钟国强,胡佳,崔茹强,冯丽霞,吴海荣,赵立荣(2008).梅州柑橘黑斑病病原研究初报.中国植物病理学会2008年学术年会论文集.
    白金铠(2003).中国真菌志第十五卷球壳孢目,科学出版社.
    朱伟生,林邦茂,陈荟,李世菱(1979).柑橘黑星病研究.中国柑橘3:36-42.
    何予清,张宇,孙梅,何光存,王松文,朱英国(2001).利用ISSR分子标记研究栽培稻和野生稻亲缘关系.农业生物技术学报9(2):123-127.
    李河,宋光桃,何末军,郝艳,周国英(2009).巢式PCR检测油茶根腐病菌的研究.浙江林学院学报26(6):849-853.
    冯夏莲,何承忠,张志毅,安新民,王冬梅(2006).植物遗传多样性研究方法概述.西南林学院学报26(1):69-74.
    李海莲(2005).茄子黄萎病病原菌鉴定及其ISSR分子指纹分析,南京农业大学.硕士.
    李蕊倩,何瑞,张跃兵,徐玉梅,王建明(2009).镰刀菌ISSR标记体系的建立及遗传多样性分析.中国农 业科学42(9):3139-3146.
    沈浩,刘登义(2001).遗传多样性概述.生物学杂志18(3):5-8.
    肖育贵,周建华,吕良琼,肖银波,张金荣(2004).柠檬黑星病的初步研究.四川农业大学学报22(2):153-156.
    谷守芹,范永山,李坡,董金皋(2008).玉米大斑病菌ISSR反应体系的优化和遗传多样性分析.植物保护学报35(5):33-38.
    邢红梅,丁平,周晓云,王克荣(2008).红掌胶胞炭疽菌的分子检测.植物病理学报38(2):113-119.
    周开隆,叶荫民(2009).中国果树志柑橘卷,中国林业出版社.
    易克,徐向利,卢向阳,许勇,肖浪涛,王永建,唐国斌(2003).利用SSR和ISSR标记技术构建西瓜分子遗传图谱.湖南农业大学学报29(4):333-337.
    林石明,廖富荣,方志鹏,黄蓬英,陈红运,陈青,吴媛(2010).漳州琯溪蜜柚果实黑斑病菌的分子鉴定.植物检疫24(5):13-17.
    宣继萍,章镇,房经贵,高志红,车胜利(2002).苹果品种ISSR指纹图谱构建.果树学报19(6):421-423.
    段会军,张彩英,李喜焕,郭小敏,马峙英(2008).基于RAPD、ISSR和AFLP对西瓜枯萎病菌遗传多样性的评价菌物学报27(2):267-276.
    徐志(2010).我国部分麦区小麦白粉菌群体遗传多样性分析,福建农林大学.硕士.
    林海龙(2003).利用SSCP研究大青杨和香杨的种间及种内群体遗传多样性.东北林业大学.硕十.
    朱有勇(2007).遗传多样性与作物病害持续控制.科学出版社.
    戚佩坤(1994).广东省栽培药用植物真菌病害志,广东科技出版社.
    戚佩坤,白金铠,朱桂香(1966).吉林省栽培植物真菌病害志,科学出版社.
    郭碧云,郑峰,吴水欣,刘高新(2006).金柚黑斑病的发生特点及防治技术.中国南方果树35(4):21.
    鹿连明,胡秀荣,张利平,黄振东,陈国庆(2010).常规核巢式PCR对柑橘黄龙病菌的检测灵敏度比较.热带作物学报31(8):1280-1286.
    张维铭(2003).现代分子生物学试验手册.科学出版社.
    曾宪铭(1983).柑橘黑斑研究.华南农学院学报2:53-60.
    葛永奇,邱英雄,丁炳扬,傅承新(2003).孑遗植物银杏群体遗传多样性的ISSR分析.生物多样性11(4):276-287.
    蒲占淆,黄振东,黄茜斌,张小亚,鹿连明,陈国庆(2009).台州地区柑橘黑斑病的发生状况与防治措施.浙江柑橘26(4):33-35.
    蔡云鹏(1991).台湾植物病害总汇。修订3版。中华植物保护学会。中华植物病理学会。
    穆立蔷,刘赢男,冯富娟,杨国亭(2006).紫椴ISSR-PCR反应体系的建立与优化.林业科学6(2):16-31.
    戴芳澜(1979).中国真菌总汇,科学出版社.
    戴富明,刘少华,任小杰,陆金萍,倪秀红,徐敬友(2006).西瓜蔓枯病分子诊断技术研究.植物病理学报36(5):439-445.
    兰成忠,李本金,李炜,赵健,陈庆河,翁启勇(2011).福建闽侯福橘黑斑病病原菌的鉴定.生物安全学报20(2):147-150.
    刘万勃,宋明,刘富中,王怀松.(2002).(?)APD和ISSR标记对甜瓜种质遗传多样性的研究.农业生物技术学报10(3):231-236.
    刘少华(2005).植物病害分子监测技术研究,华东师范大学.硕士.
    单杨(2008).中国柑橘工业的现状、发展趋势与对策.中国食品学报8(1):1-8.
    吕良琼,徐学勤,李映平,耿大洪,张金荣,涂刚,李学斌(2005).柠檬黑星病防治技术试验.四川林业科技26(6):58-60.
    孙守恭(1992).台湾果树病害.162.
    孙树权,贺运春,王建明(1990).山西省经济植物真菌病害志,山西科学教育出版社.
    张祖健,龚玉源,梁文伟(2006).“世高”树上浸果防治沙田柚黑斑病试验.中国南方果树35(1):20-21.
    张淑梅,李晶,王玉霞,张先成,孟利强,赵晓宇(2010).植物真菌病害分子诊断技术研究进展.安徽农业 科学38(2):597-599.
    张竞宇,张正光,王源超,郑小波(2004).小麦印度腥黑穗病菌的分子检测.高技术通讯14(1):31-36.
    杨腊英,黄华平,唐复润,胡美娇,张世清,黄俊生(2006).香蕉炭疽菌rDNA ITS区的分子鉴定与检测.植物病理学报36(3):219-225.
    罗向群(2002).沙田柚黑斑病的发生情况及防治措施.植保技术与推广22(2):22.
    罗杏良,卜木祥,房志芬,王利新(2008).沙田柚黑斑病发生危害及防治.福建果树:48-49.
    许利强,李涛,王克荣(2008).利用ISSR分析栗疫病菌群体遗传多样性.农业生物技术学报16(4):701-705.
    谢勇,王云月,陈建斌,王扬,罗文富,朱有勇(2000).烟草黑胫病菌分子检测.云南农业大学学报15(2):176.
    贾少锋(2007).小麦遗传多样性对白粉病及其致病菌群体的影响,福建农林大学.硕士.
    贾少锋,段霞瑜,周益林,鲁国东,王宗华(2007).小麦白粉菌ISSR分子标记体系构建及其分离菌株的多样性分析.植物保护学报34(5):493-499.
    赵杰(2004).ITS序列分析及其在植物真菌病害分子检测中的应用.陕西农业科学4:35-37.
    赵谦,杜虹,庄东红(2007)ISSR分子标记及其在植物中的应用.分子植物育种5(6):123-129.
    邓叔群(1963).中国的真菌,科学出版社.
    钱韦,葛颂,洪德元(2000).采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报42(7):741-750.
    陆遥(2008).中国陕西,英国,印度苹果黑星病菌遗传多样性的SSR分析,西北农林科技大学.硕士.
    陈正坤(2010).我国柑橘出口比较优势及其可持续性研究,华中农业大学.硕士:17.
    陈永青,姜子德,戚佩坤(2002)RAPD分析与ITS序列分析在拟茎点霉分类鉴定上的应用.菌物系统21(1):39-46.
    陈庆河,李本金,兰成忠,赵健,邱荣洲,翁启勇(2009).双重PCR检测马铃薯晚疫病菌和青枯病菌方法的建立及应用.植物病理学报39(6):578-583.
    韩加军,林英任,刘艳兵,于红梅,项艳(2008).散斑壳属ISSR-PCR反应条件的优化.微生物学杂志28(1):20-23.
    黄德平,熊森基,黄利敏(2009).梅县琯溪蜜柚黑斑病的发生与防治对策.中国南方果树38(2):45.
    龚玉源,梁文伟,张祖建,何伟萍,卢东,罗祖汉(2004).“世高”药液浸果防治沙田柚黑斑病试验初报.广西植保17(3):6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700