用户名: 密码: 验证码:
水稻细菌性条斑病菌遗传多样性研究与生防菌剂研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻细菌性条斑病由Xanthomonas oryzae pv. oryzicola (Xooc)引起,是水稻生产中一种重要的检疫性病害,其发生具有流行性、暴发性和毁灭性等特点。该病是我国南方稻区生产的重要病害,当气候条件适宜时,在感病品种上能引起15%~25%产量损失,严重时达40%~60%,对水稻的高产稳产造成严重威胁。品种抗病性是寄主与病原物互作的结果,深入了解病原物群体遗传结构的变化,可作为抗性基因合理分布的依据。主要研究如下:
     本文通过rep-PCR指纹技术,分析了来源于江苏、云南、江西、湖南和安徽等省份69个水稻细菌性条斑病菌(X. oryzae pv. oryzicola)群体遗传多样性。用2对特异性引物BOX和ERIC对菌株基因组DNA进行了PCR扩增,以彼此间的带位相似率达80%为界,BOX扩增的谱型被分为10簇,ERIC的谱型被分为8簇。BOX的第3簇包含27个菌株,占总数的39.1%,ERIC的第5簇包含24个菌株,占总数的34.8%,均为优势簇。群体遗传多样性值BOX为0.9784,ERIC为0.9833。说明水稻细菌性条斑病菌群体的遗传分化明显,遗传多样性较高。全部69株菌株接种于含有不同抗病基因近等基因系及高感品种金刚30等6个鉴别品种上,被划分为13个致病型,其中C6致病型占26.1%,为优势致病型。69个菌株的BOX、ERIC的簇群分类与地理位置相关,与致病型不相关。
     其次对来源于江苏、云南、江西、湖南和安徽等省细菌性条斑病菌菌株,通过采用苗期注射接种和成株期针刺接种法,研究其在6个鉴别品种(金刚30、IRBB4、 IRBB5、IRBB14、IRBB21和IRBB24)上致病力分化及其对水稻幼苗和成株致病力差异,为品种布局和条斑病菌致病力快速鉴定提供理论依据。试验结果显示,71个条斑病菌菌株在苗期和成株期可分别区分为18个和13个致病型;苗期的优势致病型为C1,占供试菌株总数的17.0%;成株期的优势致病型为C10,占供试菌株总数的25.4%。研究还表明:大多数菌株与水稻品种之间表现为弱互作关系,只有一部分菌株表现为强互作关系。就单个菌株而言,在苗期和成株期的致病力分化是不一致的。整体而言,71个菌株在6个鉴别品种的苗期上可侵染241次,侵染率为56.6%;在成株期上有245次侵染,总侵染率为57.5%。病原菌在不同水稻品种的苗期和成株期上的侵染能力是基本相同的。
     同时采集江苏省南京、泰州、扬州和宿迁等地区水稻田水稻病叶、健叶、根围土等样品90份,分离纯化得到1173个细菌分离物,对其进行水稻细菌性条斑病菌(X. oryzae pv. oryzicola)皿内抑制试验,共获得12株拮抗能力较强的细菌,其中4株拮抗细菌抑菌圈直径大于27mm。盆栽试验结果表明,12株拮抗能力较强的细菌中有4株对水稻细菌性条斑病防效大于50%。其中菌株Lx-11盆栽防效达62.5%,大田示范试验防效达60.2%,显著高于化学药剂20%叶枯唑的防效(51.2%和45.8%)。通过形态特征、理化特性和分子鉴定结果确定菌株Lx-11为解淀粉芽孢杆菌Bacillus amyloliquefaciens.
     对前期筛选获得和在田间试验中防治水稻细菌性条斑病效果较好的解淀粉芽孢杆菌Lx-11,通过Plackett-Burman单因素筛选及Box-Behnken响应曲面法(response surface methodology, RSM)对影响生防菌株Lx-11生物发酵工艺进行了优化。试验结果表明,培养温度、通气量和接种量是影响发酵活菌数和抑菌活性的主要因子,由所得响应曲面方程预测出这3个主要因子分别为30.84℃、59.68mL/250mL和1.52%时,发酵活菌数和抑菌活性的最大值为3.75×109cm·mL-1和8.2mm。经摇瓶发酵试验和抑菌活性验证该理论预测值与实际值无显著差异。
     Lx-11菌株分泌的脂肽类抗生素物质包括surfactin, bacillomycin D和fengycin三大类,通过构建surfactin突变体菌株发现surfactin在防治细菌性条斑病中起主要作用。生防菌处理水稻植株后能够诱导植株防卫反应相关基因PR-la、PR-1b、NPR1和PAL基因的表达,并在处理24小时后达到最大值,表明Lx-11菌株引发植株产生系统免疫反应。
Bacterial leaf streak (BLS) is a quarantine rice disease caused by Xanthomonas oryzae pv. oryzicola (Xooc), which has characteristics of destruction, epidemic and outbreak in southern China. Available reports suggest that yield losses due to this disease typically range from15%to25%depending on the rice variety and climatic conditions. Under conditions favorable for spread, BLS may affect entire fields and cause damage reductions in grain weight of up to40%-60%. Variety resistance results from interaction between host and pathogen. The fundation of resistance gene distribution is to uderstand the varity of population genetic of plant pathogen. The main results were summarized as follows:
     Genetic diversity and pathotype variability of X. oryzae pv. oryzicola strains collected from Jiangsu, Yunnan, Jiangxi, Hunan and Anhui were analyzed by using rep-PCR fingerprinting techniques. Genomic DNA from sixty nine strains was amplified with two specific primers BOX and ERIC. Dendrograms were generated from the data by using UPGMA analysis. The strains tested were similar each other at a level of80%,10and8clusters were grouped with BOX and ERIC, respectively. The predominant groups were cluster3and5for each primer BOX and ERIC involving27(39.1%) and24(34.8%) strains, respectively. The genetic diversities of the population of tested strains were0.9784(for BOX) and0.9833(for ERIC), respectively. The results indicated that the genetic diversity of Xanthomonas oryzae pv. oryzicola was various. Sixty nine strains inoculated onto five differential cultivars including near-isogenic rice lines carrying single resistance gene, IRBB4, IRBB5, IRBB14, IRBB21and IRBB24, and a highly susceptible cultivar Jinggang30, may group thirteen pathotypes. The predominant pathotype was C6(26.1%). No relationships were observed between UPGM A groups (BOX and ERIC) of the69strains and pathotypes, but each group was partially associated with the regional origin of strains.
     To provide a theoretical basis for rice cultivar distribution and rapid identification of virulence of X. oryzae pv. oryzicola, The virulence differentiation of71isolates of Xanthomonas oryzae pv. oryzicola collected from Hunan, Jiangxi, Yunnan, Jiangsu and Anhui provinces were identified with six rice cultivars (Jingang30, IRBB4, IRBB5, IRBB14, IRBB21, IRBB24) containing different resistance genes against bacterial blight by the inoculation methods of leaf-infiltration with needleless syringes at seedling stage and leaf-needling at adult stage. The results showed that the71strains were classified into18pathotypes at seedling stage and13pathotypes at adult stage. The predominant pathotype was C1(17.0%of the total strains) at seedling stage, and C10(25.4%of the total strains) at adult stage. Most isolates had weak interactions with the rice cultivars, and some the isolates had specific interactions. However, for a single strain, the virulence differentiation of X. oryzae pv. oryzicola was not the same in different growth stages. It also found that all the strains were infected241times (the infection rate was56.6%) and245times (the infection rate was57.5%) at seedling and adult stages, respectively. The virulences of pathogenic bacteria in different rice varieties at seedling and adult stages were basically the same.
     In this paper,1173bacterial strains were isolated from the disease leaves infected by X. oryzae pv. oryzicola, the healthy leaves and the rhizosphere of rice plants sampled in Nanjing, Taizhou, Yangzhou and Suqian in Jiangsu province. Among the tested strains,12strains demonstrated high inhibitory activity agaimst X. oryzae pv. oryzicola. The Diameter of inhibition zones of4strains were more than27mm. Control efficiencies of strain Lx-11were62.5%and60.2%in pot and field trials, respectively, significantly higher than those of20%bismerthlazol treatment (51.2%and45.8%). Based on morphological, physiological and biochemical characteristics and16S rDNA sequence analysis, the strain Lx-11was identified to be Bacillus amyloliquefaciens.
     The Plackett-Burman experiment and response surface methodology were adopted to optimize the liquid fermentation conditions of the biocontrol agent of Bacillus amyloliquefaciens Lx-11. The results indicated that the temperature, the filling volume of shaking flask and inoculum volume were the major factors that affect the yield of Lx-11. The fermentation conditions were30.84℃, inoculum volume1.52%and the filling volume59.68mL in250mL shaking flask for48h, and initial pH at7.0. Under the optimized fermentation conditions the production of spores was up to3.75×109cfu·mL-1and the width of antibacterial activity was8.2mm. Fermentation experiments with shake flasks verified that there was no statistical difference between the yield value and antibacterial activity forecasted by the model.
     We found that Lx-11secreted three kinds of lipopeptides including surfactin, bacillomycin D and fengycin, which exhibted antibacterial activity against X. oryzae pv. oryzicola. The antibacterial activity could be associated with surfactin-lipopeptides, and practically abolished in surfacin-deficient mutants. In addition, the defense-related genes PR-1a, PR-1b, NPR1and PAL were concurrently expressed in the leaves of rice after treated with Lx-11. The results implied that Lx-11triggered a systemic immunization activity.
引文
1. Adhikari T B, Vera C C M, Mew T W, et al. Identification of Xanthomonas oryzae pv. oryzae by insertion sequence-based polymerase chain reaction (IS-PCR)[J]. IRRN,1999,24:23-24
    2. Adhikari T B, Mew T W. Phage sensitivity and lysotype distribution of Xanthomonas campestris pv. oryzicola[J].IRRN,1985,10(1):11
    3. Alegria M C, Docena C, Khater L, et al. New protein-protein interactions identified for the regulatory and structural components and substrates of the type Ⅲ secretion system of the phytopathogen Xanthomonas axonopodis pathova citri[J]. J Bacteriol,2004,186:6186-6197
    4. Alfano J R, Collmer A. Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense[J]. Annu Rev Phytopathol,2004,42:385-414
    5. Barber C E, Tang J L, Feng J X, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule[J]. Mol Microbiol, 1997,24:556-566
    6. Buttner D, Bonas U. Port of entry-the type Ⅲ secretion translocation[J]. Trends Microbiol,2002,10: 186-192
    7. Buttner D, Nennstiel D, Klusener B, et al. Functional analysis of HrpF, a putative type-Ⅲ translocon protein from Xanthomonas campestris pv. vesicatoria[J]. J Bacteriol,2002,184: 2389-2398
    8. Chatterjee S, Sonti R V. rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron condition[J]. Mol Plant Microbe In.2002,15(5):463-471
    9. Chatterjee S, Wistrom C, Lindow S E. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa[J]. P Natl Acad Sci USA,2008,105:2670-2675
    10. Chou F L, Chou H C, Lin Y S, et al. The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot[J]. Bioche Biophys Res Commun,1997,1(5):265-269
    11. Dow M J, Crossman L, Findlay K, et al. Biofilm Dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to planta[J]. P Natl Acad Sci USA,2003,100:10095-11000
    12. Gonzalez C, Szurek B, Manceau C, et al. Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa[J]. Mol Plant Microbe In,2007,20(5):534-546
    13. He Y W, Xu M, Lin K, et al. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris:identification of novel cell-cell communication-dependent genes and function[J]. Mol Microbiol,2006,59:610-622
    14. He Y W, Zhang LH. Quorum sensing and virulence regulation in Xanthomonas campestris[J]. FEMS Microbiol Rev,2008,32 (5):842-857
    15. Lee B M, Park Y J, Park D S, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice[J]. Nucleic Acids Res,2005,33(2):577-586
    16. Makino S, Sugio A, White F, et al. Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola[J]. Mol Plant Microbe In,2004,17:1192-1200
    17. Naoto A, Takashi O. PCR-mediated detection of Xanthomonas oryzae pv. oryzae by amplification of the 16S-23S rDNA spacer region sequence[J]. J Gen Plant Pathol,2000,66:303-309
    18. Nayak P, Ranga P R, Misra R N. Pattern of inheritance of bacterial leaf streak resistance in rice[J]. Curr Sci,1975,44(16):600-601
    19. Nino Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars:model pathogens of a model crop[J]. Mol Plant Pathol,2006,7(5):303-324
    20. Ou, S H. Rice Diseases[M]. Kew, Surrey:Commonwealth Mycological Institute.1972
    21. Raymundo A K, Jr Briones A. Genetic diversity in Xanthomonas oryzae pv. oryzicola[J]. IRRN, 1995,20:3-5
    22.Rossier O, Ackerveken G Van den, Bonas U. HrpB2 and HrpF from Xanthomonas are type Ⅲ secreted proteins and essential for pathogenicity and recognition by the host plant[J]. Mol Microbiol,2000,38:828-838
    23. Sakthivel N, Mortensen C N, Mathur S B. Detection of Xanthomonas oryzae pv. oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques[J]. Appl Microbiol Biotechnol,2001,56:435-441
    24. Sharma N, Sharma S. Control of foliar diseases of mustard by Bacillus from reclaimed soils[J]. Microbiol Res,2008,163:408-413
    25. Shekhawat G S. Srivastava D N. Epidemiology of bacterial leaf streak of rice[J]. Ann Phytopath So Jap,1972,38:7-34
    26. Swings J, Vanden Den M M, Vauterin L, et al. Classification of the causal agents of bacterial blight and bacterial leaf streak of Rice as Pathovars of Xanthomonas oryzae[J]. Int J Syst Bacteriol, 1990,40:309-311
    27. Wang L, Makino S, Subedee A, et al. Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis[J]. Appl Environ Microb, 2007,73(24):8023-8027
    28. Wang L H, He Y, Gao Y, et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues[J]. Mol Microbiol,2004,51:903-912
    29. Weber E, Koebnik R. Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria[J]. J Bacteriol,2005,187:6175-6186
    30. Weber E, Reuhs T O, Huguet E, et al. The type Ⅲ-dependent Hrp Pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants[J]. J Bacteriol,2005, 187:2458-2468
    31. Yang B, White F. Diverse members of the AvrBs3/pthA family for type Ⅲ effectors are major virulence determinants in bacterial blight disease of rice[J]. Mol Plant Microbe In,2006, 19:240-249
    32. Zhang J S, Li Y Z, Fang X J. Detection of QTL conferring resistance to bacterial leaf streak in rice chromosome 2(O. sativa L. spp. indica) [J]. Scientia Agriculture Sinica,2005,38:1923-1925
    33. Zhao Y C, Qian G L, Yin F Q, et al. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonasoryzae pv. oryzicola[J]. Microb Pathogenesis, 2011,50:48-55
    34. Zou L F, Wang X P, Xiang Y, et al. Elucidation of the hrp clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice[J]. Appl Environ Microb,2006,72:6212-6224.
    35.曹燕飞,邹丽芳,赵文祥,等.水稻条斑病菌avrBs3/pthA家族基因敲除体系的建立[J].浙江大学学报,2011,37(1):40-48
    36.陈功友,邹丽芳,武晓敏,等.水稻条斑病细菌中新发现的avrBs3/PthA家族新成员avr/pth13基因[J].中国水稻科学,2005,19:291-296.
    37.陈志谊,陈毓苓,陆凡,等.江苏省水稻品种细菌性条斑病抗性鉴定结果[J].江苏农业科学,1998,(2):43-44
    38.陈志谊,刘永峰,刘凤权,等.江苏省水稻品种细菌性条斑病抗性评价与病原菌致病力分化[J].植物保护学报,2009,36(4):315-318
    39.范怀忠.广东水稻细菌性条斑病的防治及在研究中的一些问题[J].华南农业科学,1957(3):1-3
    40.方中达,任欣正,陈泰英,等.水稻白叶枯及条斑病和李氏禾条斑病病原细菌的比较研究[J].植物病理学报,1957,3(2):99-122
    41.郭亚辉,许志刚,胡白石,等.中国南方水稻条斑病菌小种分化研究[J].中国水稻科学,2004,18(1):83-85
    42.何月秋,文艳华,黄瑞荣,等.杂交水稻对细菌性条斑病抗性遗传研究[J].江西农业大学学报,1994,16(1):62-65
    43.黄大辉,岑贞陆,刘驰,等.野生稻细菌性条斑病抗性资源筛选及遗传分析[J].植物遗传资源学报,2008,9(1):11-14
    44.姬广海,许志刚.水稻细菌性条斑病DNA多态性与致病性研究[J].华中农业大学学报,2000,19(5):430-433
    45.姬广海,许志刚,张世珖.Rep-PCR技术对中国水稻条斑病菌的遗传多样性初析[J].植物病理学报,2002,32(1):26-32
    46.刘友勋,成国英,涂立超,等.中南4省水稻细菌性条斑病致病型比较[J].华中农业大学学报,2004,23(5):504-506
    47.李玉蓉,邹丽芳,武晓敏,等.水稻黄单胞菌avrBs3/PthA家族基因研究进展[J].中国农业科学,2007,40:2193-2199
    48.农秀美.广西条斑病致病力分化研究[J].西南农业学报,1992,4(2):94-97
    49.沈光斌,周明国.水稻白叶枯病菌噻枯唑抗药突变体生物学性质研究[J].南京农业大学学报,2001,24(4):33-36.
    50.沈素文,刘永峰,周苏津,等.4株拮抗细菌与链霉素、叶枯唑协同控制水稻细菌性条斑病研究[J].江苏农业科学,2010,(4):98-100.
    51.唐定中,李维明.水稻细菌性条斑病的抗性遗传[J].福建农业大学学报,1998,27(2):133-137
    52.王汉荣,谢关林,冯仲民,等.水稻品种(系)对水稻细菌性条斑病的抗性评价[J].中国农学通报,1995,11(3):17-19
    53.王绍雪,马改转,魏兰芳,等.西南地区水稻细菌性条斑病菌致病力的分化[J].湖南农业大学学报,2010,36(2):188-191
    54.向建国,任新国,戴良英.水稻细菌性条斑病菌致病力分化的初步研究[J].湖南农业科学,1991,12(1):27-28
    55.肖友伦,肖放华,刘勇,等.湖南水稻主栽品种对水稻细菌性条斑病的抗性鉴定[J].植物保护,2011,27(1):45-49
    56.夏怡厚,林维英,陈藕英.水稻品种(系)对稻细菌性条斑病的抗性鉴定和抗性筛选[J].福建农学院学报,1992,21(1):32-36
    57.谢关林,孙漱沅,王公金,等.水稻细菌性条斑病种子带菌检测研究:Ⅰ.免疫放射分析法[J].中国水稻科学,1990,4(3):127-132
    58.谢关林,王汉荣,孙漱沅,等.水稻细菌性条斑病种子带菌检测研究:Ⅱ.离体检测法[J].中国水稻科学,1991,5(3):121-126
    59.邢家华,何荣林,张纯标,等.20%噻森铜悬浮剂对水稻白叶枯病和细菌性条斑病的田间防效[J].浙江农业科学,2007,(5):567-568
    60.徐羡明,林壁润,曾列先.广东水稻细菌性条斑病菌致病力分化研究初报[J].广东农业科学,1992,(6):31-32
    61.杨凤环,李正楠,姬惜株,等. BOX-PCR技术在微生物多样性研究中的应用[J].微生物学通报,2008,35(8):1282-1286
    62.殷芳群,赵延存,刘春晖,等.水稻细菌性条斑病中受DSF调控的鞭毛基因flgD、flgE的功能分析[J].微生物学报,2011,51(7):891-897
    63.曾列先,陈深,张慧,等.广东水稻白叶枯病菌遗传多样性和小种分化研究[J].植物病理学报,2009,39(3):231-237
    64.张红生,陆志强,朱立宏.四个籼稻品种对细菌性条斑病的抗性遗传研究[J].中国水稻科学,1996,10(4):193-196
    65.张荣胜,刘永锋,陈志谊.水稻细菌性条斑病菌拮抗细菌的筛选、评价与应用研究[J].中国生物防治,2011,27(4):510-514
    66.张鼎鼎,邹丽芳,赵梅勤,等.hrcQ基因决定水稻条斑病菌在非寄主烟草上的过敏性反应和在寄主水稻上的致病性[J].中国水稻科学,2011,25(1):11-18
    67.张华,姜英华,胡白石,等.利用PCR技术转化性检测水稻细菌性条斑病菌[J].植物病理学报,2008,38(1):1-5
    68.郑伟,刘晓辉,成国英,等.中国、日本和菲律宾水稻白叶枯病菌遗传多样性比较分析[J].微生物学报,2008,25(4):519-523
    69.周丹,邹丽芳,邹华松,等.水稻条斑病菌胞外多糖相关基因的鉴定[J].微生物学报,2011,51(10):1334-1341
    70.周明国,马忠华,党香亮,等.对噻枯唑具有抗性的水稻白叶枯病菌菌株的性质[J].植物保护学报,1997,24(2):155-158
    71.周明华,许志刚,粟寒,等.两个籼稻品种对水稻细菌性条斑病抗性遗传的研究[J].南京农业大学学报,1999,22(4):27-29
    72.邹丽芳,陈功友,武晓敏,等.中国水稻条斑病细菌avrBs3/PthA家族基因的克隆和序列分析[J].中国农业科学,2005,38:929-935
    73.赵文祥,韩阳春,崔一平,等.HrcJ参与了Ⅲ型分泌装置的形成从而决定条斑病菌在非寄主上的过敏反应和在水稻上的致病性[J].中国农业科学,43(1):79-86
    74.朱凯,段桂芳,张建萍,等.禾长蠕孢菌代谢产物抑制水稻细菌性条斑病菌[J].中国农学通报,2010,26(8):240-242.
    1. Adhikari T B, Joseph C M, Yang G P, et al. Evaluation of bacteria isolated from ricefor plant growth promotion and biological control of seeding disease of rice[J]. Can J Microbiol,2001,47: 916-924
    2. Arima K, Kakinuma A, and Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus stubilis:Isolation, characterization and its inhibition of fibrin clot formation[J]. Biochem Bioph Res Co,1968,31:488-494
    3. Bacon C W, Yates I E, Hinton D M, et al. Biological control of Fusarium moniliforme in maize[J]. Environ Health Perspect,2001,109 Suppl 2:325-332
    4. Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiol,2004,134:307-319
    5. Benizri E, Baudoin E, Guckert A. Root colonization by inoculated plant growth-promoting rhizobacteria[J]. Biocontrol Sci Technol,2001,11:557-574
    6. Bloemberg G V, Lugtenberg B J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria[J]. Curr Opin Plant Biol,2001,4:343-350
    7. Branda S S, Gonzalez-Pastor J E, Ben-Yehuda S, et al. Fruiting body formation by Bacillus subtilis[J]. Proc Natl Acad Sci,2001,98:11621-11626
    8. Chen X H, Vater J, Piel J, et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42[J]. J Bacteriol,2006,188:4024-4036
    9. Chen X H, Scholz R, Borriss M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. J Biotechnol,2009,140: 38-44
    10. Conrath U, Pieterse C M J, Mauch-Mani B. Priming in plant-pathogen interactions[J]. Trends Plant Sci,2002,7:210-216
    11. Cook R J, Bruckart W L, Coulson J R, et al. Safety of microorganisms intended for pest and plant disease control:a framework for scientific evaluation[J]. Biol Control,1996,7:333-351
    12. Ferguson C M J, Boothl N A, Allan E J. An ELISA for the detection of Bacillus subtilis L-form bacteria confirms their symbiosis in strawberry [J]. Lett Appl Microbiol,2000,31:390-394
    13. Fujiu M, Sawairi S, Shimada H, et al. Azoxybacillin, a novel antifungal agent produced by Bacillus cereus NR2991:Production, isolation and structure elucidation[J]. J Antibiot,1994,47:833-835
    14. Hiradate S, Yoshida S, Sugie H, et al. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2[J]. Phytochemistry,2002,61:693-698
    15. Hofemeister J, Conrad B, Adler B, et al. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3[J]. Mol Genet Genomics,2004,272:363-378
    16. Kleinkauf H, Dohren H. Noribosomal biosynthesis of peptide antibiotics[J]. Eur J Biochem,1990, 192:1-15
    17. Kuske C R, Banton K L, Adorada D L, et al. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil[J]. Appl Environ Microb,1998,64(7):2463-2472
    18. Nakano M M, Zuber P. Molecular biology of antibiotic production in Bacillus[J]. Crit Rev Biotechnol,1990,10:223-240
    19. Johnson F H, Campbell D H. The retardation of protein denaturation by hydrostatic pressure[J]. J Cell Physiol,1945,26:43-46
    20. Jourdan E, Henry G, Duby F, et al. Insights into the Defense-Related Events Occuring in Plant Cells Following Perception of Surfactin-Type Lipopeptide from Bacillus subtilis[J]. Mol Plant Microbe In,2009,22:456-468
    21. Julkowska D, Obuchowski M, Holland B I, et al. Comparative Analysis of the Development of Swarming Communities of Bacillus subtilis 168 and a Natural Wild Type:Critical Effects of Surfactin and the Composition of the Medium[J]. J Bacteriol,2005,187(1):65-76
    22. Leong J. Siderophores:their biochemistry and possible role in the biocontrol of plant pathogens[J]. Annu Rev Phytopathol,1986,24:187-209
    23. Liu Y F, Chen Z Y, Ng T B, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916[J]. Peptides,2007,28:553-559
    24. Liu Y Z, Chen Z Y, Wang K R, et al. Enhancing Bioefficacy of Bacillus subtilis with Sodium Bicarbonate for the Control of Ring Rot in Pear during Storage[J]. Biol control,2011,57 (2):110-117
    25. Moyne A L, Shelby R, Cleveland T E, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus[J]. J Appl Microbiol,2001,90:622-629
    26. Niu D D, Liu H X, Jiang C H, et al. The Plant Growth-Promoting Rhizobacterium Bacillus cereus AR156 Induces Systemic Resistance in Arabidopsis thaliana by Simultaneously Activating Salicylate-and Jasmonate/Ethylene-Dependent Signaling Pathways[J]. Mol Plant Microbe In,2011, 24:533-542
    27. Ongena M, Adam A, Jourdan E, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environ Microbiol,2007,9:1084-1090.
    28. Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol[J]. Trends Microbiol,2008,16:115-125
    29. Phae C G, Shoda M, Kubota H. Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms[J]. J Ferment Bioeng,1990,69:1-7
    30. Pieterse C M, van Wees S C, van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. Plant Cell,1998,10:1571-1580
    31. Raupach G S, Kloepper J W. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens[J]. Phytopathology,1998,88:1158-1164
    32. Reva O N, Dixeliu C, Meijer J, et al. Taxonomic characterization and plant colonizing abilities of some bacteria related to Baicllus amyloliquefaciens and Bacillus subtilis[J]. FEMS Microbiol Ecol, 2004,48:249-259
    33. Ryu C M, Farag M A, Hu C H, et al. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant Physiol,2004,134:1017-1026
    34. Ryu C M, Farag M A, Hu C H, et al. Bacterial volatiles promote growth in Arabidopsis[J]. Proc Natl Acad Sci USA,2003,100:4927-4932
    35. Serrano M, Zilhao R, Ricca E, et al. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function[J]. J Bacteriol,1999,181:3632-3643
    36. Sheppard J D, Jumarie C, Cooper D G, et al. Ionic channels induced by surfactin in planar lipid bilayer membranes[J]. Biochim Biophys Acta,1991,1064:13-23
    37. Shoda M. Bacterial control of plant diseases[J]. J Biosci Bioeng,2000,89:515-521
    38. Stein T, Heinmann S, Dusterhus S. Expression and functional analysis of subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO 1099[J]. J Bacteriol,2005,187:822-828
    39. Stover A G, Driks A. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA[J]. J Bacteriol,1999,181:5476-5481
    40. Tang W H. Advances in biological control of plangt diseases:proceeding of the international workshop on biological control of plant diseases [M]. Beijing:China Agricultural University Press, 1996.
    41. Tschenj S M. Control of Rizoctonia soanli by Bacillus subtilis[J]. Trans Mycol Soc Jap,1987,28: 483-493
    42. Ukness S, Winter A M, Delaney T. Biological induction of systemic acquired resistance in Arabidopsis[J]. Mol Plant Microbe In,1993,6:692-698
    43. Vanittanakom N, Loeffler W, Koch U. Fengycin-a novel anti-fungal lipopeptide antibiotic produced by Bacillus subtilis F2923[J]. J Antibiot,1986,39:888-901
    44. Van der Ent S, Van Wees S C, Pieterse C M. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes[J]. Phytochemistry,2009,70:1581-1588
    45. Van Rij E, Wesselink M, Chin-A-Woeng T, et al. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391[J]. Mol Plant Microbe In,2004,17:557-566
    46. Weisbeek P, Ogeshi A, Kobayashi K, et al. Plant growth-promoting rhizobacteria Present status and future prospects. Proc.4th Inter. Workshop on plant growth-promoting rhizobacteria, Japan-OECD joint workshop Sapporo Japan,10(5):102-106
    47. Yu G Y, Sinclair J B, Hartman G L, et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J]. Soil Biol Biochem,2002,34:955-963
    48. Zheng G, Slavik M F. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain[J]. Lett Appl Bacteriol,1999,28:363-367
    49.程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].江西农业大学学报,2003,25:732-737
    50.高学文,姚仕义, Huong P,等.基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究[J].中国农业科学,2003,36:1496-1501
    51.顾真荣,马承铸,韩长安.产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定[J].上海农业学报,2001.17:92-96
    52.顾真荣,吴畏,高新华,等.枯草芽孢杆菌G3防治植病盆栽试验[J].上海农业学报,2002,18:77-80
    53.洪永聪,范晓静,来玉宾,等.枯草芽孢菌株TL2在茶树体内的内生定殖[J].茶叶科学,2006,26:270-274
    54.胡剑,赵永歧,王岳五.枯草杆菌Bs-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究[J].微生物学通报,1997,24:3-6
    55.林东,徐庆,刘艺舟,等.枯草芽孢杆菌S0113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].农业生物技术学报,2001,9(1):77-80.
    56.林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用[J].植物病理学报,2003,33(2):174-177
    57.黎起秦,叶云峰,王涛,等.内生枯草芽孢杆菌B47菌株入侵番茄的途径及其定殖部位[J].中国生物防治,2008,24(2):133-137.
    58.罗楚平,王晓宇,陈志谊,等.枯草芽孢杆菌Bs916中脂肽抗生素Bacillomycin L的操纵子结构及生物活性[J].中国农业科学,2010,43(22):4624-4634
    59.唐丽娟,纪兆林,徐敬友,等.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J].中 国生物防治,21(3):203-205
    60.田涛,亓雪晨,王琦,等.芽孢杆菌绿色荧光标记及其在小麦体表定殖的初探[J].植物病理学报,2004,34(4):346-351
    61.王雅平,刘伊平,潘乃穟,等.枯草芽孢杆菌TG26防病增产效应的研究.生物防治通报[J],1993,9:63-68
    62.王益民.几丁质酶基因和β-1,3-葡聚糖酶基因的克隆及双价基因在枯草芽孢杆菌B-908中的表达[J].中国农业大学学报,1997,2:20-22
    63.殷幼平,袁训娥,李强,等.生防菌枯草芽孢杆菌CQBSO3的绿色荧光蛋白基因标记及其在柑橘叶片上的定殖[J].中国农业科学,2010,43(17):3555-3536
    64.张荣胜,刘永锋,陈志谊.水稻细菌性条斑病菌拮抗细菌的筛选、评价与应用研究[J].中国生物防治,2011,27(4):510-514
    65.张学君,凌宏通,李洪连,等.生物农药麦丰宁B3对小麦纹枯病的抑制作用[J].植物病理学报,1994,24:361-366
    1. Asaka O, Shoda M. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14[J]. Appl Environ Microb,1996,62:4081-4085
    2. Bais H P, Fall R, and Vivanco J M. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiol,2004,134:307-319
    3. Blee E. Impact of phyto-oxylipins in plant defence[J], Trends Plant Sci.2002,7:315-321
    4. Chen X H, Vater J, Piel J, et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42[J]. J Bacteriol,2006,188:4024-4036
    5. Chen X H, Scholz R, Borriss M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. J Biotechnol,2009,140:38-44
    6. Cosmina P, Rodriguez F, de Ferra F, et al. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis[J]. Mol Microbiol,1993,8(5):821-831
    7. Das P, Mukherjee S, Sen R. Genetic regulations of the biosynthesis of microbial surfactants:An overview[J]. Biotechnol Genet Eng,2008,25:165-186
    8. De Weert, Vermeiren H, Mulders I H M, et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Mol Plant Microbe In,2002,15:1173-1180
    9. Grunewald J, Marahiel M A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides[J]. Microbiol Mol Biol Rev,2006,70:121-146
    10. Hwang Y H, Kim M S, Song I B, et al. Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus subtilis, in rats[J]. J Health Sci,2009,53(3):351-355
    11. Jourdan E, Henry G, Duby F, et al. Insights into the Defense-Related Events Occuring in Plant Cells Following Perception of Surfactin-Type Lipopeptide from Bacillus sublilis[J]. Mol Plant Microbe In, 2009,22:456-468
    12. Koumoutsi A, Chen X H, Henne A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42[J]. J Bacteriol,2004,186(4):1084-1096.
    13. Miao V, Coeffet-Legal M F, Brian P, et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry[J]. Soc General Microbiol,2005,151:1507-1523
    14. Leclere V, Bechet M, Adam A, et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities[J]. Appl Environ Microbiol,2005,71: 4577-4584
    15. Mootz H D, Kessler N, Linne U, et al. Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes[J]. J Am Chem Soc,2002,124: 10980-10981
    16. Moyne A L, Cleveland T E, Tuzun S. Molecular characterization and analysis of the operon encoding the antifugal lipopeptide bacillomycin D[J]. FEMS Microbiol Lett,2004,234(1):43-49
    17. Moyne A L, Shelby R, Cleveland T E, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus[J]. J Appl Microbiol,2001,90:622-629
    18. Niu D D, Liu H X, Jiang C H, et al. The Plant Growth-Promoting Rhizobacterium Bacillus cereus AR156 Induces Systemic Resistance in Arabidopsis thaliana by Simultaneously Activating Salicylate-and Jasmonate/Ethylene-Dependent Signaling Pathways[J]. Mol Plant Microbe In,2011, 24:.533-542
    19. Ongena M, Adam A, Jourdan E, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environ Microbiol,2007,9:1084-1090.
    20. Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol [J]. Trends Microbiol,2008,16:115-125
    21. Schwecke T, Gottling K, Durek P, et al. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi[J]. ChemBioChem, 2006,7:612-622
    22. Sieber S A, Marahiel M A. Learning from nature's drug factories:nonribosomal synthesis of macrocyclic peptides[J]. J Bacteriol,2003,185:7036-7043
    23. Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions[J]. Mol Microbiol, 2005,56(4):845-857
    24. Tsuge K, Akiyama T, Shoda M. Cloning, sequencing and characterization of the Iturin A operon[J]. J Bacteriol,2001,183(21):6265-6273
    25. Van der Ent S, Van Wees S C, Pieterse C M. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes[J]. Phytochemistry,2009,70:1581-1588
    26. Vanittanakom N, Loeffler W, Koch U, et al. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3[J]. J Antibiot (Tokyo),1986,39:888-901
    27.侯红漫,靳艳,金美芳,等.环脂肽类生物表面活性剂结构、功能及生物合成[J].微生物学通报,2006,33(5):122-128
    28.罗楚平,王晓宇,陈志谊,等.枯草芽孢杆菌Bs916中脂肽抗生素Bacillomycin L的操纵子结构及生物活性[J].中国农业科学,2010,43(22):4624-4634
    29.乔建军,黄惠娟.聚酮类抗生素组合生物合成[J].细胞生物学杂志,2007,29:692-696
    1. Adhikari T B, Mew T W, Leach J E. Genotypic and Pathotypci Diversity in Xanthomonas oryzae pv. oryzae in Nepal[J]. Phytopathology,1999,89(7):687-694
    2. Gonzalez C, Szurek B, Manceau C, et al. Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa[J]. Mol Plant Microbe In,2007,20(5):534-546.
    3. Kriz R W. New, emerging, re-emerging plant diseases in the United States[EB]. http://www.ces.ncsu.edu/depst.1999
    4. Ochiai H, Horino O, Miyajima K, et al. Genetic Diversity of Xanthomonas oryzae pv. oryzae Strains from Sri Lanka[J]. Phytopathology,2000,90(4):415-421
    5. Ou S H. Rice Diseases[M].2nded. Kew, England:Commonwealth Mycology Institute.1985, 96-103
    6. Pan R W, Zou W C, Xu D G, et al. Genotypic and pathotypic diversity of the Xanthomonas oryzae pv. oryzicola in southern China[J]. Phytopathology,2010,100(Suppl 1):96
    7. Raymundo A K, Jr Briones A. Genetic diversity in Xanthomonas oryzae pv. oryzicola[J]. IRRN, 1995,20:3-5
    8. Shekhawat G S, Srivastava D N. Epidemiology of bacterial leaf streak of rice[J]. Ann Phytopath Soc Jap,1972,38:7-34
    9. Zhang J S, Li Y Z, Fang X J. Detection of QTL conferring resistance to bacterial leaf streak in rice chromosome 2(O. sativa L. spp. indica) [J]. Scientia Agriculture. Sinica,2005,38,1923-1925
    10.郭亚辉,许志刚,胡白石,等.中国南方水稻条斑病菌小种分化研究[J].中国水稻科学,2004,18(1):83-85
    11.姬广海,许志刚.水稻细菌性条斑病DNA多态性与致病性研究[J].华中农业大学学报,2000,19(5):430-433
    12.姬广海,何月秋,张世光,等.水稻白叶枯病原菌遗传和致病型多样性分析[J].华南农业大学学报,2005,26(2):26-30
    13.姬广海,许志刚,张世珖Rep-PCR技术对中国水稻条斑病菌的遗传多样性初析[J].植物病理学报,2002,32(1):26-32
    14.梁传永,李大春,易建平,等.中国水稻条斑病毒力型的研究[J].南京农业大学学报,1994,17(3):48-52
    15.刘友勋,成国英,涂立超,等.中南4省水稻细菌性条斑病致病型比较[J].华中农业大学学报, 2004,23(5):504-506
    16.王绍雪,马改转,魏兰芳,等.西南地区水稻水稻细菌性条斑病菌致病力的分化[J].湖南农业大学学报,2010,36(2):188-191
    17.徐羡明,林壁润,曾列先.广东水稻水稻细菌性条斑病菌致病力分化研究初报[J].1992,(6):31-32
    18.曾列先,陈深,张慧,等.广东水稻白叶枯病菌遗传多样性和小种分化研究[J].植物病理学报,2009,39(3):231-237
    19.郑伟,刘晓辉,成国英,等.中国、日本和菲律宾水稻白叶枯病菌遗传多样性比较分析[J].微生物学报,2008,25(4):519-523
    1. Ou S H. Rice Diseases[M].2nded. Kew, England:Commonwealth Mycology Institute.1985, 96-103
    2. Kriz R W. New, emerging, re-emerging plant diseases in the United States[EB]. http://www.ces.ncsu.edu/depst,1999
    3. Raymundo A K, Jr Briones A. Genetic diversity in Xanthomonas oryzae pv. oryzicola[J]. IRRN, 1995,26(3):12-13
    4. Shekhawat G S, Srivastava D N. Epidemiology of bacterial leaf streak of rice[J]. Ann Phytopathol Soc Jap,1972,38:7-14
    5. Yang B, White F. Diverse members of the AvrBs3/pthA family for type Ⅲ effectors are major virulence determinants in bacterial blight disease of rice[J]. Mol Plant Microbe In,2006,19:240-249
    6. Zhang J S, Li Y Z, Fang X J. Detection of QTL conferring resistance to bacterial leaf streak in rice chromosome 2 (O. sativa L. spp. indica) [J]. Scientia Agricultura. Sinica,2005,38,1923-1925
    7.陈功友,邹丽芳,武晓敏,等.水稻条斑病细菌中新发现的avrBs3/PthA家族新成员avr/pthl3基因[J].中国水稻科学,2005,19:291-296
    8.曹燕飞,邹丽芳,赵文祥,等.水稻条斑病菌avrBs3/pthA家族基因敲除体系的建立[J].浙江大学学报,2011,37(1):40-48
    9.陈志谊,刘永峰,刘凤权,等.江苏省水稻品种细菌性条斑病抗性评价与病原菌致病力分化[J].植物保护学报,2009,36(4):315-318
    10.郭亚辉,许志刚,胡白石,等.中国南方水稻条斑病菌小种分化研究[J].中国水稻科学,2004,18(1):83-85
    11.梁传永,李大春,易建平,等.中国水稻条斑病毒力型的研究[J].南京农业大学学报,1994,17(3):48-52
    12.李玉蓉,邹丽芳,武晓敏,等.水稻黄单胞菌avrBs3/PthA家族基因研究进展[J].中国农业科学,2007,40:2193-2199
    13.刘友勋,成国英,涂立超,等.中南4省水稻细菌性条斑病致病型比较[J].华中农业大学学报,2004,23(5):504-506
    14.农秀美.广西条斑病致病力分化研究[J].西南农业学报,1992,4(2):94-97
    15.王绍雪,马改转,魏兰芳,等.西南地区水稻细菌性条斑病菌致病力的分化[J].湖南农业大学学报,2010,36(2):188-191
    16.徐羡明,林壁润,曾列先.广东水稻细菌性条斑病菌致病力分化研究初报[J].广东农业科学,1992(6):31-32
    17.邹丽芳,陈功友,武晓敏,等.中国水稻条斑病细菌avrBs3/PthA家族基因的克隆和序列分析[J].中国农业科学,2005,38:929-935
    18.张荣胜,陈志谊,刘永锋.水稻细菌性条斑病菌遗传多样性和致病型分化研究[J].中国水稻科学,2011,25(5):523-528
    1. Chen X H, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens[J]. J Biotechnol,2009a,140:27-37
    2. Chen X H, Scholz R, Borriss M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. J Biotechnol,2009b,140:38-44
    3. Kim P I, Chung K C. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908[J]. FEMS Microbiol Lett,2004,234(1):177-183
    4. Raymundo A K, Jr Briones A. Genetic diversity in Xanthomonas oryzae pv. oryzicola[J]. IRRN, 1995,20:3-5
    5. Nino Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars:model pathogens of a model crop[J]. Mol Plant Pathol,2006,7(5):303-324
    6. Sharma N, Sharma S. Control of foliar diseases of mustard by Bacillus from reclaimed soils[J]. Microbiol Res,2008,163:408-413
    7. Zhang J S, Li Y Z, Fang X J. Detection of QTL conferring resistance to bacterial leaf streak in rice chromosome 2 (Q. saliva L. spp. indica) [J]. Scientia Agricultura Sinica,2005,38:1923-1925
    8. Kriz R W. New, emerging, re-emerging plant diseases in the United States [EB]. http://www.ces.ncsu.edu/depst[DB],1999
    9.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    10.刘邮洲,陈志谊,刘永锋,等.拮抗细菌B-916对水稻病原菌的抑制效果及其定殖动态研究[J].江苏农业科学,2005,(6):48-49
    11.权春善,王军华,徐洪涛,等.1株抗真菌解淀粉芽孢杆菌的分离鉴定及其发酵条件的初步研究[J].微生物学报,2006,46(1):7-12
    12.沈光斌,周明国.水稻白叶枯病菌噻枯唑抗药突变体生物学性质研究[J].南京农业大学学报,2001,24(4):33-36
    13.沈素文,刘永峰,周苏津,等.4株拮抗细菌与链霉素、叶枯唑协同控制水稻细菌性条斑病研究[J].江苏农业科学,2010,(4):98-100
    14.王刚,王俊芳,张颖,等.西瓜内生细菌C18的内生定殖及对西瓜枯萎病的生防作用J[J].植物保护学报,2007,34(1):109-110
    15.邢家华,何荣林,张纯标,等.20%噻森铜悬浮剂对水稻白叶枯病和细菌性条斑病的田问防效[J].浙江农业科学,2007,(5):567-568
    16.朱凯,段桂芳,张建萍,等.禾长蠕孢菌代谢产物抑制水稻细菌性条斑病菌[J].中国农学通报,2010,26(8):240-242
    17.周明国,马忠华,党香亮,等.对噻枯唑具有抗性的水稻白叶枯病菌菌株的性质[J].植物保护学报,1997,24(2):155-158
    1. Cai M H, Zhou X S, Sun X Q, et al. Statistical optimization of medium composition for aspergiolide a production by marine-derived Fungus Aspergillus glaucus[J]. J Ind Microbiol Biotechnol,2009, 36(3):381-389
    2. Cook R J. Making greater use of introduced microorganism for biological control of plant pathogen[J]. Annu Rev Phytopathol,1993(31):53-58
    3. Li Y Q, Jiang H X, Xu Y Q, et al. Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method[J]. Appl Microbiol Biotechnol,2008,77(6):1207-1217
    4. Montgomery D C. Design and analysis of experiments[M].5th Edition. New York:John Wiley and Sons,2001:72-93
    5. Pan C M, Fan Y T, Xing Y, et al. Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2[J]. Bioresource Technol,2008,99(8):3146-3154
    6. Sen R, Swaminathan T. Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production[J]. Biochem Eng J,2004,21:141-148
    7. Souza M C, Roberto I C, Milagres A M F. Solid-state fermentation for xylanase production by Thermoascus aurantiacus using response surface methodology[J]. Appl Microbiol Biotechnol,1999, 52(6):768-772
    8. Xiao Z J, Liu P H, Qin J Y. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate[J]. Appl Microbiol Biotechnol,2007,74(1): 61-68
    9. Yuan L L, Li Y Q, Wang Y, et al. Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q[J]. J Biosci Bioeng,2008,105(3):232-237
    10.代志凯,张翠,阮征.试验设计和优化及其在发酵培养基优化中的应用[J].微生物学报,2010,37(6):894-903
    11.郝学财,余晓斌,刘志钰,等.响应面方法在优化微生物培养基中的应用[J].食品研究与开发,2006,27(1):38-41
    12.花玉鹏,文才艺,刘伟成,等.响应曲面法优化利迪链霉菌A02发酵培养基[J].中国生物防治学报,2011,27(4):520-527
    13.林敏,宁喜斌.优化方法在木糖醇发酵培养中的应用[J].食品研究与开发,2006,27(5):26-27
    14.吴春海,郝玉有,王永红,等.统计学法优化必特螺旋霉素发酵培养基[J].中国抗生素杂志,2008,33(7):446-448
    15.王健华.枯草芽孢杆菌DPG-01发酵条件的优化[J].安徽农业科学,2007(35):8101-8106.
    16.王云飞,王成国.响应面法的理论及应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240
    17.王允祥,陆兆新,吕凤霞.翅鳞伞深层发酵胞外多糖优化研究[J].生物工程学报,2004,200):414-422
    18.赵达,刘伟成,裘季燕,等.枯草芽孢杆菌B03液体发酵条件的优化[J].中国生物防治,2008,24(2):159-163
    1. Ahimoua F, Jacquesb P, Deleua M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity[J]. Enzyme and Microbial Technolog,2000,27:749-754
    2. Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiol,2004,134:307-319
    3. Bakker P, Pieterse C M J, Van Loon L C. Induced systemic resistance by fluorescent Pseudomonas spp[J]. Phytopathology,2007,97:239-243
    4. Benhamou N, Belanger R R. Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato[J]. Plant Physiol,1998,118:1203-1212
    5. Broggini G A L, Duffy B, Holliger E, et al. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro(?)) in a Swiss apple orchard[J]. Eur J Plant Pathol,2005,111:93-100
    6. Chen X H, Scholz R, Borriss M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. J Biotechnol,2009,140:38-44
    7. Chen X H, Vater J, Piel J, et al. Structural and Functional Characterization of Three Polyketide Synthase Gene Clusters in Bacillus amyloliquefaciens FZB42[J]. J Bacteriol,2006,188:4024-4036
    8. Conrath U, Pieterse C M J, Mauch-Mani B. Priming in plant-pathogen interactions[J]. Trends Plant Sci,2002,7:210-216
    9. Dixon R A, Achnine L, Kota P, et al. The phenylpropanoid pathway and plant defence-a genomics perspective[J]. Mol Plant Pathol,2002,3:371-390
    10. Duan G F, Zhang Z B, Zhang J P, et al. Evaluation of crude toxin and metabolite produced by Helminthosporium gramineum Rabenh for the control of rice sheath blight in paddy fields[J]. Crop Prot,2007,26:1036-1041
    11. Henry G, Deleu M, Jourdan E, et al. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses[J]. Cell Microbiol, 2011,13:1824-1837
    12. Ji G H, Wei L F, He Y Q, et al. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1 [J]. Biol Control,2008,45:288-296
    13. Jourdan E, Henry G, Duby F, et al. Insights into the Defense-Related Events Occuring in Plant Cells Following Perception of Surfactin-Type Lipopeptide from Bacillus subtilis[J]. Mol Plant Microbe In, 2009,22:456-468
    14. Koppe F, Marahiel M A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis[J]. Nat Prod Rep,2007,24:735-749
    15. Kloepper J W, Ryu C M, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. [J]. Phytopathology,2004,94:1259-1266
    16. Koumoutsi A, Chen X H, Henne A, et al. Strain FZB42 Bacillus amyloliquefaciens in Synthesis of Bioactive Cyclic Lipopeptides of Gene Clusters Directing Nonribosomal Structural and Functional Characterization[J]. J Bacteriol,2004,186:1084-1096
    17. Kunst F, Rapoport G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis[J]. J Bacteriol,1995,177:2403-2407
    18. Kunz S, Haug P,2006. Development of a strategy for fire blight control in organic fruit growing. In: FOKO, e.V. (Ed.),12th International Conference on cultivation Technique and Phytopathological problems in Organic Fruit-Growing. FOKO e. V., Weinsberg.Germany 2006:145-150
    19. Leifert C, Li H, Chidburee S, et al. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45[J]. J Appl Bacteriol,1995,78:97-108
    20. Liu Y F, Chen Z Y, Ng T B, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916[J]. Peptides,2007,28:553-559
    21. Moyne A L, Shelby R, Cleveland T E, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus[J]. J Appl Microbiol,2001,90:622-629
    22. Nino Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars:model pathogens of a model crop[J]. Mol Plant Pathol,2006,7(5):303-324
    23. Niu D D, Liu H X, Jiang C H, et al. The Plant Growth-Promoting Rhizobacterium Bacillus cereus AR156 Induces Systemic Resistance in Arabidopsis thaliana by Simultaneously Activating Salicylate-and Jasmonate/Ethylene-Dependent Signaling Pathways[J]. Mol Plant Microbe In,2011, 24:.533-542
    24. Ongena M, Jacques P, Toure Y, et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis[J]. Appl Microbiol Biot,2005,69:29-38
    25. Ongena M, Adam A, Jourdan E, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environ Microbiol,2007,9:1084-1090
    26. Ongena M, Thonart P. Resistance induced in plants by nonpathogenic microorganisms:Elicitation and defense responses[M]. In:Jaime A. and Da Silva T. (ed.). Floriculture, Ornamental and Plant Biotechnology:Advances and Topical Issues, pp.447-463,1st ed. Global Science Books, London, 2006
    27. Paffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res,2001,29:2002-2007
    28. Shao M, Wang J S, Dean R A, et al. Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea[J]. Plant Biotechnol J,2008,6:73-81
    29. Spoel S H, Koornneef A, Claessens S M, et al. NPR1 modulates cross-talk between salicylate and jasmonate-dependent defense pathways through a novel function in the cytosol[J]. Plant Cell,2003, 15:760-770
    30. Stein T. Bacillus subtilis antibiotics:structures, synthese and specific functions[J]. Mol Microbiol, 2005,56:845-857
    31. Raaijmakers J M, Vlami M, De Souza J T. Antibiotic production by bacterial biocontrol agents[J]. Antonie van Leeuwenhoek,2002,81:537-547
    32. Van der Ent S, Van Wees S C, Pieterse C M. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes[J]. Phytochemistry,2009,70:1581-1588
    33. Van Wees S C, Van der Ent S, Pieterse C M. Plant immune responses triggered by beneficial microbes[J]. Curr Opin Plant Bio,2008,11:443-448
    34. Veter J, Gao X W, Hitzeroth G, et al. "Whole cell"-matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libraries of natural compounds-present state of research[J]. Comb Chem High T Scr,2003, 6:557-567
    35. Yang Y N, Qi M, Mei C S. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress[J]. Plant J,2004,40:909-919
    36. Zeriouh H, Romero D, Garcia-Gutierrez L, et al. The Iturin-like Lipopeptides Are Essential Components in the Biological Control Arsenal of Bacillus subtilis Against Bacterial Diseases of Cucurbits[J]. Mol Plant Microbe In,2011,24:1540-1552.
    37.高学文,姚仕义,Huong P,等.基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究[J].中国农业科学,2003,36:1496-1501
    38.何美玉.现代有机与生物质谱[M].北京大学出版社,2002
    39.赵梅勤,王磊,张兵,等.植物抗病激活蛋白harpingXOOG防治水稻病害的研究[J].中国生物防治,2006,22:283-289
    40.张荣胜,刘永锋,陈志谊.水稻细菌性条斑病菌拮抗细菌的筛选、评价与应用研究[J].中国生物防治,2011,27(4):510-514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700