用户名: 密码: 验证码:
益生菌的筛选鉴定及其对断奶仔猪、犊牛生长和消化道微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从土壤中分离筛选出能抗大肠杆菌、金黄色葡萄球菌等病原菌的两株菌种,采用16SrRNA基因分子技术进行菌种鉴定,并应用体外法评价其作为益生菌的效果。研究分离的两株菌种在断奶仔猪的作用效果和对仔猪肠道内微生物的影响;以犊牛为试验动物,研究分离两株菌种对断奶前后犊牛的生长性能和瘤胃发酵及微生物区系变化的影响。围绕益生菌的筛选和对幼龄动物的作用影响,完成6个试验,主要内容如下:
     试验一、乳酸菌GF103的分离鉴定及体外益生效果评价
     从北京市大兴种猪场附近土壤中分离得到一株能抑制病原菌大肠杆菌和金黄色葡萄球菌生长的乳酸菌GF103,经16S rRNA基因序列分析鉴定为植物乳杆菌(Lactobacillus plantarum),GenBank登录号为JN560899。体外益生效果评价表明,乳酸菌GF103在pH=3的条件下活菌数较高,能够耐受0.3%胆盐。乳酸菌GF103在人工模拟胃液中培养0.5h活菌数不受影响,培养3h活菌数降低1log值;在人工模拟肠液中培养3h活菌数不变。结果表明,乳酸菌GF103具备益生菌特性,可进一步研究其作为微生物添加剂在动物营养和日粮中的应用效果。
     试验二、枯草芽孢杆菌B27筛选鉴定及体外益生效果评价
     从土壤中分离出36株芽孢杆菌,经过抗病原菌试验筛选一株能够抑制大肠杆菌、金黄色葡萄球菌和鼠伤寒沙门氏菌的菌株,其编号为B27。经16S rRNA基因分子技术鉴定为枯草芽孢杆菌(Bacillus subtilis),GenBank登录号为JQ673431。模拟体外胃肠道环境,枯草芽孢杆菌B27在pH=3的条件下存活率为72%,能够耐受0.3%胆盐,在人工模拟胃肠液中培养3h存活率分别是87.7%和96.8%。结果表明,枯草芽孢杆菌B27具备作为益生菌的潜力,可作为益生菌添加剂进一步研究其在动物营养和日粮中的作用效果。
     试验三、饲喂益生菌对断奶仔猪生长性能、粪便微生物和血清指标的影响
     采用单因素完全随机试验设计,选用144头35-37日龄的断奶仔猪(大×长),平均体重9.7±0.88kg,随机分为4组,每组分为6栏(6重复),每栏6头仔猪。试验期35d,试验分为4个处理:1)基础日粮(对照,CT组);2)基础日粮+植物乳杆菌(LB组);3)基础日粮+枯草芽孢杆菌(BS组);4)基础日粮+植物乳杆菌和枯草芽孢杆菌的混合物(LBS组)。结果表明,试验14d,饲喂益生菌的仔猪日增重具有增加的趋势,与对照组相比饲料转化率得到显著改善(P<0.05);添加不同益生菌的仔猪平均日采食量和饲料转化率差异不显著(P>0.05)。整个试验期,饲喂植物乳杆菌的仔猪粪中大肠杆菌的数量显著低于对照组(P<0.05)。与对照组相比,试验14d仔猪日粮添加植物乳杆菌和枯草芽孢杆菌复合物显著提高血清总蛋白、球蛋白和肌酐水平(P<0.05),并显著降低血清白蛋白与球蛋白的比值(P<0.05)。整个试验期,饲喂益生菌的仔猪血清IgM浓度显著提高(P<0.05);试验35d,日粮添加枯草芽孢杆菌或乳酸菌和枯草芽孢杆菌的复合物能提高仔猪血清IgA的浓度。结果表明,日粮添加植物乳杆菌,枯草芽孢杆菌或其复合菌能改善断奶仔猪早期的生长性能,并能提高免疫力。
     试验四、饲喂益生菌对断奶仔猪肠道微生物区系的影响
     采用单因素完全随机试验设计,试验设计同试验三。试验期35d,分别于试验14d和35d,每个处理随机取4头仔猪(每个重复1头)进行屠宰试验,分析胃肠道组织和内容物微生物的变化。结果显示,断奶仔猪饲喂益生菌14d时胃内食糜pH显著低于对照组(P<0.01);复合菌组仔猪十二指肠食糜pH显著低于对照组(P<0.01)。小肠各段组织形态与对照组相比差异不显著(P>0.05)。随着肠道向后延伸,回肠微生物种类多于空肠,盲肠最多;与断奶前期比较,断奶后期仔猪肠道微生物种类增多。仔猪断奶前期日粮中添加益生菌对肠道内微生物的作用影响明显,断奶后期益生菌对肠道内微生物作用减弱。与对照组相比,日粮中添加益生菌对断奶仔猪在肠道各段中细菌总数、乳酸菌和大肠杆菌的数量差异不显著(P>0.05),但是饲喂益生菌具有降低肠道大肠杆菌的趋势。结果表明,饲喂益生菌对断奶仔猪初期阶段作用效果较明显,能够改善肠道微生物区系;断奶后期仔猪肠道微生物种类增多,仔猪的个体差异大于益生菌的作用影响。
     试验五、益生菌对哺乳期犊牛生长性能、血清指标、瘤胃发酵及瘤胃微生物区系的影响
     采用单因素的随机化设计,选取24头自然分娩的新生荷斯坦犊牛(公母各半),按照出生胎次、初生重和出生时间相近的原则分为3组,每组8头(公母各半)。试验处理为:CT组为对照组,饲喂基础日粮(不添加抗生素和益生菌);LB组为植物乳杆菌组,饲喂基础日粮+植物乳杆菌GF103(1.7×1010CFU/h.d);LBS组为复合菌组,饲喂基础日粮+植物乳杆菌GF103(8.6×109CFU/h.d)+枯草芽孢杆菌B27(2.0×108CFU/h.d)。试验期共8周。试验中测定犊牛的生长性能、粪便评分、血清指标、瘤胃发酵和瘤胃微生物的变化。结果显示,益生菌对哺乳期犊牛的日增重、采食量和饲料转化率等生长性能指标影响差异不显著(P>0.05),但是整个试验期犊牛的饲料转化率具有改善的趋势。通过对犊牛粪便评分发现,益生菌能够改善粪便评分状况,减少腹泻发生。饲喂益生菌的犊牛血清生化指标差异不显著(P>0.05)。饲喂复合菌后犊牛瘤胃戊酸含量显著高于其它处理组(P<0.05),但是其他VFA含量差异不显著(P>0.05)。应用PCR/DGGE和RT-PCR对瘤胃微生物进行分析发现,哺乳期犊牛饲喂益生菌对犊牛瘤胃微生物区系影响不显著,其个体差异大于组间处理的影响;瘤胃内未检测到饲喂的益生菌。这些结果表明,饲喂哺乳期犊牛益生菌具有改善犊牛饲料转化率的趋势,并能减轻腹泻发生率。
     试验六、益生菌对断奶后犊牛生长性能、血清指标、瘤胃发酵及瘤胃微生物的影响
     本试验采用单因素的随机化试验设计,选取24头刚断奶荷斯坦犊牛(公母各半),按照出生胎次、断奶重相近的原则分为3组,每组8头(公母各半)。试验处理为:CT组为对照组,饲喂基础日粮(不添加抗生素和益生菌);LB组为植物乳杆菌组,饲喂基础日粮+植物乳杆菌GF103制剂(1.7×1010CFU/h.d);LBS组为复合菌组,饲喂基础日粮+植物乳杆菌GF103制剂(8.6×109CFU/h.d)+枯草芽孢杆菌B27制剂(2.0×108CFU/h.d)。试验期共4周。结果表明,饲喂益生菌0-14d断奶犊牛的饲料转化率显著高于对照组(P<0.05);整个试验期饲喂复合菌的犊牛饲料转化率显著高于对照组(P<0.05);但是日增重、采食量均无显著差异(P>0.05)。断奶犊牛饲喂益生菌后的血清指标和瘤胃发酵参数均无显著影响(P>0.05)。通过PCR/DGGE分析发现,瘤胃中未检测出日粮中添加的益生菌的条带,但是相同处理的不同犊牛瘤胃微生物区系相似性较高,能够聚合在一起,影响瘤胃微生物区系。应用RT-PCR技术检测瘤胃常见微生物数量,复合菌组的黄色瘤胃球菌和白色瘤胃球菌的数量均显著低于对照组(P<0.05)。结果证明,益生菌在犊牛断奶后的2周作用效果明显,能够改善饲料转化率,影响瘤胃微生物区系。
In this study, two different strains of microorganisms were isolated from soil and identified by16SrRNA molecular technology, and the properties of these strains were evaluated in vitro. The in vivoeffects of these microbes as probiotics in weaned piglets and pre-and post-weaning calves wereconducted. The present study included6trials which described as follows.
     Experiment1: Isolation and identification of Lactobacillus sp. GF103and assessment of it asa potential probiotic
     A Lactobacillus sp. strain GF103which inhibited the growth of pathogenic bacteria E.coli andStaphylococcus aureus was isolated from soil nearby Beijing Daxing Breeding pig farm. It wasidentified by16S rRNA sequence analysis as Lactobacillus plantarum (GenBank accession number:JN560899). In vitro assessments showed that a large amount of the strain GF103survived under thecondition of pH=3. The strain GF103had tolerated0.3%of bile salt. The viable counts of strain GF103did not change after0.5h of growing in simulated gastric fluid and decreased1log value after3h. Theviable counts of strain GF103did not decrease in simulated small intestinal fluid after3h. The strainlikely survived and propagated in the animal’s intestinal tract. These results suggested that the strainGF103possessed probiotic properties and should be further studied its application in animals as feedadditives.
     Experiment2: Isolation and identification of Bacillus subtilis B27and assessment it aspotential probiotics
     Thirty-six Bacillus sp. were isolated from soil and the strain B27inhibited the growth ofpathogenic bacteria E. coli, staphylococcus aureus and salmonella. By16S rRNA sequence analysis itwas identified as Bacillus subtilis (GenBank accession number: JQ673431). In vitro assessment showedthat72%of the strain B27survived under the condition of pH=3. It tolerated0.3%of bile salt. Theviable counts of strain GF103in simulated gastric and small intestinal fluid after3h were87.7and96.7%, respectively. This strain likely survived and propagated in the animal’s intestinal tract. Theseresults indicated that Bacillus subtilis B27had probiotic properties and could be used as feed additives.
     Experiment3: Effects of dietary probiotics on growth performance, fecal microbiota andserum profiles in weaned piglets
     One hundred and forty-four piglets of Large White×Landrace weaned at35-37days of age wereselected and divided into four groups, and the piglets from each group were assigned randomly to sixpens (replicates) with6animals each. Each group was fed one of four diets for5weeks: a basal dietwithout antibiotics and probiotics (control), or the basal diet supplemented with Lactobacillusplantarum GF103, Bacillus subtilis B27, or a mixture of Lactobacillus plantarum GF103and Bacillussubtilis B27. During the first two weeks of the trial, the piglets supplemented with probiotics had lower(P<0.05) average daily feed intake (ADFI) than control. The feed conversion ratio (FCR) was improved(P<0.05) in probiotic-supplemented groups when compared with that of control. The counts of E. coli in feces of the piglets supplemented with Lactobacillus plantarum GF103was lower (P<0.05) than that ofcontrol. On day14, dietary supplementation of the combination of Lactobacillus plantarum GF103andBacillus subtilis B27increased (P<0.05) the serum concentration of total protein, globulin, andcreatinine, but decreased (P<0.05) the ratio of serum albumin to serum globulin when compared withcontrol. On the same day, probiotic-supplemented piglets had increased (P<0.05) serum IgMconcentrations compared with control animals. Supplementation of Bacillus subtilis B27or thecombination of Lactobacillus plantarum GF103and Bacillus subtilis B27increased (P<0.05) the serumIgA concentrations at the end of the trial. These results indicated that dietary probiotics improvedgrowth performance and enhanced immune responses at the early stage of the post-weaning period inpiglets.
     Experiment4: Changes of intestinal bacteria in weaned piglets supplemented with probiotics
     The experiment design was the same as experiment3. The trial period lasted for35d. On14and35d,4piglets from each treatment (one from each pen, totally16piglets in each period) wereslaughtered for sample collection. The intestinal tissues were taken for histological masurements and thecontents of intestinal were collected for analysis of bacteria. The results showed that, during the firsttwo weeks after weaning, the piglets supplemented with probiotics had lower pH in gastral fluids thanthat in control (P<0.05), the piglets supplemented with complex probiotics also had lower pH induodenal fluids (P<0.05). There were no significant difference between on intestinal samples of pigletssupplemented with probiotics and control group (P>0.05). Compared with the first two weeks, thespecies of intestinal microbiota became more diverse in the last three weeks. The dietary supplementedwith probiotics was more effective at the early stage of the post-weaning period than that at the laterstage in piglets. Although the number of total bacteria, lactic acid bacteria and E.coli in the digestivetract of piglets was not influenced by probiotics, the piglets supplemented with probiotics tended tohave a decreased population of E.coli in the intestinal tract. These results indicated that the probioticsimproved intestinal bacterial community at the early stage. The species of intestinal bacteria becamemore diverse, and the microbiota in the intestinal tract became balanced.
     Experiment5: Effects of probiotics on growth performance, serum pararmeter,rumenfermentation and ruminal microflora in the pre-weaned calves
     Twenty-four newborn Holstein calves were randomly divided into3groups (with4males and4females each). A basal diet without antibiotics and probiotics was used as control (CT group), and theother two diets were supplemented with Lactobacillus plantarum GF103(1.7×1010CFU/h.d) as LBgroup or with a complex of Lactobacillus plantarum GF103(8.6×109CFU/h.d) and Bacillus subtilisB27(2.0×108CFU/h.d) as LBS group. The trial lasted for8weeks. The results showed that there wereno significant difference on growth performance (P>0.05), but feed conversion efficiency was improvedby probiotics (P<0.05). The fecal scores of calves supplemented with probiotics were improved and thediarrhea incidence was decreased. Dietary probiotics did not affect serum parameters of calves (P>0.05).The calves supplemented with a complex of Lactobacillus plantarum and Bacillus subtilis had highervalerate in rumen fluids (P>0.05), but the other VFA were not affected by probiotics (P>0.05). The rumen microbial community of calves supplemented with probiotics was not affected as indicated byPCR/DGGE or RT-PCR analysis. Besides, the probiotics bacteria were not found in the rumen. Theseresults suggested that supplementation with probiotics decreased the incidence of diarrhea, but theprobiotics did not colonize in the rumen.
     Experiment6: Effects of probiotics on growth performance, serum pararmeter,rumenfermentation and ruminal microflora in the post-weaned calves
     Twenty-four post-weaned calves were randomly divided into3groups with4males and4femaleseach. A basal diet without antibiotics or probiotics was used as control, and the other two group werefed the control diet supplemented with Lactobacillus plantarum GF103(1.7×1010CFU/h.d) as LBgroup or with a complex of Lactobacillus plantarum GF103(8.6×109CFU/h.d) and Bacillus subtilisB27(2.0×108CFU/h.d) as LBS group. The trial lasted for4weeks. The results showed that the feedconversion ratio (FCR) was improved (P<0.05) in probiotic-supplemented groups when compared withthat of control during the first two weeks and the entire trial. But average daily gains (ADG) and feedintake (FI) were not affected by probiotics (P>0.05). There were no significant differences in serumparameters and rumen fermentation (P>0.05) among the treatments. The probiotics bacteria were notfound in rumen fluids, but the microflora polymerized together with the same treatments and formed abranch by DGGE analysis. The counts of Ruminococcus flavefaciens and Ruminobacter albus in therumen of calves supplemented with the complex probiotics were lower than those in control. Theseresults showed that probiotics improved performance and FCR in post-weaned calves at the early stage.
引文
1.单达聪,王雅民,魏元斌.用益生菌与酶制剂饲喂育肥羔羊效果的研究.当代畜牧,2009,(11):33-35.
    2.邓留坤.反刍动物微生态制剂的研究进展.黄牛杂志,2005,31(4):55-57.
    3.邓露芳.日粮添加纳豆枯草芽孢杆菌对奶牛生产性能,瘤胃发酵及功能微生物的影响[博士学位论文].北京:中国农业科学院,2009.
    4.刁其玉,屠焰,齐广海.益生菌(素)的研究及其在饲料中的应用.饲料工业,2002,23(10):1-4.
    5.董改香,张勇刚,郑建婷,等.益生菌的作用机理及其在畜牧业中的应用.农产品加工,2010,(3):10-11.
    6.冯仰廉.反刍动物营养学.北京:科学出版社,2004.
    7.符运勤.地衣芽孢杆菌及其复合菌对后备牛生长性能和瘤胃内环境的影响[硕士学位论文].北京:中国农业科学院,2012.
    8.符运勤,刁其玉,屠焰,等.不同组合益生菌对0~8周龄犊牛生长性能及血清生化指标的影响.动物营养学报,2012,24(4):753-761.
    9.郭光成,韩制强,刘立成,等.益生菌对奶牛血液参数的影响.黑龙江畜牧兽医,2011,(11):77-78.
    10.韩勇,夏先林,王德凤.干旱季节日粮中添加益生菌和过瘤胃脂肪酸对饲喂玉米青贮料生长山羊平均日增重和瘤胃代谢的影响.动物营养学报,2008,20(3):329-336.
    11.侯新强,崔卫东,张慧涛.青贮饲料中微生物添加剂的应用研究.饲料研究,2009,3:20-22.
    12.黄俊文,林映才,冯定远.纳豆菌,甘露寡糖对仔猪肠道pH,微生物区系及肠黏膜形态的影响.畜牧兽医学报,2005,36(10):1021-1027.
    13.黄庆飞,戴永恒,莫文伟,等. EM菌技术在奶牛饲养中的应用效果研究.广西畜牧兽医,2004,20(3):118-119.
    14.李旦,王加启,卜登攀,等.运用Real-time PCR方法研究日粮添加豆油与胡麻油对肉牛瘤胃纤维分解菌数量的影响.动物营养学报,2008,20(3):256-300.
    15.李辉.蛋白水平与来源对早期断奶犊牛消化代谢及胃肠道结构的影响[博士学位论文].北京:中国农业科学院,2008.
    16.林淼,郭望山,任丽萍,等.瘤胃微生物不同区系的硝态氮还原、甲烷产生和发酵参数比较.中国农业科学,2010,43(19):4088-4093.
    17.刘彩娟,孙满吉,孙金艳,等.饲粮中添加复合益生菌对奶牛瘤胃发酵及纤维素酶活的影响.动物营养学报,2011,23(5):821-827.
    18.刘虹,姚文,于卓腾,等.一组鸡源乳酸杆菌产乳酸及其耐受特性研究.微生物学通报,2006,33(5):1-5.
    19.刘洁.肉用绵羊饲料代谢能与代谢蛋白质预测模型的研究[博士学位论文].北京:中国农业科学院,2012.
    20.刘琪,朱曲波,罗光建,等.生物活性剂对降低奶牛体细胞防治奶牛隐性乳房炎的影响.云南畜牧兽医,2004,(4):3-5.
    21.刘艳,明双喜,王沂蒙,等.关注益生菌.中国家禽,2007,29(3):43-48.
    22.陆庆泉,柴家前.动物微生态制剂在畜牧业中的应用.饲料博览,2000,328-30.
    23.吕桂霞,李春蕾,曹雁行,等.国内饲用抗生素替代品的研究简况.兽药与饲料添加剂,2008,13(4):12-14.
    24.吕嘉枥,李瑛.益生菌制剂在养殖业的应用.饲料研究,2010,(4):12-14.
    25.娜日娜,李峰,韩晓华,等.反刍动物应用微生态制剂的作用与优势.饲料世界,2006,(7):5-6.
    26.聂志武.饲用益生菌.中国饲料,1998,(5):9-10.
    27.齐安鑫,齐茜,郭中庆,等.粗饲料变换期微生物添加剂对奶牛产奶性能的影响.粮食与饲料工业,2009,8:42-43.
    28.任鹏.微生物饲料添加剂.国外畜牧科技,1997,24(2):21-23.
    29.石鹏君.山羊瘤胃和草鱼肠道微生物分子生态研究及β-葡萄糖苷酶基因的克隆[博士学位论文].北京:中国农业科学院,2007.
    30.帅丽芳,段铭.微生态制剂对反刍动物消化系统的调控作用.中国饲料,2002,(9):16-17.
    31.苏勇.16S rRNA基因分子技术研究仔猪胃肠道菌群区系变化[博士学位论文].南京:南京农业大学,2007.
    32.王聪,黄应祥,刘强,等.戊酸对西门塔尔牛瘤胃发酵的影响.饲料工业,2006,27(19):22-24.
    33.王建红.0~2月龄犊牛代乳品中赖氨酸,蛋氨酸和苏氨酸适宜模式的研究[硕士学位论文].北京:中国农业科学院,2011.
    34.王连生,单安山,张圆圆.益生菌在仔猪生产中的应用研究.饲料研究,2009,(9):15-17.
    35.魏德泳,朱伟云,毛胜勇.日粮不同NFC/NDF比对山羊瘤胃发酵与瘤胃微生物区系结构的影响.中国农业科学,2012,45(7):1392-1398.
    36.吴惠芬,毛胜勇,姚文,等.株猪源乳酸菌对低pH值和胆盐耐受性及热稳定性研究.华中农业大学学报,2005,24(3):265-268.
    37.肖宇,王利华,孙国强,等.外源寡糖对奶山羊血清生化指标和抗氧化指标的影响.动物营养学报,2012,24(2):342-348.
    38.辛娜,张乃锋,刁其玉,等.芽孢杆菌制剂对断奶仔猪生长性能、胃肠道发育的影响.畜牧兽医学报,2012,43(006):901-908.
    39.杨会玲,高玉鹏,周利勇,等.合生素对肉仔鸡肠道微生物区系的影响.中国农业科学,2011,44(23):4882-4891.
    40.杨琳,张宏福,李长忠,等.不同断奶日龄仔猪消化道酸度和胃蛋白酶活性的动态变化.畜牧兽医学报,2001,32(4):299-305.
    41.姚文,朱伟云,韩正康,等.应用变性梯度凝胶电泳和16S rDNA序列分析对山羊瘤胃细菌多样性的研究.中国农业科学,2004,37(9):1374-1378.
    42.于萍.饲喂纳豆枯草芽孢杆菌对断奶后犊牛瘤胃细菌区系的影响[硕士学位论文].北京:中国农业科学院,2009.
    43.袁森泉.影响断奶仔猪小肠发育的因素.广东饲料,2002,11(2):21-22.
    44.岳寿松,龙升波,王世荣,等.微生态制剂对奶牛增奶的实验研究.中国奶牛,2003,(3):20-21.
    45.张国庆,董晓芳,佟建明,等.一株芽孢杆菌的分离和鉴定.微生物学通报,2010,37(8):1159-1163.
    46.张海涛.纳豆枯草芽孢杆菌对犊牛生长发育以及瘤胃组织形态学发育的影响[硕士学位论文].北京:中国农业科学院,2009.
    47.张扬,余雄,周岩伟.瘤胃微生态制剂对泌乳奶牛产奶量的影响.草食家畜,2005,2(6):52-54.
    48.张振斌,林映才,蒋宗勇,等.益生菌对断奶仔猪生长表现、微生物区系和小肠黏膜结构的影响.养猪,2004,1(1):3.
    49.章文明,汪海峰,刘建新.乳酸杆菌益生作用机制的研究进展.动物营养学报,2012,24(3):389-396.
    50.赵会利,曹玉凤,高艳霞,等.缓解犊牛断奶应激的营养调控技术措施.中国畜牧杂志,2011,24012.
    51.周传社,黎智峰,谭支良.日粮添加酵母培养物对山羊瘤胃发酵参数和十二指肠氨基酸流量的影响.华北农学报,2009,24(6):109-115.
    52.周贵,房兆民,于国华,等.乳用犊牛的早期断奶.吉林畜牧兽医,2010,(5):33-34.
    53.周怿,刁其玉,屠焰,等.酵母β-葡聚糖和杆菌肽锌对早期断奶犊牛生长性能和胃肠道发育的影响.动物营养学报,2011,23(5):813-820.
    54. Abe F., Ishibashi N., Shimamura S. Effect of administration of bifidobacteria and lactic acidbacteria to newborn calves and piglets. Journal of dairy science,1995,78(12):2838-2846.
    55. Acharya M. R., Shah R. K. Selection of human isolates of Bifidobacteria for their use as probiotics.Applied biochemistry and biotechnology,2002,102(1-6):81-98.
    56. Adami A., Cavazzoni V. Occurrence of selected bacterial groups in the faeces of piglets fed withBacillus coagulans as probiotic. Journal of basic microbiology,1999,39(1):3-10.
    57. Awad W., Ghareeb K., Abdel-Raheem S., et al. Effects of dietary inclusion of probiotic andsynbiotic on growth performance, organ weights, and intestinal histomorphology of broilerchickens. Poultry science,2009,88(1):49-56.
    58. Awosanya B., Joseph J., Apata D., et al. Performance, blood chemistry and carcass qualityattributes of rabbits fed raw and processed pueraria seed meal. Nigerian Journal of animal science,1999,2(2):89-96
    59. B hmer B., Kramer W., Roth Maier D. Dietary probiotic supplementation and resulting effects onperformance, health status, and microbial characteristics of primiparous sows. Journal of animalphysiology and animal nutrition,2006,90(7-8):309-315.
    60. Bateup J. M., Dobbinson S., McConnell M. A., et al. Molecular analysis of the composition ofLactobacillus populations inhabiting the stomach and caecum of pigs. Microbial ecology in healthand disease,1998,10(2):95-102.
    61. Bergen W. G. Quantitative determination of rumen ciliate protozoal biomass with real-time PCR.The journal of nutrition,2004,134(12):3223-3224.
    62. Bontempo V., Di Giancamillo A., Savoini G., et al. Live yeast dietary supplementation acts uponintestinal morpho-functional aspects and growth in weanling piglets. Animal feed science andtechnology,2006,129(3):224-236.
    63. Broderick G., Kang J. Automated simultaneous determination of ammonia and total amino acids inruminal fluid and in vitro media. Journal of dairy science,1980,63(1):64-75.
    64. Chadwick R. W., Elizabeth George S., Claxton, L. D. Role of the gastrointestinal mucosa andmicroflora in the bioactivation of dietary and environmental mutagens or carcinogens. Drugmetabolism reviews,1992,24(4):425-492.
    65. Choi M., Park Y. Selective control of lactobacilli in kimchi with nisin. Letters in appliedmicrobiology,2000,30(3):173-177.
    66. Christensen H. R., Fr ki r H., Pestka, J. J. Lactobacilli differentially modulate expression ofcytokines and maturation surface markers in murine dendritic cells. The journal of immunology,2002,168(1):171-178.
    67. Collado M. C., Sanz Y. Method for direct selection of potentially probiotic Bifidobacterium strainsfrom human feces based on their acid-adaptation ability. Journal of microbiological methods,2006,66(3):560-563.
    68. D nicke S., D ll S. A probiotic feed additive containing spores of Bacillus subtilis and B.licheniformis does not prevent absorption and toxic effects of the Fusarium toxin deoxynivalenol inpiglets. Food and chemical toxicology,2010,48(1):152-158.
    69. Dawson K., Newman K., Boling J. Effects of microbial supplements containing yeast andlactobacilli on roughage-fed ruminal microbial activities. Journal of animal science,1990,68(10):3392-3398.
    70. De Angelis M., Siragusa S., Caputo L., et al. Survival and persistence of Lactobacillus plantarum
    4.1and Lactobacillus reuteri3S7in the gastrointestinal tract of pigs. Veterinary microbiology,2007,123(1):133-144.
    71. Di Francia A., Masucci F., De Rosa G., et al. Effects of Aspergillus oryzae extract and aSaccharomyces cerevisiae fermentation product on intake, body weight gain and digestibility inbuffalo calves. Animal feed science and technology,2008,140(1):67-77.
    72. Dierick D. N. Biotechnology aids to improve feed and feed digestion: enzymes and fermentation.Archives of animal nutrition,1989,39(3):241-261.
    73. Edwards J. E., McEwan N. R., Travis A. J., et al.16S rDNA library-based analysis of ruminalbacterial diversity. Antonie van leeuwenhoek,2004,86(3):263-281.
    74. Fairbrother J. M., Nadeau é., Gyles C. L. Escherichia coli in postweaning diarrhea in pigs: anupdate on bacterial types, pathogenesis, and prevention strategies. Animal health research reviews,2005,6(01):17-39.
    75. Fernandes C., Shahani K., Amer M. Therapeutic role of dietary lactobacilli and lactobacillicfermented dairy products. FEMS microbiology letters,1987,46(3):343-356.
    76. Fonty G., Gouet P., Jouany J. P., et al. Establishment of the microflora and anaerobic fungi in therumen of lambs. Journal of general microbiology,1987,133(7):1835-1843.
    77. Fritts C., Kersey J., Motl M., et al. Bacillus subtilis C-3102(Calsporin) improves live performanceand microbiological status of broiler chickens. The journal of applied poultry research,2000,9(2):149-155.
    78. Frizzo L., Soto L., Bertozzi E., et al. In vitro evaluation of microbial probiotic capacities focused todesign of multispecies probiotic inocula to be used in breeding of calves. Revista FAVE-Cienciasveterinarias,2006,5:69-80.
    79. Frizzo L., Soto L., Zbrun M., et al. Lactic acid bacteria to improve growth performance in youngcalves fed milk replacer and spray-dried whey powder. Animal feed science and technology,2010,157(3):159-167.
    80. Frizzo L., Zbrun M., Soto L., et al. Effects of probiotics on growth performance in young calves: Ameta-analysis of randomized controlled trials. Animal feed science and technology,2011,169(3):147-156.
    81. Fuller R. Probiotics in man and animals. The journal of applied bacteriology,1989,66(5):365.
    82. Fuller R. Probiotics in human medicine. Gut,1991,32(4):439.
    83. Fuller R. History and development of probiotics. In 'Probiotics'. Springer Netherlands publishing,1992, pp.1-8.
    84. Gebert S., Davis E., Rehberger T., et al. Lactobacillus brevis strain1E1administered to pigletsthrough milk supplementation prior to weaning maintains intestinal integrity after the weaningevent. Beneficial microbes,2011,2(1):35-45.
    85. Ghorbani G., Morgavi D., Beauchemin K., et al. Effects of bacterial direct-fed microbials onruminal fermentation, blood variables, and the microbial populations of feedlot cattle. Journal ofanimal science,2002,80(7):1977-1985.
    86. Giang H. H. Impact of bacteria and yeast with probiotic properties on performance, digestibility,health status and gut environment of growing pigs in Vietnam. Uppsala: Sveriges Iantbruksuniv,
    2010.
    87. Giang H. H., Viet T. Q., Ogle B., et al. Growth performance, digestibility, gut environment andhealth status in weaned piglets fed a diet supplemented with potentially probiotic complexes oflactic acid bacteria. Livestock science,2010,129(1):95-103.
    88. Gill H. S., Shu Q., Lin H., et al. Protection against translocating Salmonella typhimurium infectionin mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001.Medical microbiology and immunology,2001,190(3):97-104.
    89. Griggs J., Jacob J. Alternatives to antibiotics for organic poultry production. The journal of appliedpoultry research,2005,14(4):750-756.
    90. Guo X., Li D., Lu W., et al. Screening of Bacillus strains as potential probiotics and subsequentconfirmation of the in vivo effectiveness of Bacillus subtilis MA139in pigs. Antonie vanleeuwenhoek,2006,90(2):139-146.
    91. Haghighi H. R., Gong J., Gyles C. L., et al. Modulation of antibody-mediated immune response byprobiotics in chickens. Clinical and diagnostic laboratory immunology,2005,12(12):1387-1392.
    92. Henriksson A., Andre L., Conway, P. Distribution of lactobacilli in the porcine gastrointestinal tract.FEMS microbiology ecology,1995,16(1):55-60.
    93. Hentges D. J. Gut flora and disease resistance. In 'Probiotics'. Springer Netherlands publishing, pp.87-110.
    94. Hosoi T., Ametani A., Kiuchi K., et al. Changes in fecal microflora induced by intubation of micewith Bacillus subtilis (natto) spores are dependent upon dietary components. Canadian journal ofmicrobiology,1999,45(1):59-66.
    95. Hristov A. N., Ropp J. K., Hunt C. W. Effect of barley and its amylopectin content on ruminalfermentation and bacterial utilization of ammonia-N in vitro. Animal feed science and technology,2002,99(1):25-36.
    96. Huang C., Qiao S., Li D., et al. Effects of lactobacilli on the performance, diarrhea incidence, VFAconcentration and gastrointestinal microbial flora of weaning pigs. Asian Australasian journal ofaniaml sciences,2004,17(3):401-409.
    97. Hudault S., Liévin V., Bernet Camard M. F., et al. Antagonistic activity exerted in vitro and in vivoby Lactobacillus casei (strain GG) against Salmonella typhimurium C5infection. Applied andenvironmental microbiology,1997,63(2):513-518.
    98. Huffman R., Karges K., Klopfenstein T., et al. The effect of Lactobacillus acidophilus on subacuteruminal acidosis. Journal of animal science,1992,70(Suppl1):87.
    99. Hyronimus B., Le Marrec C., Hadj Sassi A., et al. Acid and bile tolerance of spore-forming lacticacid bacteria. International journal of food microbiology,2000,61(2):193-197.
    100. Jensen B. The impact of feed additives on the microbial ecology of the gut in young pigs. Journalof animal and feed sciences,1998,7(3):45-64.
    101. Kabir S. The role of probiotics in the poultry industry. International journal of molecular sciences,2009,10(8):3531-3546.
    102. Keady T. W., Steen R. W. Effects of applying a bacterial inoculant to silage immediately beforefeeding on silage intake, digestibility, degradability and rumen volatile fatty side centrations ingrowing beef cattle. Grass Forage Sciences,1996,51(2):155~162.
    103. Khafipour E., Li S., Plaizier J. C., et al. Rumen microbiome composition determined using twonutritional models of subacute ruminal acidosis. Applied and environmental microbiology,2009,75(22):7115-7124.
    104. Kim S., Standorf D., Roman R. H., et al. Potential use of Propionibacterium acidipropionici, strainDH42, as a direct-fed microbial for cattle. Journal of animal science,2000,78(Suppl1):292.
    105. Konstantinov S. R., Awati A. A., Williams B. A., et al. Post-natal development of the porcinemicrobiota composition and activities. Environmental microbiology,2006,8(7):1191-1199.
    106. Konstantinov S. R., Favier C. F., Zhu W. Y., et al. Microbial diversity studies of the porcinegastrointestinal ecosystem during weaning transition. Animal research,2004,53(4):317-324.
    107. Le Bon M., Davies H. E., Glynn C., et al. Influence of probiotics on gut health in the weaned pig.Livestock science,2010,133(1):179-181.
    108. Lettat A., Nozière P., Silberberg M., et al. Rumen microbial and fermentation characteristics areaffected differently by bacterial probiotic supplementation during induced lactic and subacuteacidosis in sheep. BMC microbiology,2012,12(1):142.
    109. Limin K., Martin J. S., Lin C. J. Silage addictives. Silage Science and technology AgronomyMonograph,2003,42:305-360.
    110. McCracken K., Kelly D. Development of digestive function and nutrition/disease interactions inthe weaned pig.1993,
    111. McCracken V., Gaskins H., Tannock G. Probiotics and the immune system. Probiotics: a criticalreview,1999,85-111.
    112. McCracken V. J., Simpson J. M., Mackie R. I., et al. Molecular ecological analysis of dietary andantibiotic-induced alterations of the mouse intestinal microbiota. The Journal of nutrition,2001,131(6):1862-1870.
    113. Mishra V., Prasad D. Application of in vitro methods for selection of Lactobacillus casei strains aspotential probiotics. International journal of food microbiology,2005,103(1):109-115.
    114. Moreno M. R. Effect of yeast, protected minerals and bismuth subsalicylate on in vitrofermentation by rumen microbes [Dissertation]. Twin city: University of Minnesota,2012.
    115. Muck R. E., Kung J. L. Effects of silage additives on ensiling. In Silage: Field to feedbunk,1997.
    116. Murry A., Hinton A., Buhr R. Effect of botanical probiotic containing lactobacilli on growthperformance and populations of bacteria in the ceca, cloaca, and carcass rinse of broiler chickens.International journal of poultry science,2006,5(4):344-350.
    117. Nabuurs M., Hoogendoorn A., Van der Molen E., et al. Villus height and crypt depth in weaned andunweaned pigs, reared under various circumstances in the Netherlands. Research in veterinaryscience,1993,55(1):78-84.
    118. Nisbet D., Martin S. Effect of a Saccharomyces cerevisiae culture on lactate utilization by theruminal bacterium Selenomonas ruminantium. Journal of animal science,1991,69(11):4628-4633.
    119. Nocek J., Kautz W., Leedle J., et al. Ruminal supplementation of direct-fed microbials on diurnalpH variation and in situ digestion in dairy cattle. Journal of dairy science,2002,85(2):429-433.
    120. O'Loughlin A., McGee M., Waters S., et al. Examination of the bovine leukocyte environmentusing immunogenetic biomarkers to assess immunocompetence following exposure to weaningstress. BMC veterinary research,2011,7(1):45.
    121. Parvez S., Malik K., Ah Kang S., et al. Probiotics and their fermented food products are beneficialfor health. Journal of applied microbiology,2006,100(6):1171-1185.
    122. Pet j E., Myllyniemi P., Pet j P. Use of inoculated lactic acid bacteria in fermenting sour cabbage.Agricultural and food science,2008,9(1):37-48.
    123. Pharmaceutiques U. L. Dietary modulation of the human colonie microbiota: introducing theconcept of prebiotics. Journal of nutrition,1995,125:1401-1412.
    124. Pieper R., Janczyk P., Urubschurov V., et al. Effect of a single oral administration of Lactobacillusplantarum DSMZ8862/8866before and at the time point of weaning on intestinal microbialcommunities in piglets. International journal of food microbiology,2009,130(3):227-232.
    125. Plata F., Mendoza M. G., Barcena-Gama J., et al. Effect of a yeast culture (Saccharomycescerevisiae) on neutral detergent fiber digestion in steers fed oat straw based diets. Animal feedscience and technology,1994,49(3):203-210.
    126. Pluske J. Morphological and functional changes in the small intestine of the newly-weaned pig. Gutenvironment of pigs,2001,1-27.
    127. Pluske J. R., Le Dividich J., Verstegen M. W. Weaning the pig: Concepts and consequences.Wageningen Academic Pub.
    128. Pollman D. Probiotics in pig diets. Recent advance in animal nutrition,1986,1288.
    129. Prescott L., Harley J., Klein, D. Microbiology;5th (Edn.). McGraw-Hill Edu. Publishing,2002.
    130. Priest F. G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological reviews,1977,41(3):711.
    131. Prohaszka L., Jayarao B., Fabian A., et al. The role of intestinal volatile fatty acids in theSalmonella shedding of pigs. Journal of veterinary wedicine, Series B,1990,37(1-10):570-574.
    132. Pryde S. E., Richardson A. J., Stewart C. S., et al. Molecular analysis of the microbial diversitypresent in the colonic wall, colonic lumen, and cecal lumen of a pig. Applied and environmentalmicrobiology,1999,65(12):5372-5377.
    133. Qiao G., Shan A., Ma N., et al. Effect of supplemental Bacillus cultures on rumen fermentation andmilk yield in Chinese Holstein cows. Journal of animal physiology and animal nutrition,2010,94(4):429-436.
    134. Rolfe R. D. The role of probiotic cultures in the control of gastrointestinal health. The Journal ofnutrition,2000,130(2):396S-402S.
    135. Rook G., Brunet L. Microbes, immunoregulation, and the gut. Gut,2005,54(3):317-320.
    136. Ross G. R., Gusils C., Oliszewski R., et al. Effects of probiotic administration in swine. Journal ofbioscience and bioengineering,2010,109(6):545-549.
    137. Samanya M., Yamauchi K. Histological alterations of intestinal villi in chickens fed dried Bacillussubtilis var. natto. Comparative Biochemistry and Physiology-Part A: Molecular&IntegrativePhysiology,2002,133(1):95-104.
    138. Schierack P., Filter M., Scharek L., et al. Effects of Bacillus cereus var. toyoi on immuneparameters of pregnant sows. Veterinary immunology and immunopathology,2009,127(1):26-37.
    139. Schierack P., Wieler L. H., Taras D., et al. Bacillus cereus var. toyoi enhanced systemic immuneresponse in piglets. Veterinary immunology and immunopathology,2007,118(1):1-11.
    140. Schneider R., Rosmini M., Ehrmann M., et al. Identification of lactic acid bacteria form the typicalmicrobiota found in artificial reared calves. Revista FAVE-Ciencias veterinarias,2004,37-15.
    141. Shu Q., Gill H. S. Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001(DR20) against Escherichia coli O157: H7infection in mice. FEMS immunology&medicalmicrobiology,2002,34(1):59-64.
    142. Simpson J. M., McCracken V. J., White B. A., et al. Application of denaturant gradient gelelectrophoresis for the analysis of the porcine gastrointestinal microbiota. Journal ofmicrobiological methods,1999,36(3):167-179.
    143. Stackebrandt E., Goebel B. Taxonomic note: a place for DNA-DNA reassociation and16S rRNAsequence analysis in the present species definition in bacteriology. International journal ofsystematic bacteriology,1994,44(4):846-849.
    144. Stein D., Allen D., Perry E., et al. Effects of feeding propionibacteria to dairy cows on milk yield,milk components, and reproduction. Journal of dairy science,2006,89(1):111-125.
    145. Su Y., Yao W., Perez-Gutierrez O. N., et al.16S ribosomal RNA-based methods to monitor changesin the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1.Anaerobe,2008,14(2):78.
    146. Sun P., Wang J., Zhang H. Effects of Bacillus subtilis natto on performance and immune functionof preweaning calves. Journal of dairy science,2010,93(12):5851-5855.
    147. Sylvester J. T., Karnati S. K., Yu Z., et al. Development of an assay to quantify rumen ciliateprotozoal biomass in cows using real-time PCR. The Journal of nutrition,2004,134(12):3378-3384.
    148. Szabó I., Wieler L. H., Tedin K., et al. Influence of a probiotic strain of Enterococcus faecium onSalmonella enterica serovar Typhimurium DT104infection in a porcine animal infection model.Applied and environmental microbiology,2009,75(9):2621-2628.
    149. Tajima K., Aminov R., Nagamine T., et al. Diet-dependent shifts in the bacterial population of therumen revealed with real-time PCR. Applied and environmental microbiology,2001,67(6):2766-2774.
    150. Taras D. D., Vahjen W., Macha M., et al. Response of performance characteristics and fecalconsistency to long-lasting dietary supplementation with the probiotic strain Bacillus cereus var.toyoi to sows and piglets. Archives of animal nutrition,2005,59(6):405-417.
    151. Timmerman H., Koning C., Mulder L., et al. Monostrain, multistrain and multispeciesprobiotics—a comparison of functionality and efficacy. International journal of food microbiology,2004,96(3):219-233.
    152. Tripathi M., Karim S. Effect of individual and mixed live yeast culture feeding on growthperformance, nutrient utilization and microbial crude protein synthesis in lambs. Animal feedscience and technology,2010,155(2):163-171.
    153. Verschuere L., Rombaut G., Sorgeloos P., et al. Probiotic bacteria as biological control agents inaquaculture. Microbiology and molecular biology reviews,2000,64(4):655-671.
    154. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamentaland biomedical research. Applied and environmental microbiology,2008,74(16):4985-4996.
    155. Wang J., Yoo J., Kim H., et al. Nutrient digestibility, blood profiles and fecal microbiota areinfluenced by chitooligosaccharide supplementation of growing pigs. Livestock science,2009,125(2):298-303.
    156. Wasson K., Criley J. M., Clabaugh M. B., et al. Therapeutic efficacy of oral lactobacilluspreparation for antibiotic-associated enteritis in guinea pigs. Journal of the American associationfor laboratory animal science,2000,39(1):32-38.
    157. Watkins B., Kratzer F. Effect of oral dosing of Lactobacillus strains on gut colonization and liverbiotin in broiler chicks. Poultry science,1983,62(10):2088-2094.
    158. Weichselbaum E. Probiotics and health: a review of the evidence. Nutrition bulletin,2009,34(4):340-373.
    159. Weinberg Z. G., Chen Y., Gamburg M. The passage of lactic acid bacteria from silage into rumenfluid, in vitro studies. Journal of dairy science,2004,87(10):3386-3397.
    160. Williams P., Tait C., Innes G., et al. Effects of the inclusion of yeast culture (Saccharomycescerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation andfermentation patterns in the rumen of steers. Journal of animal science,1991,69(7):3016-3026.
    161. Wilson M. R., Ravenstein E. V., Miller N. W., et al. cDNA sequences and organization of IgMheavy chain genes in two holostean fish. Developmental&comparative immunology,1995,19(2):153-164.
    162. Yeo J., Kim K. I. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract ongrowth and intestinal urease activity in broiler chicks. Poultry science,1997,76(2):381-385.
    163. Yoruk M., Gul M., Hayirli A., et al. The effects of supplementation of humate and probiotic on eggproduction and quality parameters during the late laying period in hens. Poultry science,2004,83(1):84-88.
    164. Yu H., Wang A., Li X., et al. Effect of viable Lactobacillus fermentum on the growth performance,nutrient digestibility and immunity of weaned pigs. Journal of animal and feed sciences,2008,17(1):61.
    165. Zhu W. Y., Williams B. A., Konstantinov S. R., et al. Analysis of16S rDNA reveals bacterial shiftduring in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe,2003,9(4):175-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700