用户名: 密码: 验证码:
高寒草地真菌纤维素降解酶系及其对油菜秸秆降解活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国北方尤其是高寒地区,油菜秸秆通常被农牧民用作燃料,造成了资源浪费和环境污染。探索一种构建高效降解油菜秸秆细胞壁物质多酶系菌群的方法,采用微生物发酵技术降解油菜秸秆,对促进油菜秸秆资源循环和再生利用具有十分重要的意义。
     论文以项目组前期分离获得的来自东祁连山高寒草地土壤中的真菌菌株作为研究材料,采用底物显色的初步筛选法和酶活力复选法,筛选出产羧甲基纤维素酶、木聚糖酶和漆酶菌株,通过rDNA-ITS基因序列分析、培养特性、液体发酵粗酶液的酶学性质及不同菌株液体发酵粗酶液之间的协同效应分析,构建多酶系菌群,并研究多酶系菌群对油菜秸秆的降解活性,取得了以下主要结果:
     (1)从125株真菌菌株中筛选得到56个纤维素分解菌株,其中:有49个菌株能在滤纸平板培养基上生长,且不同菌株对滤纸的分解程度不同;筛选出34个既能产羧甲基纤维素酶又能产木聚糖酶的菌株,稳定性测定后,最终获得4株高产羧甲基纤维素酶和木聚糖酶的菌株,经rDNA-ITS基因序列分析,4个菌株初步鉴定为:阿太菌属(Athelia sp.)(菌株23a)、Saccharicola sp(菌株24d)、埃里砖格孢属(Embellisia sp.)(菌株26B)、梭孢壳属(Thielavia sp.)(菌株H)。在56个菌株中,有9个菌株在-萘酚-PDA培养基和愈创木酚-PDA培养基上都能产生褐色氧化带,其中有6个菌株能在分别以愈创木酚、邻苯二酚、邻苯甲苯胺为底物的选择性培养基上生长,产生褐色氧化带;以愈创木酚为底物测定漆酶活力,结果发现只有菌株310b产生漆酶。经rDNA-ITS基因序列分析,初步鉴定为:小皮伞属(Marasmiussp.)。
     (2)对菌株310b产漆酶条件的研究结果表明:菌株310b在25℃、pH=4.0时产漆酶的酶活力最大;9种碳源抑制菌株产漆酶,蛋白胨诱导菌株产漆酶,且酶活力最高;邻甲苯胺、-萘酚和吐温-80等3种非营养有机物促进菌株产漆酶,愈创木酚对菌株产漆酶没有明显的作用;邻苯二酚、单宁酸、吲哚乙酸抑制菌株产漆酶,其中吲哚乙酸抑制作用最强烈;随Cu2-增加,产漆酶活力增加,0.025g/L时产酶活力最大;随着接种量的增加,诱导菌株产漆酶;转速在0~180r min-1范围内,随着转速的增加,漆酶的酶活力增加,且转速达到180r min-1时,酶活力达到最大。
     (3)5个菌株生长的最适温度范围在25-35℃之间,25℃条件下菌株两两混合培养7d后,发现5个菌株间可以共存。5个菌株产酶的种类及酶活力大小不同,菌株26B产生的羧甲基纤维素酶活力最高,24d产生的木聚糖酶活最高;将不同菌株的发酵粗酶液两两等体积混合后,与对应的单个菌株的酶活力相比较,反应体系中羧甲基纤维素酶、木聚糖酶和漆酶的酶活力下降,5个菌株间随机组合进行液体发酵后,单个菌株和组合菌株反应体系中的酶活力t测验结果表明,漆酶的酶活力变化差异显著(p<0.05),但在菌株26B、310b和24d的不同组合中,羧甲基纤维素酶和木聚糖酶的酶活力变化差异不显著(p>0.05)。
     (4)产羧甲基纤维素酶菌株26B在55℃、pH=6时酶的催化活性达到最大值,菌株23a在30℃、pH=5时酶的催化活性达到最大值,菌株H在50℃、pH=5.5时酶的催化活性达到最大值;菌株26B产生羧甲基纤维素酶对热不稳定,菌株23a和H的羧甲基纤维素酶在0-40℃相对稳定。产木聚糖酶菌株24d在55℃、pH=5时酶的催化活性达到最大值。菌株23a在35℃、pH=5.5时酶的催化活性达到最大值,菌株H在55℃、pH=5.0时酶的催化活性达到最大值。菌株24d产生的木聚糖酶对热不稳定,菌株23a和H的木聚糖酶在0-35℃相对稳定。产漆酶菌株310b在30℃、pH=4.5时酶的催化活性达到最大值,且在0-45℃酶活力相对稳定。
     (5)将菌株26B、310b和24d等3个菌株组合后进行固体发酵,结果表明,相比于其他组合,固体发酵60d后,反应体系中的相对还原糖含量高,相对纤维素含量低,油菜秸秆颜色变浅、菌丝附着多,扫描电镜结果显示,与对照相比,秸秆表面、断裂处、秸秆髓部等都发生了明显的变化。菌株310b、24d和26B组合的多酶系菌群对油菜秸秆的降解效果明显。
Rape straw is usually used as fuel and becomes waste and pollution sources in northern China especially in the alpine region. Methods by using fungi system of multi-enzyme to degradation rape straw cell wall material were carried out by traditional microbiological methods. Fungal strains, produce high enzyme activity, was screened, including cellulose, xylanase and laccase. Gene sequences of rDNA-ITS, cultural characteristics, enzymatic properties of liquid crude enzyme, and the synergies between different enzyme was analyzed as well. Construction of fungi system of multi-enzymes for degradation of rape straw cell wall material and its degradation characteristics was studied. The results obtained as follows:
     (1) Based on preliminary work of isolating125fungal strains from the east Qilian Mountain alpine grassland soil.Fifty six fungal strains were screened by using traditional chromogenic substrate screening method, and forty nine fungal strains can grow on filter paper plate medium,thirty four fungal strains that could produce high enzyme activity of both cellulose and xylanase were screened by enzyme activity screening method in flask liquid fermentation while rape straw used as sole carbon source. Four fungal strains with high yield of cellulose and xylan enzyme activity, Embellisia sp.(strain26B), Saccharicola sp.(strains24d), Athelia sp.(strain23a), Thielavia sp.(strain H) were obtaied. One fungal strain, code310b, producing laccase was obtained, and identified as Marasmius sp., Based on rDNA-ITS gene sequence analysis.
     (2) To Marasmius sp., the optimum temperature of laccase activity producing is25℃with pH value4.0; Add sugar source will inhibit laccase activity of the strains; peptone induced the highest laccase activity among the nine nitrogen sources tested; O-toluidine, a-naphthol and Tween-80can promote the strains laccase activity while catechol, tannic acid, indole acetic acid inhibit the strains laccase activity, and indole acetic acid inhibit it strongest among the test acid; Guaiacol had no siginificant effect on laccase activity. Laccase activity increased with the content of Cu2+increasing, and it reached up to maximum when Cu2+was added to0.025g/L, Laccase activity arosen with the increase of rotar speed.
     (3) Culture characteristics of five tested strains showed that the optimum growth temperature range between25-35℃. It was conducive that the five strains can coexist under the culture conditions of25℃. The type of enzyme and enzyme activity of five fungal strains were different determined in flask liquid fermentation while rape straw used as sole carbon sources. Strain26B,23a, H,24d can produce both cellulase and xylanase, Carboxymethyl cellulose activity (CMCase) of strain26B was the highest, xylanase activity of strain24d was the highest. Three kinds of enzyme activity was measured after crude enzyme solution of single strain was mixed by equal volume in order to further understand synergies between different type of enzyme of crude enzyme of five strains. Multi-enzyme activity decreased to a certain extent. And combination strains were inoculated and mixed culture in flask liquid fermentation was measured, As opposed to single strain fermentation, enzyme activity of mixed strain fermentation was decline, the reason was probably the environmental conditions of mixture reaction system change, and was related to changes of pH value and reducing sugar content in closely.
     (4) To strain26B, the optimum temperature of CMCase activity producing is55℃with pH value6.0, it is unstable on the temperature.to strain23a, the optimum temperature of CMCase activity producing is30℃with pH value5.0; and to strain H, the optimum temperature of CMCase activity producing is50℃with pH value5.5; Strains23a and H are relatively stable under the condition of temperature range between0-40℃. To strain24d, the optimum temperature of xylanase activity producing is55℃with pH value5.0, it is unstable on the temperature. to strain23a, the optimum temperature of xylanase activity producing is35℃with pH value5.5, to strain H, the optimum temperature of xylanase activity producing is55℃with pH value5.0, Strain24d is instability on the temperature, the xylanase of strain23a and H is relatively stable under the condition of temperature range between0~35℃. To strain310B, the optimum temperature of laccase activity producing is30℃with pH value4.5, the laccase activity reaches its maximum, and the enzyme activity is relative stability under the condition of temperature range between0~45℃
     (5) In the solid fermentation system which made up of strains310b,24d and26B, the CMCase, xylanase and laccase activity could detect in the crude enzyme of fermentation. A conclusion that there was high correlation between three kinds of enzymes activity in the number of combinations of the reaction system and the relative cellulose content, the same as relative reducing sugar content did were obtained by analysis the mutual relations of the relative content of reducing sugar and enzyme activity and the relative cellulose content in the different reaction system of combinations strain. It indicated that the decomposition effect of cell wall material of rape straw was better in multi-enzymes fungi system.
引文
[1]B.施特马赫著.钱嘉渊译.酶的测定方法.北京中国轻工业出版社,1992,103-177.
    [2]白玉,杨大群,王建辉,等.天山冻土耐冷菌的分离与产低温酶菌株的筛选[J].2005,27(4):615-618.
    [3]曹国良,张小曳,郑方成,等.中国大陆秸秆露天燃烧清单[J].资源科学,2006,28(1):9-13.
    [4]陈阿娜,汤斌.一种改进的纤维素分解菌鉴别培养基[J].生物学杂志,2006,23(6):48-49.
    [5]陈洪章,李佐虎.纤维素原料微生物与生物量全利用[J].化工科技市场,2001,(5)17-20.
    [6]陈今朝,王剑锋,李江,等.煤附生真菌产漆酶菌株的分离鉴定及产酶特性研究[J].菌物学报,2010,29(3):389-396.
    [7]陈敏.一种改进的纤维素分解菌鉴别培养基[J].杭州师范学院学报(自然科学版),2001,18(5):11-12.
    [8]陈秀蓉.陇东典型草原草地退化与微生物相关性及其优势菌系统发育分析与鉴定[D].兰州:甘肃农业大学,2003.
    [9]陈耀宁.堆肥化中协同降解木质纤维素的混合菌筛选及其培养[D],长沙:湖南大学,2007.
    [10]初华丽,梁宗琦,韩燕峰.一株产生漆酶的耐高温膨大拟青霉大孢变种[J].菌物研究,2004,2(3):43-46.
    [11]崔福绵,那安,马建华,等.不同真菌纤维素酶一些生物化学性质的比较[J].真菌学报,1984,3(1):59-64.
    [12]崔宗均,李美丹,朴哲,等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J].环境科学,2002,23(3):36-39.
    [13]丁玲玲,祁彪,尚占环,等.东祁连山亚高山草地土壤微生物功能群数量动态及其与土壤环境关系[J].草业学报,2007,16(2):9-18.
    [14]丁玲玲,祁彪,尚占环,等.东祁连山不同高寒草地型土壤微生物数量分布特征研究[J].农业环境科学学报2007,26(6):2104-2111.
    [15]冯瑞章,周万海,龙瑞军,等.江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究[J].土壤通报,2010,41(2):263-269.
    [16]傅力,丁友昉,张篪.纤维素酶测定方法的研究[J].新疆农业大学学报.2000,23(2):45-48
    [17]傅声雷.土壤生物多样性的研究概况与发展趋势[J].生物多样性.2007,15(2):109-115
    [18]谷嵩,刘昱辉.纤维素酶的研究进展[J],安徽农业科学,2007,35(25):7736-7737,7747.
    [19]郭继勋,祝廷成.羊草草原土壤微生物的数量和生物量[J].生态学报.1997,17(1):78-82.
    [20]韩峰,孙彩云,宋小焱.拟康氏木霉UVⅡ纤维素酶合成的诱导与阻遏[J].工业微生物,2003,33(1):23-26.
    [21]韩增祥,朱冀宁,张小平.油菜秸秆的氨化处理[J].饲料研究,1996,(5):21-22.
    [22]郝月,杨翔华,张晶,等.秸秆纤维素分解菌的分离筛选[J].中国农学通报,2005,21(7):58- 60.
    [23]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    [24]胡奎娟,吴克,潘仁瑞,等.固态混合发酵提高木聚糖和纤维素酶活力的研究[J].菌物学报,2007,26(2):273-278.
    [25]湖北省微生物研究所纤维素酶组.快速测定纤维素酶中CMC液化活力法.微生物学通报,1979(5):11.
    [26]荒开基夫.纤维素酶研究动向[J].应用微生物,1989,5(19):19-22.
    [27]黄玉兰,李征,刘晓宁,等.一株耐低温纤维素酶高产菌株的筛选、鉴定和产酶的初步试验[J].微生物学通报,2010,37(5):637-644.
    [28]黄悦华,张天宇,潘好芹,等.雅鲁藏布江中游地区土壤淡色丝孢菌群落多样性及物种生态位研究[J],菌物学报,2010,29(2):193-198.
    [29]黄忠乾,龙章富,彭卫红等.农作物秸秆资源的综合利用[J].资源开发与市场,1999,(1):32-34.
    [30]姜庆宏,赵敏.新月弯孢霉产漆酶培养条件的优化[J].农产品加工,2009,3:62-67.
    [31]姜文波,王启兰,杨涛,等.高山草甸土纤维素分解的季节性动态[M].高寒草甸生态系统(第四集).北京:科学出版社,1995,183-188.
    [32]兰对乐,陈娴,李慈,等.产纤维素酶菌种TP1202的选育及产酶条件研究[J].生物技术,2003,13(2):12-13.
    [33]李存春,刘志林.油菜秸秆生物发酵喂猪试验初报[J].现代畜牧兽医,2006,(10):19.
    [34]李家藻,杨涛,朱桂如,等.产高寒草甸土壤氮素代谢微生物数量及活性的研究[C].高原生物学集刊,1984,(3):193-207.
    [35]李家藻,朱桂如,杨涛,等.高寒草甸植物纤维、根和枯枝落叶分解作用的研究[C].高原生物学集刊,1984,(2):107-114.
    [36]李娟,倪新江,樊守金,等.金顶侧耳不同生长期几种胞外酶活性变化[J].吉林农业大学学报,2006,28(6):619-622.
    [37]李亮亮,牛森,刘文娥,等.荧光定糖法测定纤维素酶活力的条件研究[J].沈阳农业大学学报.2004,35(1):59-61.
    [38]李日强,辛小芸.天然秸秆纤维素分解菌的分离选育[J].上海环境科学,2002,21(1):8-11.
    [39]李英年,姜文波.亚高山草甸土纤维素分解过程及与环境因子的对应关系[J].土壤通报,2000,31(3):122-124.
    [40]李源龙.油菜耐盐性的基因型差异[D].杭州:浙江大学,2007.
    [41]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志2004,23(6):77-83.
    [42]廖仰南,张桂芝,王芳玖.内蒙古草原土壤微生物生态学研究.锡林河流域土壤微生物的季节变化及其土层垂直分布,草原生态系统研究(第一集)[M].北京:科学出版社,1985.166~180.
    [43]林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报.2008,45(5):892-900.
    [44]刘长莉,朱万斌,郭鹏,等.常温木质纤维素分解菌群的筛选与特性研究[J].环境科学.2009,30(8):2458-2463.
    [45]刘晨光,刘成圣,刘万顺,等海洋生物酶的研究和应用[J].海洋科学,2000(24)7:24-26.
    [46]刘德旺,王德成.牧草与农作物秸秆产业化加工技术[J].农机科技推广,2002,(2):10-11.
    [47]刘佳,袁兴中,曾光明,等.表面活性剂对绿色木霉产纤维素酶影响的实验研究.中国生物工程杂志,2006,26(8):62-66.
    [48]刘敏,张明.一株产漆酶菌株的筛选鉴定和发酵条件的研究[J].生物学杂志,2008.25(3):40-43.
    [49]刘世贵,葛绍荣,龙章富.川西北退化草地土壤微生物数量与区系研究[J].草业学报,1994,3(4):70-76.
    [50]陆文清,何丽花,曹云鹤.饲料用木聚糖酶活力测定的研究[J].饲料工业,2009,30(4):16-20.
    [51]罗明,邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究[J].中国草地,1995,(5):29-33.
    [52]马丽萍,张德罡,姚拓.天祝高寒草地不同扰动生境纤维素分解菌数量动态研究[J].草原与草坪,2005,(1):39-41.
    [53]毛培宏,金湘,曾宪贤,等.新疆离子束生物技术的研究[J].生物技术,2003,13(4):50-51.
    [54]那安,马建华,张树政.康氏木霉Cl酶的简捷提纯法及酶性质的研究[J].微生物学报,1981,21(3):334-338.
    [55]牛俊玲,崔宗均,李国学,等.高效纤维素降解菌复合系的筛选构建及其对秸秆的分解特性[J].农业环境科学学报,2005,24(4):795-799.
    [56]潘勇,吴国志,王树勇,等.优质双低油菜秸秆、饼粕的利用[J].内蒙古农业科技,2002,(21):79-80.
    [57]齐文娟.黄河源区高寒草地土壤微生物数量动态及其与土壤养分关系研究[D].兰州:甘肃农业大学,2007.
    [58]秦文娟,余惠生,付时雨.利用漆酶降解有机污染物[J].中国造纸,2001(5):58-62.
    [59]任南琪,马放.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2002,256-328.
    [60]尚占环,丁玲玲,龙瑞军,等.江河源区高寒草地土壤微生物数量特征[J].草原与草坪,2006,118(5):3-7.
    [61]沈菊培,张丽梅,郑袁明,等.土壤宏基因组学技术及其应用[J].应用生态学报,2007,18 (1):212-218.
    [62]石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气.2005,23(2):11-14,19.
    [63]石元春.发展生物质产业1J].发明与创新,2005(5):4-6.
    [64]史央,蒋爱芹,戴传超,等.秸秆降解的微生物学机理研究及应用进展.微生物学杂志,2002,22(1):47-50.
    [65]史玉英,沈其荣,娄无忌,等.纤维素分解菌群的分离和筛选[J].南京农业大学学报,1996,19(3):59-62.
    [66]宋新南,房仁军,王新忠,等.油菜秸秆资源化利用技术研究[J].自然资源学报.2009,24(16):984-991.
    [67]唐启元,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [68]万楚筠,刘睿,黄凤洪,等.油菜秸秆混合发酵降解菌的筛选[J].中国生物工程杂志,2011,31(6):70-74.
    [69]汪世华,胡开辉,黄碧芳,等.黑曲LH2446产纤维素酶液体发酵条件的研究[J].江西农业大学学报,2005,27(3):466-468.
    [70]王长庭,龙瑞军,王启兰,等.三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化[J].应用与环境生物学报,2008,14(2):225-230.
    [71]王玢,汪天虹,张刚,等.产低温纤维素酶海洋嗜冷菌的筛选及研究[J].海洋科学,2003,27(5)42-45.
    [72]王国荣,陈秀蓉,韩玉竹,等.东祁连山高寒灌丛土壤微生物的分布特征[J].草原与草坪,2006,116(3):27-30.
    [73]王佳玲,余惠生,付时雨,等.白腐菌漆酶研究进展[J].微生物学通报,1998,25(4):233-236.
    [74]王剑锋,刘建玲,王璋.从土壤中筛选产漆酶微生物菌株的研究[J].食品与发酵工业,2007,33(10):35-39.
    [75]王剑锋,王璋,李江,等.漏斗多孔菌液体发酵产漆酶条件研究[J].菌物学报,2009,28(3):440-444.
    [76]王剑锋,苏国成,刘建玲,等.烟管菌漆酶合成的营养条件研究[J].食品与发酵工业,2006,32(2):20-24.
    [77]王军邦,黄玫,林小惠.青藏高原草地生态系统碳收支研究进展[J].地理科学进展,2012,31(1):123-128.
    [78]王其兵,贺金生,陈伟烈.长江三峡地区退化生态系统土壤微生物的初步研究[J].生物多样性,1997,5(4):241-245.
    [79]王启兰,曹广民,王长庭.高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J].生 态学杂志,2007,26(7):1002-1008
    [80]王沁,赵学慧.黑曲霉(Aspergillus niger)纤维素酶系中内切β2葡聚糖酶性质的研究1J].微生物学报,1993,33(6):439-445.
    [81]王绍强,周成虎.中国陆地土壤有机碳库的估算1J].地理研究,1999.18(4):349-356.
    [82]王伟东,崔宗均,牛俊玲,等.一组木质纤维素分解菌复合系的筛选及培养条件对降解活性的影响1J].中国农业大学学报,2004,9(5):7-11.
    [83]王振宇,樊梓鸾.混菌固态发酵生产纤维素酶的研究1J].中国林副特产,2007,2:1-3.
    [84]魏桃员,张素琴,彭长琪.纤维素降解菌的筛选及其相互作用研究1J].湖北预防医学杂志,2000,11(6):3-5.
    [85]乌兰,马伟杰,义如格勒图,等.油菜秸秆饲用价值分析及其开发利用1J].内蒙古草业,2007,19(1):41-42.
    [86]吴振强,秦鹏,王菊芳,等.产耐温漆酶菌的筛选及培养基优化1J].陕西科技大学学报,2009,27(1):68-73.
    [87]徐砚珂,杨合同,唐文华,等.鸟巢菌转化作物秸杆为真菌蛋白的研究1J].山东科学,2001,14(1):37-42.
    [88]许云峰,张臻,周建芹,等.内生镰刀菌漆酶辅助提取槐米中总黄酮的研究1J].中草药,2008,39(11):1637-1640.
    [89]阎章才,东秀珠.微生物的生物多样性及应用前景1J].微生物学通报,2001,28(1):96-102.
    [90]杨成德,龙瑞军,陈秀蓉.土壤微生物功能群及其研究进展1J].土壤通报.2008,(39):2,421-424.
    [91]杨涛,马美湖.生物质降解酶酶活的测定方法[J].中国酿造,2006,164(11):67-69.
    [92]姚拓,杨俊秀,景耀,等.秦岭落叶松林土壤真菌种群及其生态特性研究1J].生态学杂志,1998,(4):7-13.
    [93]姚拓,马丽萍,张德罡.我国草地土壤微生物生态研究进展及浅评1J].草业科学,2005,22(11):1-7.
    [94]叶姜瑜.一种纤维素分解菌鉴别培养基1J].微生物学通报,1997,24(4):251-252.
    [95]尹亮,陈章和,赵树进.白地霉产漆酶条件优化及对偶氮染料的脱色1J].华南理工大学学报(自然科学版),2008,36(12):85-90.
    [96]郁红艳,曾光明,黄国和,等.简青霉Penicillium simplicissimum木质素降解能力1J].环境科学,2005,26(2):167-171.
    [97]岳耀峰,黄晓艳,龚明福.纤维素分解菌筛选方法初步研究1J].安徽农业科学,2010,38(4):1667-1668,1779.
    [98]扎西卓玛.青海省德令哈地区主要农作物籽实及秸秆草粉营养成分的测定与分析1J].家 畜生态学报,2007,28(3):64-66.
    [99]张继泉,王瑞明,孙玉英,等.里氏木霉生产纤维素酶的研究进展[J].饲料工业,2003,24(1):9-12.
    [100]张强.一株漆酶产生菌的筛选与发酵条件研究[J].广西轻工业,2008,10:16-17
    [101]张淑红,刘秀花,梁峰,等.低温纤维素降解菌的筛选及其酶学性质初步研究[J].微生物学杂志,2009,29(3):97-100.
    [102]张树政.酶制剂工业(下册).科学出版社,1984.489-512.
    [103]张晓伦,刘旭,饶泽昌.高效纤维素分解菌混合培养及其降解能力[J].南昌大学学报:理科版,2005,29(05):500-502.
    [104]张宇吴,王颉,张伟,等.一种改进的纤维素分解菌鉴别培养基[J].纤维素科学与技术,2004,12(1):33-36.
    [105]赵吉,廖仰南,张桂枝,等.草原生态系统的土壤微生物生态[J].中国草地,1999,(3):57-67.
    [106]赵吉,廖仰南,张桂枝,等.羊草不同物候期植株及凋落物回归草原的土壤微生物活性效应[J].内蒙古大学学报(自然科学版),1994,25(3):300-304.
    [107]赵敏,宋小双,杨谦,等.血红密孔菌(Pycnoporus sanguineus)漆酶基因的克隆与序列分析[J].中国生物化学与分子生物学报,2004,20(6):815-820.
    [108]赵新刚.洗涤用碱性纤维素酶及其产生菌的分离方法[J].微生物学通报,1999,26(1):63’65.
    [109]郑晓冰,郭丽琼,付小燕,等.木霉LaTr01菌株产漆酶发酵的条件[J].生物加工过程,2007,5(4):19-24.
    [110]郑佐头,段明星,徐文联等.高活性纤维素酶菌株的筛选及其产酶条件的研究[J].微生物学杂志,1996,16(1):35-38.
    [111]钟文辉,蔡祖聪.土壤微生物多样性研究方法1J].应用生态学报,2004,15(5):899-904.
    [112]周定国,张洋.我国农作物秸秆材料产业的形成与发展1J].木材工业.2007,21(1):5-8.
    [113]周兴民,李健华.海北高寒草甸生态系统定位站的主要植被类型及其地理分布规律[C].夏武平.高寒草甸生态系统[M].兰州:甘肃人民出版社1982:9-18.
    [114]周兴民.中国嵩草草甸[M].北京:科学出版社.2001.
    [115]朱桂如,李家藻,唐诗声,等.海北高寒草甸生态系统定位站土壤微生物学的研究:微生物各主要类群组成及其数量变动[C].高寒草甸生态系统(第一集),兰州:甘肃人民出版社,1982.144-161.
    [116]朱洪龙,王力生,蔡海莹,等.两种白腐菌降解油菜秸秆效果的研究1J].安徽农学通报.2007,13(8):33-35.
    [117]Adsul M G,Bastawde K B,Varma A J,et al.Strain improvement of Penicillium janthinellum NCIM1171for increased cellulase production[J].Bioresource Technology,2007,98(7)1467-1473.
    [118]Akila G, Chandra T S. A novel cold-tolerant clostridium strain PXYL1isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulose[J]. FEMSMicrobiology Letter.,2003,219:63.
    [119]Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiology Reviews,1995,59,143-169.
    [120]Andreas Felske A W, Robert van Lis, Wi Vem M. et al.Akkermans Searching for predominant soil bacteria:16S rDNA cloning versus strain cultivation.FEMS Microbiology Ecology,1999,30:137-145
    [121]Arnorsdottir J, Smaradottir R B, Magnusson O T, et al. Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species [J].European Journal of Biochemistry,2002,269(22):5536-5546.
    [122]Atif H A,Yasmeen M I.Induction,production, repression and derepression of exoglucanase synthesis in Aspergillus niger [J].Bioresource Technology,2004,94(3):311-319
    [123]Bains J, Capalash N, Sharma P.Laccase from a nonmelano genic,alkalo tolerant-proteo-bacterium JB isolated from industrial wastewater drained soil[J]. Biotechnology Letters,2003,25(14):1155-1159.
    [124]Bajpai P.Application of Enzymes in the pulp and paper industry[J].Biotechnology Progress,1999,15(2):147-157.
    [125]Baldrian P.Fungal laccases occurrence and properties[J].FEMS Microbiology Reviews,2006,30(2):215-242.
    [126]Bardgett R D, Frankland J C, Hittaker W J B.The effect of agricultural practices on the soil biota of some upland grasslands[J].Agriculture,Ecosystems and Environment,1993,45:25-45.
    [127]Bardgett R D, Hobbs P J, Frostegard A.Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland[J].Biology and Fertility of Soil,1996,20:261-264.
    [128]Bardgett R D, leemans D K.The short term effects of cessation of fertilizer applications liming and grazing on microbial biomass and activity in a reseeded upland grassland soil [J].Biology and Fertility of Soil,1995,19:148-154.
    [129]Bardgett R D,Leemans D K,Cook R, et al. Seasonality of soil biota of grazed and ungrazed hill grasslands[J].Soil Biology and Biochemistry,1997,29:1285-1294.
    [130]Bardgett R D, Hobbs P J, Frostegard A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland[J].Biology and Fertility of Soil,1996,20:261-264.
    [131]Bassam B J,Caetano Anolles G,Gresshoff P M.DNA amplification finger printing of bacteria[J].Appl.Microbiol.Biotechnol,1992,38:70-76.
    [132]Becker H C,Loptien H,Robbelen G.Breeding:An overview [A]. Gomez Campl C.Biology of Brassica Coenspecies[C].Elsevier,Sci,BV.Am sterdam,1999,413-448.
    [133]Bollag J M,Shulleworh K L,Anderson D H.Laccase mediated detoxification of phenolic compounds[J].Application Environ Microbiologl.1998,54(12):3086-3091.
    [134]Bucher V V C, Pointing S B, Hyde K D, et al. Production of wood decay enzymes, loss of mass and lignin solubilization in wood by diverse freshwater fungi[J].Microbial Ecology,2004,48:331-337.
    [135]Burke R M, Cairney J W G. Laccases and other polyphenol oxidases in ecto-and ericoid mycorrhizal fungi[J]. Mycorrhiza,2002,12:105-116.
    [136]Casey H, Alexander L, Maren N,et al.A constant flux of diverse thermophilic bacteria into the cold arctic seabed[J].Science,2009,325:1541-1544.
    [137]Cavicchioli R, Siddiqui K S, Andrews D, et al. Low-temperature extremophiles and their applications [J]. Current Opinion Biotechnology,2002,13(3):253-261
    [138]Chadwick R J. Enhanced enzyme removal of chlorophenols in the prense cosubstrares [J]. Water Res,1995,29(12):2720-2724.
    [139]Chi F,Chen H Z.Absorption of ethanol by steam-exploded corn stalk[J].Bioresource Technology,2009,100(3):1315-1318.
    [140]Clark F E,Pawl E A. The microflora of grassland[J].Advance of Agronomy,1970,(22):375-435.
    [141]Coker J A,Sheridan P P,Loveland Curtze J, et al. Biochemical characterization of agalactosidase with a low temperature optimum obtained f rom an Antarctic Arthrobacter Isolate [J].J.Bacteriol.,2003,185:5473-5482.
    [142]Coleman D C, Whitman W B. Linking species richness,biodiversity and ecosystem function in soil systems. Pedobiologia,2005,49,479-497.
    [143]Coleman D C,Crossley D A J.Fundamentals of Soil Ecology[M]. Academic Press,San Diego.1996.
    [144]Colwell R R. Microbial diversity in time and space.Proceeding of the international symposium on the microbial diversity in time and Space. In Tody,Japan,1994:1-159.
    [145]Dodd J C, Boddington C L, Rodriguez A, et al.Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera:form, function and detection [J].Plant Soil,2000,226:131- 151.
    [146]Duffs J B,Murray W D.Bioconversion of forest products Industry waste cellulosics to fuel ethanol:A review[J].Bioresource7echnology,1996,55(1):1-33.
    [147]Durao P, Bento I, F ernandes A T, et al. Perturbations of the T1copper site in the CotA-laccase from Bacillus subtilis:structural biochemical enzymatic and stability studies[J].Journal of Biological Inorganic Chemistry,2006,11(4):514-526.
    [148]Enno M,Helina M,Anne M,et al.Electrophysiological responses from neurons of antennal taste sensilla in the polyphagous predatory ground beetle Pterostichus oblongopunctatus to plant sugars and amino acids[J]. Journal of Insect Physiology,2008,54(8):1213-1219.
    [149]Feller G, d'Amico D, Gerday C.Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium alteromonas haloplanctis [J].Biochemistry,1999,38:4613-4619.
    [150]Feller G,Zekhnini Z,Lamotte-Brasseur J,et al.Enzymes from cold-adapted microorganisms. The class C[3-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5[J].European Journal.Biochemistry,1997,244:186-191.
    [151]Filion M,Starnaud M and Fortin J A.Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms [J].New Phytol.,1999,141:525-533.
    [152]Frederick W J,Lien S J,Courchene C E,et al.Co-production of ethanol and cellulose fiber from Southern Pine:A technical and economic assessment[J].Biomass Bioenerge,2008,32(12):1293-1302.
    [153]George E,Marschner H,Jakobsen I.Role of arbuscular mycorrhizal fungi in uptake of phosphorous and nitrogen from soil [J].Crit.Rev.Biotechnol,1995,15:257-270.
    [154]Georlette D,Jonsson Z O,Van Petegem F,et al.A DNA ligase f rom t he psychrophile pseudoalteromonas haloplanktis gives insight s into t he adaptation of proteins to low temperatures[J].European Journal.Biochemistry,2000,267(12):3502-3512.
    [155]Ghose T K, Pathak A N,Bisaris V S. Symposium on Enzymatic Hydrolysis of Cellulase (eds. Bailey,Metal), Sitra,Aulanko, Fland,1975.
    [156]Ghose T K.Measurement of ellulose activities international union of pure and applied chemistry[J].Chemphere,1987,59(2):257-268.
    [157]Goksyr J,Eriksen J.Economic Microbiology,volume(5):Microbial Enzymes and Bioconversions (ed.Hose A. H.),London,Newyork,Torouto,Sydney,San Francisco,1980,5:301-306.
    [158]Grayston S J,Wang S,Campbell C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biochemistry,1998,30:369-378.
    [159]Hakulinen N, Kiiskinen L L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site[J]. Nature Structural Biology,2002,9(8):601-605.
    [160]Hankin L,Anagnostakis S L. Solid medium containing carboxymethyl cellulose to detect CX cellulase activity of microorganisms [J]. J Gen Microbiol,1977,98:105-109.
    [161]Hart T D,De Leij,Lynch J M,et al.Strategies for the isolation of cellulolytic fungi for composing of wheat straw[J]. World Journal of Microbiology and Biotechnology,2002,18:471-480.
    [162]Hawksworth D L. The fungal dimension of diversity:magnitude, significance and conservation. Mycologic Research,1991,95,641-655.
    [163]Herdrick C W,Doyle J D,Hugley B A. New solid medium of mnu-merating cellulose-utilizing bacteria in solid[J].Applied and Enviorental Microbiology,1995,61(5):2016-2019.
    [164]Hideo toyama, Naotsugu yamagishi, Nobuo toyama. Construction of cellulase hyperproducers of Trichoderma reesei Rut C230for utilization of waste paper using colchicine and benomyl[J].Journal of Molecular Catalysis B:Enzymic,2002,17(3/5):175-178.
    [165]Horikoshi K, NakaoM, Kurono Y, et al. Cellulase of an alkalophilic Bacillus strain isolated from soil[J]. Can. J.Microbiol.,1984,30:774-779.
    [166]Idris R ltifonova R, Puschenreiter M,Wenzet W W, Sesaitscis A Bacterial Community Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense[J].Appl Environ Microbiol2004,70:2667-2677.
    [167]Jenkinson D S,Ladd J N. Microbial biomass in soil:Measurement and turnover [A].In:Paul E A. Soil Biochemistry [M].NewYork:Marcel Dekker,1981.415-471.
    [168]Jennifer L kirk, Beaudette lee A, Miranda hart, et al. Methods of studying soil microbial diversity[J].Journal of Microbiological Methods,2004,58(2):169-188.
    [169]Jian S, Ratna R,Sharma S,et al.Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production[J].Biomass Bioenerge,2009,33(1):88-96.
    [170]Jones TH, Bradford MA.Assessing the functional implications of soil biodiversity in ecosystems. Ecological Research,2001,16,845-858.
    [171]Joseph S L, Hugenholtz P, Sangwan P, Osbome CA, Janssen P H.Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology,2003,69,7210-7215.
    [172]Karboune S, Geraert P A, Kermasha S. Characterization of selected cellulolytic activities of multi-enzymatic complex system from Penicillium funiculosum[J]. Journal Agriculture Food Chemistry,2008,56(3):903-909.
    [173]Kennedy A C,Smith K L.Soil microbial diversity and the sustainability of agricultural soils [J].Plant Soil,1995,170:75-86.
    [174]Langfelder K, Streibel M, Jahn B, Haase G, Brakhage A A,.Biosynthesis of fungal melanins and their importance for human pathogenic fungi[J]. Fungal Genetics and Biology,2003,38:143-158.
    [175]Larkin M A,Blackshields G,Brown N P,et al.Clustal W and clustal X version2.0[J].Bioinformatics,2007,23(21):2947-2948.
    [176]Lee D, Yu A H C, Saddler J N. Evaluation of cellulose recycling strategies for the hydrolysis of lignocellulosic substrates [J]. Biotechnology and Bioengineering,1995,45(4):328-336.
    [177]Leonardo Faria Martins, Daniel Kolling, Marli Camassola, et al. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates[J],. Bioresource Technology2008,99(5):1417-1424.
    [178]Li C J, Nan Z B, Li F,2008.Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians[J].Microbiological Research,163:431-440.
    [179]Liu WT, Marsh TL, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding16S rRNA.[J].Appl Environ Microbiol1997,63:4516-3512.
    [180]Lodewyckz C, Vangrnnsveld J, Porteous F, et al. Endophytic bacteria and their potential applications.[J].Crit Rev Plant Sci.2002,21:583-606.
    [181]Lutzen N W,Nielsen M H,Oxenboell K M,et al. Cellulase and their applications in the conversion of lignocelluloses to fermentable sugars [J].Phil.Trans.Royal. Soc.,1983,300:283-291.
    [182]Lutzow M, Kogel Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils:Mechanisms and their relevance under different soil conditions. A review [J]. European Journal of Soil Science,2006,57(4):426-445.
    [183]Lynd L R, Wei Mer P J, Zyl W H V, et al. Microbial cellulose utilization:fundamentals and biotechnology [J]. Microbiology and Molecular Biology Review,2002,66(3):506-577.
    [184]Lyndl R, Paul J W,Vanzyl W H.et al.Micribial cellulose utilization:Fundamentals and biotechnology[J].Microbiology and Molecular Biology Reviews,2002,66(3):506-577.
    [185]Lyndl R,Wymanc E,Gerngross T U.Biocommodity engineering [J].Biotechnology Progress,1999,15:777-793.
    [186]Mandel S M. Measurement of saccharifying cellulase [J].Biotechnology Bioengerge,1976,6:21-33.
    [187]Matsumoto, Martines, Avanzi.Interactions among functional groups in the cycling of, carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees [J]. Applied Soil Ecology,2005,28(1):57-65.
    [188]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugars [J].Analytical Chemistry.1959,31:426-428
    [189]Moore J C, de Ruiter O C.Temporal and spatial heterogeneity of trophic interactions within below-ground food webs[J]. Agriculture, Ecosystems and Environment,1991,34,371-397.
    [190]Mori.Y.Characterization of a symbiotic coculture of clostridim themrohydr-osulfuricum YM3and thermocellum YM4[J].Applied Envionment Micorbiology.1990,56(1):37-42
    [191]Morita R Y. Psychrophilic bacteria [J].Bacteriol Rev.1975,39(2):144-167
    [192]Murray W D.Symbiotic relationship of bacteriodes cellulosolves and clostridium sacchoarlyticum in cellulose fermentation. Applied Envionment Micorbiology.1996,51(4):710-714
    [193]Mussatto S I, Dragone G, Roberto I C. Brewer's spent grain:generation, characteristics and potential applications [J]. J. Cereal Sci,2006,43:1-14.
    [194]Muyzer G, Waal E C, Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for16S rRNA.[J]. Applied Envionment Micorbiology,1993,59:695-700
    [195]Nannipieri P, Kandeler E, Ruggiero P. Enzyme activities and microbiological and biochemical processes in soil[C]//Burn s, R G, Dick R P, eds. Enzymes in the Environment. New York:Marcel Dekker Inc.2002:1-34.
    [196]Nicolai S PanikoV and Mariav sizova. A kinetic method for estimating the biomass of microbial functional groups in soil [J].Journal of Microbiological Methods,1996,24(3):219-230.
    [197]Nielsen N M,Winding A,Binnerup S,et al.Microorganisms as indicators of soil health. Ministry of the Environent [M].National Environmental Research Institute. NERI Technical Report No.388.2002.15-16.
    [198]Nowak J,Nowak D,Chevallier P.Analysis of composite structure and primordial wood remains in petrified wood[H].Applied Spectroscopy,2007,61(8):889-895.
    [199]Orikoshi H,Baba N,Nakayama S,et al. Molecular analysis of t he gene encoding a novel cold-adapted chitinase (ChiB)f rom a marine bacterium, al teromonas s p.strain07[J].J.Bacteriol.,2003,185(4):1153-1160.
    [200]Prabavathy V R,Mathivanan N,Sagadevan E. Intrastrain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei [J].Enzyme and Microbial Technology,2006,38(5):719-723.
    [201]Prasad S, Singh A, Joshi H C. Ethanol as an alternative fuel from agricultural, industrial and urban residues[J]. Resource Conservation Recycle,2007,50:1-39.
    [202]Sanjeev K Sharma,Krishan L Kalra, Harmeet S Grewal. Enzymatic saccharification of prereated sunflower stalks[J].Biomass and Bioenergy,2002,23:237-243.
    [203]Six J, Frey S D, Thiet R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J]. Soil Science Society America Journal,2006,10:555-569.
    [204]Smith J L,Paul E A.The significance of soil microbial biomass estimations [M].New York:Marcel Dekker,1990.357-398.
    [205]Somova L A,Pechurkin N S.Functional, regulatory and indicator features of microorganisms in man-made ecosystems[J].Advance. Space Research,2001,27(9):1563-1570.
    [206]Stach J M, Bathe S, Clapp J P, et al. PCR-SSCP comparison of16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol Ecol,2001,36:139-151
    [207]Stephan A,Meyer A H,Schmid B.Plant diversity affects culturable soil bacteria in experimental grassland communities[J].Journal of Ecology,2000,22:988-998.
    [208]Taillisz P,Girard H,Millet J,et al. Enhanced Cellulose Fermentation by an Asprogenous and Ethanol-Tolerant Mutant of Clostridium Thermocellum. Applied and Environmental Microbiology,1989,55:207-211
    [209]Tamura K,Dudley J,Nei M,et al.MEGA4:Molecular evolutionary genetics analysis(MEGA) software version4.0[J].Molecular Biology andEvolution,2007,24:1596-1599.
    [210]Teather R D,Wood P J.Use of congo Red-polysaccharide Interactions in Enumeration and Characterization of Cellulolytic Bacteria from the Bovine Rumen [J]. Applied and Environmental Microbiology,1982,43(4):777-780.
    [211]Thompson J D, Gibson T J, Plewniak F,et al.The clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J].Nucleic Acids research,1997,25:4876-4882.
    [212]Thurston C F.The structure and function of fungal laccase[J].Microbiology,1994,140:19- 26.
    [213]Torsvik V,Ovreas L.Microbial diversity and function in soil from genes to ecosystems[J]. Ecology and Industrial Microbiology,2002,5:240-245
    [214]Tscherko D,Hammesfahr U,Marx M C,et al. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpine across an alpine chronosequence[J].Soil Biology and Biochemistry,2004,36:1685-1698.
    [215]Usher MB, Sier ARJ, Hornung M, Millard P.Understanding biological diversity in soil:The UK's Soil Biodiversity Research Programme. Applied Soil Ecology,2006,33,101-113.
    [216]Vaneechoutte M. Rossau R, Vos P D, et al. Rapid identification of bacteria of the common adaceae with amplified ribosomal DNA restriction analysis (ARDRA)[J]. FEMS Microbiology Letters,1992,93:227-234.
    [217]Wardle D A, Bardgett R D, Klironomos J N, Setala H, van der Putten WH, Wall DH. Ecological linkages between above ground and below ground biota. Science,2004,304,1629-1633.
    [218]Wardle D A, Bonner K I, Nicholson K S. Biodiversity and plant litter:experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos,1997,79,247-258.
    [219]Wolfenden R,Snider M J.The depth of chemical time and the powder of enzyme as catalysts [J].Acc Chem Res,2001,34(12):938-945.
    [220]Wong Y,Yu J.Laccase-catalysed decolorization of synthetic dyes[J]. Water Research,1999,33:3512-3520.
    [221]Wood T M. Cellulolytic enzyme system of T. Koningii[J].Biochem J,1968,109:217.
    [222]Zeng R,Xiong P, Wen J. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromona ssp. DY3[J].Extremophiles,2006,10(1):79-82.
    [223]Zhang S,Hou S,Ma X,et al. Culturable bacteria in Himalayan ice in response to atmospheric circulation [J].Biogeosciences,2007,4:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700