用户名: 密码: 验证码:
蔬菜根际土壤微生物多样性及拮抗菌调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用了变性梯度凝胶电泳(DGGE)技术和16S rDNA基因文库分析相结合的方法,对辽宁大连地区罹患辣椒疫病和黄瓜枯萎病的植株与健康植株根际土壤样品的细菌种群多样性进行了研究,并初步揭示了根际细菌种群结构与土传病害发病情况之间的关系;本文以大量的放线菌资源作为研究对象,筛选了2组拮抗放线菌组合,优化了其发酵条件,并对其施入土壤后对黄瓜枯萎病的生防效果以及对土壤样品细菌种群多样性的影响进行了分析。主要研究结果如下:
     1.研究了罹患辣椒疫病植株和健康植株根际土壤样品中细菌种群多样性。
     分别对种植前、接菌前、接菌后发病、接菌后健康以及未接菌5种辣椒根际土壤样品进行了PCR-DGGE和16S rDNA基因文库分析。根据PCR-DGGE电泳结果,这5个样品中细菌的16S rDNA片段经变性梯度凝胶电泳可以分离出38~49条清晰可见的条带,各个样品中的条带间存在着一定的差异。其中,条带最多的是接菌后健康的样品,表明抗病植株根际土壤中优势微生物种群多于患病植株根际土壤中的优势微生物。
     构建16S rDNA克隆文库,分析结果表明,接菌后健康植株根际土壤和患病植株根际土壤文库分别得到了89和52个阳性克隆子,分别属于67和44个OUT。这两个文库中的细菌共包括11个门类,较优势的是变形细菌门、酸杆菌门、拟杆菌门。在这两个文库中,健康植株根际土壤样品克隆文库中的细菌种群多样性高于患病植株根际土壤样品,其中Sphingomonas属细菌的克隆子数目明显多于患病植株样品。
     2.分析了罹患黄瓜枯萎病和健康植株根际土壤细菌种群多样性及酮基合酶编码基因(KS)多样性。
     根据PCR-DGGE电泳结果,种植前、接菌前、接菌后发病、接菌后健康以及未接菌5个样品中细菌的16S rDNA片段经变性梯度凝胶电泳后,可以分离出15~24条清晰可见的条带,接菌后健康黄瓜根际土壤样品条带数量最多。对DGGE凝胶中部分共有条带和特异性条带进行回收、克隆及测序后发现,所获得的10条序列主要归属于变形菌门、拟杆菌门、厚壁菌门、酸杆菌门、芽单胞菌门以及放线菌门,厚壁菌门为优势菌群。在健康植株根际土壤样品中的特有条带分属于拟杆菌门和厚壁菌门。
     构建16S rDNA克隆文库分析了健康黄瓜和患病黄瓜根际土壤微生物种群多样性,共得到199个阳性克隆子,其中健康黄瓜根际土壤样品118个克隆子,发病黄瓜根际土壤样品81个克隆子。其归属门类与辣椒根际土壤样品结果相似,健康植株样品细菌多样性高于患病样品,且Sphingomonas属细菌的克隆子数目明显高于患病样品文库。
     在此基础上,同时以KS特异性引物构建了健康黄瓜根际土壤和患病黄瓜根际土壤样品中的KS基因文库,分别从健康黄瓜根际土壤和患病黄瓜根际土壤样品中获得80个和102个KS基因片段,分析了I型聚酮合酶功能基因(KS基因)序列多样性,根据KS基因的系统发育树的聚类分析,结果形成了7个明显的分支,其中来自于健康植株根际土壤样品的部分KS基因单独构成一个分支,且比对结果显示与来源于链霉菌属(Streptomyces)的KS基因亲缘关系最近。
     3.优化了拮抗放线菌菌株组合的发酵条件。
     采用菌饼法从26株具有抑菌活性的放线菌菌株中筛选出4株抑菌活性较好,且彼此之间不相互抑制的菌株,并根据拮抗靶标的不同设计了2个组合,分别为ACT-1、ACT-2。在此基础上,分别通过单因素和正交实验优化了发酵培养基配方,明确了最佳发酵条件。ACT-1的最佳发酵条件为:高青-17、YH91和YH23最佳接种比例为3:3:2,培养基初始pH值为自然,培养温度为25℃,装液量为250mL三角瓶装液50mL,最佳接种量为3%,最佳转速为180r/min,培养5d。ACT-2的最佳发酵条件为:高青-17、YH91、YH23和YH6的最佳接种比例为3:1:3:2,培养基初始pH值为自然,培养温度为25℃,装液量为250mL三角瓶装液50mL,最佳接种量为3%,最佳转速为200r/min,培养5d。在优化后的发酵条件下,2个组合发酵液的抑菌活性比优化前提高了14.03%和15.10%。
     4.测定了生防菌剂组合对黄瓜枯萎病的防治效果及对黄瓜根际土壤细菌种群影响。
     测定了2个组合对黄瓜枯萎病的防治效果。结果发现,这2个生防菌剂组合对黄瓜枯萎病防效较好。在此基础上,采用PCR-DGGE分析了施入2个生防菌剂组合后发病、不发病及对照发病、不发病共6个样品的根际土壤细菌多样性。结果显示,样品间细菌种群结构相似,但施入生防菌剂组合的样品中细菌种类和数量发生了变化,说明根际土壤微生物的种群结构发生了改变,尤其是发病和未发病的样品的DGGE条带之间的差异更为明显,说明生防菌剂组合的施入对植株是否发病具有影响作用。
Bacterial community structure and diversity of rhizosphere soil in infected plants pepperphytophthora blight and cucumber Fusarium wilt in Dalian of Liaoning were studied, usingboth the16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) and the16S rDNAgene clone library. And the relationship between the rhizosphere bacterial communitystructure and soil-borne disease was initially revealed. The co-operative and synergisticcombination ACT-1and ACT-2were screening from a large number of actinomyces strains,and the fermentation condition was optimized. Furthermore, the control efficiency and theeffect on the diversity of bacterial community after applying the biological agents wereanalysed. The results were as follows:
     1. Bacterial community structure and diversity of rhizosphere soil in infected plantspepper phytophthora blight were studied. There are five rhizosphere soil samples, includingpre-planting soil, pre-inoculation soil, rhizosphere soil from diseased pepper, healthy pepperand not inoculated as a control. They were analysed by DGGE and the16S rDNA gene clonelibrary. A total of38to49bands were separated from five samples, respectively, and there aresome differences among each sample. Among them, the healthy pepper rhizosphere soil hasthe most DNA bands. It indicates that the dominant bacterial community in healthy pepperrhizosphere soil sample was more than that in the infected pepper rhizosphere soil sample.
     Based on the analysis of16S rDNA gene clone library, a total of89clones and52cloneswere sequenced from healthy pepper rhizosphere soil and diseased pepper rhizosphere soilsample respectively. The bacterial community in the two samples displayed a highlydiversified composition including members from11bacterial phylum and some unclassifiedsequences. Proteobacteria, Acidobacteria and Bacteroidetes were the rather dominant groups.
     The bacterial community in the infected pepper rhizosphere soil sample was slightly lessdiversity than those in the healthy pepper rhizosphere soil sample, and the clone number thatwere most affiliated with Sphingomonas sp. in the health soil sample was more than diseasedsoil sample.
     2. Bacterial community structure and diversity of type I ketosynthase of rhizosphere soil in infected cucumber Fusarium wilt and healthy cucumber were studied.
     There are five rhizosphere soil samples, including pre-planting soil, pre-inoculation soil,rhizosphere soil from diseased cucumber, healthy cucumber and not inoculated as a control.They were analysed by DGGE and the16S rDNA gene clone library. A total of15to24bandswere separated from five samples, respectively, and there are some differences among eachsample. The results of nucleotide sequence analysis for the dominant bands demonstrated thatthe major phylogenetic groups identified by DGGE belong to Proteobacteria, Bacteroidetes,Firmicutes, Acidobacteria, Gemmatimonadetes and Actinobacteria. Firmicutes was dominantphylum. Bacteroidetes and Firmicutes were the unique phylum in the healthy cucumberrhizosphere soil.
     Based on the analysis of16S rDNA gene clone library, a total of118clones and81clones were sequenced from healthy cucumber rhizosphere soil and diseased cucumberrhizosphere soil sample respectively. The bacterial communities in these two samplesdisplayed a highly similarity with the pepper samples. The bacterial community in theinfected cucumber rhizosphere soil sample was slightly less diversity than those in the healthycucumber rhizosphere soil sample, and the clone number that were most affiliated withSphingomonas sp. in the health soil sample was more than diseased soil sample.
     On the base of these results, the KS gene library was constructed by the specific primersof KS.80and102clones were obtained from the healthy cucumber rhizosphere soil sampleand diseased cucumber rhizosphere soil sample, respectively. According to the phylogeneticanalysis of KS amino acid (AA) sequences indicate that the KS genes in the rhizosphere soilsamples were clustered into diverse seven clades. Some KS AA sequences come form oneclade, and this clade was peculiar to healthy cucumber rhizosphere soil sample, moreover,these KS genes showed high homology with that from Streptomyces by Blast program.
     3. Optimization of fermentation conditions of antagonistic actinomycetes combination.
     Four antagonistic strains were screened from26strains with fungus cake method andthere have no interference among the four strains. According to the different target pathogens,2antagonistic actinomycetes combinations were designed, that is ACT-1and ACT-2. Theeffect of single factor on fermentation conditions of ACT-1and ACT-2and orthogonal experiment was studied. It was demonstrated that the optimum fermentation conditions ofACT-1were as follows: the proportion of GAOQING-17, YH91and YH23was3:3:2, pH wasnatura1, inoculum volume was3%, respectively. The ACT-1was cultured in50ml of culturemedium in250ml shaking flasks with rotation speed180r/min at25℃for5d. The optimumfermentation conditions of ACT-2were as follows: the proportion of GAOQING-17, YH91,YH23and YH6was3:1:3:2, pH was natura1, inoculum volume was3%, respectively. TheACT-2was cultured in50ml of culture medium in250ml shaking flasks with rotation speed180r/min at25℃for5d. The antimicrobial activity of ACT-1and ACT-2increased14.03%and15.10%after the optimization fermented the condition.
     4. Control efficiencies to cucumber Fusarium wilt of antagonistic actinomycetescombination and the effect on cucumber rhizosphere soil bacterial community weredetermined.
     The results of control effect to cucumber Fusarium wilt of antagonistic actinomycetescombination of ACT-1and ACT-2showed better control efficiencies. Furthermore, thediversity of these samples after appling ACT-1and ACT-2(including diseased cucumberrhizosphere soil sample, healthy sample), control sample (including diseased cucumberrhizosphere soil sample, healthy sample) were analysed by PCR-DGGE. The results showedthat the bacterial community is similarity among samples. The bacterial species and quantityhave change after applying ACT-1and ACT-2. So, it indicates that the rhizosphere soilmicroorganisms community was changed by antagonistic actinomycetes combination. Inparticular, there is obvious difference between the diseased sample and the healthy sample. Italso declares that antagonistic actinomycetes combination effect cucumber whether or notdisease.
引文
1.白震,何红波,张威等.2006.磷脂脂肪酸技术及其在土壤微生物研究中的应用.生态学报,26(7):2377-2394.
    2.毕江涛,贺达汉.2009.植物对土壤微生物多样性的影响研究进展.中国农学通报,25(09):244-250.
    3.蔡艳,薜泉宏,侯琳等.2002.黄土高原几种乔灌木根区土壤微生物区系研究.陕西林业科技,1:4-9,15.
    4.陈爱辉,李朝霞,梁慧星等.2010. DGGE技术在湿地微生物多样性研究中的应用.湖北农业科学,49(4):981-984.
    5.陈红,李平,王玲霞等.2001.混合培养提高水稻纹枯病生防效果的研究.中国农学通报,17(5):1-5.
    6.陈丽,姜惠武,张红光.2009.植物根系分泌物的研究进展.林业勘查设计,3:71-72.
    7.陈秀蓉,南志标.2002.细菌多样性及其在农业生态系统中的作用.草业科学,19(9):34-38.
    8.崔金香,王帅.2010.土壤微生物多样性研究进展.河南农业科学,6:165-169.
    9.东秀珠,洪俊华.2001.原核微生物的多样性.生物多样性,9(1):18-24.
    10.段春梅,薛泉宏,呼世斌等.2010.连作黄瓜枯萎病株、健株根域土壤微生物生态研究.西北农林科技大学学报(自然科学版),38(4):143-150.
    11.冯瑞华.2000.用AFLP技术和16S rDNA PCR-RFLP分析毛苜蓿根瘤菌的遗传多样性.微生物学报,40(4):339-345.
    12.高婷,张源沛.2006.宁夏荒漠草原土壤微生物季节变化的初步研究.宁夏工程技,5(3):297-299.
    13.高苇,李宝聚,孙军德等.2008.绿色木霉对黄瓜立枯丝核菌和尖孢镰刀菌的拮抗作用.中国蔬菜,(6):9-12.
    14.戈惠明,谭仁祥.2009.共生菌——新活性天然产物的重要来源.化学进展,21(1):30-44.
    15.韩芳,邵玉琴,赵吉等.2003.皇甫川流域不同土地利用方式下的土壤微生物多样性.内蒙古大学学报(自然科学版),34(3):298-303.
    16.韩雪,吴凤芝,潘凯.2006.根系分泌物与土传病害关系之研究综述.中国农学通报,22(2):316-318.
    17.郝文英.1996.中国农业百科全书·土壤卷.北京:农业出版社,385-400.
    18.郝永丽,宗兆锋.2007.4株放线菌的防病促生作用研究.西北农业学报,16(3):257-259.
    19.贾新民,姜述君,殷奎德等.1997.重迎茬条件下大豆根系分泌物对根腐病病原菌的影响.黑龙江八一农垦大学学报,9(3):12-15.
    20.姜学艳,黄艺.2003.菌根真菌增加植物抗盐碱胁迫的机理.生态环境,12(3):353-356.
    21.姜英华,胡白石,刘凤权.2005.植物土传病原菌拮抗细菌的筛选与鉴定.中国生物防治,21(4):260-264.
    22.姜钰,董怀玉,徐秀德等.2005.放线菌在植病生防中的研究进展.杂粮作物,25(5):329-331.
    23.鞠会艳,韩丽梅,王树起等.2002.连作大豆根分泌物对根腐病病原茵的化感作用.应用生态学报,13(6):723-727.
    24.康贻军,程洁,梅丽娟等.2010.植物根际促生菌作用机制研究进展.应用生态学报,21(1):232-238.
    25.雷娟利,周艳虹,丁桔等.2005.不同蔬菜连作对土壤细菌DNA分子水平多态性影响的研究.中国农业科学,38(10):2076-2083.
    26.雷鸣.2007.厌氧微生物废水处理技术发展及现状.中外建筑,9:122-123.
    27.李洪连,哀红霞,王烨等.1998.根际微生物多样性与棉花品种对黄萎病抗性关系研究.植物病理学报,28(4):341-345.
    28.李社增,马平,刘杏忠等.2001.利用拮抗细菌防治棉花黄萎病.华中农业大学学报,20(5):422-425.
    29.李涛,王鹏,汪品先.2008.南海西沙海槽表层沉积物微生.物多样性.生态学报,28(3):1166-1173.
    30.李文军等译.1990.保护世界的生物多样性.见:中科院生物多样性委员会.生物多样性译丛(一).北京:中国科学技术出版社.1992.1-194.
    31.李友发,宋兵,宋亚娜等.2008.福建省稻田土壤细菌群落的16S rDNA-PCR-DGGE分析.微生物学通报,35(11):1715-1720.
    32.李振高,李良谟,潘映华等.1995.小麦苗期根系分泌物对根际反硝化细菌的影响.土壤学报,32(4):408-413.
    33.李振高,潘映华,李良谟等.1993.不同基因型小麦根际细菌及酶活性的动态研究.土壤学报,30(1):1-7.
    34.李志胜,徐敦明,魏观如等.2004.稻田周围杂草地生境节肢动物群落的组成.华东昆虫学报,13(1):62-68.
    35.刘慧杰,杨彩云,田蕴等.2010.基于PCR-DGGE技术的红树林区微生物群落结构.微生物学报.50(7):923-930.
    36.刘世贵,葛绍荣,龙章富.1994.川西北退化草地土壤微生物数量与区系研究.草业科学,3(4):70-76.
    37.刘欣.2010.胶州湾沉积物细菌多样性及菌群时空分布规律研究.博士学位论文,中国科学院海洋研究所.
    38.刘邮洲,陈志谊,刘永峰等.2007.拮抗菌株C8-8控病促生作用机制初探.中国生物防治,23(4):397-400.
    39.刘志恒,姜成林,2004.放线菌现代生物学与生物技术.北京:科学出版社.
    40.马利平,乔雄梧,高芬等.2001.家畜沤肥浸渍液对青椒枯萎病的防治及作用机理.应用与环境生物学报,7(1):84-87.
    41.梅汝鸿,徐维敏,植物微生态学.北京:中国农业出版社,1998.
    42.苗则彦,赵奎华,刘长远等.2004.健康与罹病黄瓜根际微生物数量及真菌区系研究.中国生态农业学报,12(3):156-157.
    43.潘惠霞,程争鸣,王方等.2003.甘草、麻黄根际土壤微生物的生态分布特性西北植物学报,23(10):1792-1795.
    44.潘争艳,刘伟成,裘季燕等.2005.放线菌Ⅲ-61和A-21对蔬菜枯萎病和灰霉病的控制作用.华北农学报,20(4):92-97.
    45.庞雄飞,梁广文.1995.害虫种群系统的控制.广州:广东科学技术出版社.
    46.钱迎倩,马克平.1994.生物多样性研究的原理与方法.北京:中国科学技术出版社.
    47.任天志.2000.持续农业中的土壤生物指标研究.中国农业科学,33(1):68-75.
    48.任岩岩,武继承.2009.保水剂对土壤性质及土壤微生物的影响研究进展.河南农业科学,4:13-15.
    49.任争光,张志勇,魏艳敏.2006.芽孢杆菌防治园艺植物病害的研究进展.中国生物防治,22:194-198.
    50.邵红涛,许艳丽,李春杰,李兆林.2004.筛选用于防治大豆尖孢镰刀菌根腐病的木霉菌株.中国油料作物学报,26(4):74-77.
    51.孙晓棠,王燕,龙良鲲等.2008.番茄根际微生物种群动态变化及多样性.微生物学通报,35(11):1744-1749.
    52.陶光灿,王素英,王玉平等.2003.芽孢杆菌属(Bacillus sp.)10株细菌混合制剂对4种作物出苗及苗期生长的影响.应用与环境学报,9(6):598-602.
    53.滕应,骆永明,赵祥伟等.2004.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析.土壤学报,41(3):343-347.
    54.田黎,顾振芳,陈杰等.2003.海洋细菌B-9987菌株产生的抑菌物质及对几种植物病原真菌的作用.植物病理学报,33(1):77-80.
    55.田连生,石万龙,杨迎霞等.2001.木霉对腐霉菌的拮抗机制及生防效果研究.河北省科学院学报,18(2):114-117.
    56.涂璇,薛泉宏,张宁燕等.2007.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响.西北农林科技大学学报(自然科学版),35(6):141-146.
    57.王倩,李晓林.2003.苯甲酸和肉桂酸对西瓜幼苗生长及枯萎病发生的作用.中国农业大学学报,8(1):83-86.
    58.王素娟,苏和,高丽.2008.库布齐沙地土壤微生物数量初步研究.中国草地学报,30(6):89-93.
    59.王新,李培军,巩宗强等.2001.固定化微生物降解土壤中菲和芘的研究.应用生态学报.12(4):636-638.
    60.王岳坤,洪葵.2005.红树林土壤细菌群落16S rDNA V3片段PCR产物的DGGE分析.微生物学报,45(2):201-204.
    61.王震宇,王英祥,陈祖仁.1991.重茬大豆生长发育障碍机制初探.大豆科学,10(1):31-36.
    62.吴凤芝,孟立君,文景芝.2002.黄瓜根系分泌物对枯萎病菌菌丝生长的影响.中国蔬菜,5:26-27.
    63.吴凤芝,王学征.2007.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系.中国农业科学,40(10):2274-2280.
    64.吴光前,王丽萍.2003.固定化微生物废水处理技术的现状和前景.污染防治技术,16(4):80-83.
    65.吴艳.2007.芽孢杆菌组合BCL-8发酵条件优化及抗菌蛋白的初步分离.硕士学位论文.1-58.
    66.席劲瑛,胡洪营,钱易.2003. Biolog方法在环境微生物群落研究中的应用.微生物学报,43(1):138-141.
    67.徐晶,陈婉华,张夫道等..2006.三类不同开垦年代的土壤主要微生物类群和土壤酶活性的演变.土壤肥料,2:56-58.
    68.徐华勤,肖润林,邹冬生等.2007.长期施肥对茶园土壤微生物群落功能多样性的影响.生态学报,27(8):3355-3361.
    69.徐美娜,王光华,靳学慧.2005.土传病害生物防治研究进展.吉林农业科学报,30(2):39-42.
    70.徐同,钟静萍,李德葆.1993.木霉对土传病原真菌的拮抗作用.植物病理学报.23(1):63-67.
    71.杨喜田.2006.宁国华.董惠英.李有太行山区不同植被群落土壤微生物学特征变化.应用生态学报,17(9):1761-1764.
    72.杨秀芳,刘伟成,卢彩鸽等.2007.拮抗放线菌A03的生防作用及其分类鉴定.植物保护学报,34(1):73-77.
    73.杨永华,姚健.2000.分子生物学方法在微生物多样性研究中的应用.生物多样性,8(3):337-342.
    74.姚槐应,何振立,黄昌勇.2003.不同土地利用方式对红壤微生物多样性的影响.水土保持学报,17(2):51-54.
    75.姚健,杨永华,沈晓蓉等.2000.农用化学品污染对土壤微生物群落DNA序列多样性影响研究.生态学报,20(6):1021-1027.
    76.叶云峰,付岗,袁高庆等.2009.植物土传病害安全防控技术.山西农业科学,37(7):64-66.
    77.尹敬芳,张文华,李建强等.2007.辣椒疫病生防菌的筛选及其抑菌机制初探.植物病理学报,37(1):88-94.
    78.尤民生,刘新.2004.农药污染的生物降解与生物修复.生态学杂志,23(1):73-77.
    79.尹淑丽.2007.土壤处理防治土传病害的研究进展.安徽农业科学,35(28):8922-8924.
    80.喻曼,许育新,曾光明等.2010. RFLP法研究接种对农业废物堆肥微生物多样性的影响.农业环境科学学报,29(2):396-399。
    81.岳东霞,张要武,陈融等.2008.荧光假单胞菌工程菌株的构建及对黄瓜枯萎病的防治效果.华北农学报,23(6):101-104.
    82.张洪霞,谭周进,张祺玲等.2009.土壤微生物多样性研究的DGGE/GGE技术进展.核农学报,23(4):721-727.
    83.张乃莉,郭继勋,王晓宇等.2007.土壤微生物对气候变暖和大气N沉降的响应.植物生态学报,31(2):252-261.
    84.张萍,郭辉军,杨世雄等.1999.高黎贡山土壤微生物生态分布及其生化特性的研究.应用生态学报, l0(1):74-78.
    85.张素琴.微生物分子生态学.北京:科学出版社,2005.
    86.张薇,魏海雷,高洪文等.2005.土壤微生物多样性及其环境影响因子研究进展,生态学杂志。24(1):48-52.
    87.张旭霞,刘左军,陈正宏.2007.土壤微生物多样性的研究方法.安徽农业科学,35(32):10373-10374.
    88.张学利,杨树军,张百习等.2005.不同林龄樟子松根际与非根际土壤的对比.福建林学院学报,25(1):80-84.
    89.章家恩,蔡燕飞,高爱霞等.2004.土壤微生物多样性实验研究方法概述①.土壤,36(4):346-350
    90.章家恩,刘文高,胡刚.2002.不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,11(2):140-143.
    91.赵丽明,丁延芹,路晓萌等.2010.西瓜根际枯萎病拮抗放线菌的筛选及鉴定.生物技术通报,5:107-110.
    92.赵祥伟,骆永明,滕应等.2005.重金属复合污染农田土壤的微生物群落遗传多样性研究.环境科学学报,25(2):186-191.
    93.赵勇,李武,周志华等.2005.应用PCR-RFLP及PCR-TGGE技术监测农田土壤微生物短期动态变化.南京农业大学学报,28(3):53-57.
    94.郑师章,何敏.1990.水葫芦根部分泌物对若干细菌作用的研究.生态学杂志,9(5):56-57.
    95.钟文辉,蔡祖聪.2004.土壤管理措施及环境因素对土壤微生物多样性影响研究进展.生物多样性,12(4):456-465.
    96.周桔,雷霆.2007.土壤微生物多样性影响因素及研究方法的现状与展望.生物多样性,15(3):306-311.
    97.周智彬,李培军.2003.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关.应用生态学报,14(8):1246-1250.
    98.庄敬华,高增贵,杨长城等.2005.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响.植物病理学报,35(2):179-183.
    99. Alvey S., Yang C.H., Buerkert A., et al.2003. Cereal/legume rotation effects onrhizosphere bacterial community structure in west african soils. Biology and Fertility ofSoils,37:73-82.
    100. Berg G., Ballin G.1994. Bacterial antagonists to Verticillium dahliae Kleb. Journal ofPhytopathology,141(1):99-110.
    101. Borneman J., Skroch P.W., O'Sullivan, et al.1996. Molecular microbial diversity of anagricultural soil in Wisconsin. Appl. Environ. Microbiol.,62:1935-1943.
    102. Broadbent P., Baker K.F., Franks N., et al.1997. Effect of Bacillus spp. on increasedgrowth of seedlings in steamed and nontreated soil. Phytopathology,67:1027-1034.
    103. Bünemann E.K., Smithson P.C., Jama B., et al.2004. Maize productivity and nutrientdynamics in maize-fallow rotations in western Kenya. Plant Soil,264:195-208.
    104. Campbell J.H., Clark J.S., Zak J.C.2009. PCR-DGGE Comparison of BacterialCommunity Structure in Fresh and Archived Soils Sampled along a Chihuahuan DesertElevational Gradient. Microb. Ecol.,57:261-266.
    105. Chan C.O., Casper P., Sha L.Q., et al.2008. Vegetation cover of forest, shrub andpasture strongly influences soil bacterial community structure as revealed by16S rRNAgene T-RFLP analysis. FEMS Microbiol. Ecol.,64:449-458.
    106. Cheung P.Y., Kinkle B.K.2001. Mycobacterium diversity and pyrene mineralization inpetroleum-contaminated soils. Applied and Environmental Microbiology,67:2222-2229.
    107. Cook R.J.1981. The influence of rotation crops on take all decline phenonena.Phytopathology,71:189-192.
    108. Crossman Z.M., Ineson P., Evershed R.P.2005. The use of13C labelling of bacteriallipids in the characterization of ambient methane-oxidising bacteria in soils. OrgGeochem,36:769-778.
    109. Daane L.L., Harjono I., Zylstra G.J., et al.2001. Isolation and characterization ofpolycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere ofsalt marsh plants. Appl. Environ. Microbiol.,67:2683-2691.
    110. Daniel, R.2005. The metagenomics of soil. Nat Rev Microbiol,3:470-478.
    111. De Fede K.L., Sexstone A.J.2001. Differential response of size-fractionated soilbacteria in BIOLOG mierotitre plates. Soil Biology and Biochemistry,33(11):1547-1554.
    112. De Fede K.L., Panaccione D.G, Sexstone A.J.2001. Characterization of dilutionenrichment cultures obtained from size-fractionated soil bacteria by BIOLOGcommunity-level physiological profiles and restriction analysis of16S rRNA genes. SoilBiol Biochem,33:1555-1562.
    113. DeLong E.F.1996. Diversity of naturally occurring prokaryotes. In: Colwell R.R. ed.Microbial Diversity in Time and Space. NewYork: Plenum,125-133.
    114. Dunbar J., Ticknor L.O., Kuske C.R.2000. Assessment of microbial diversity in foursouthwestern United States soils by16S rRNA gene terminal restriction fragmentanalysis. Appl. Environ. Microbiol.,66:2943-2950.
    115. El Fantroussi S., Verschuere L., Verstraete W., et al.1999. Effect of phenylureaherbicides on soil microbial communities estimated by analysis of16S rRNA genefingerprints and community level physiological profiles. Appl. Environ. Microbiol.,65:982-988.
    116. Elory A.C. B.1986. The rhizosphere. Berlin: Spring-Verlag,510-523.
    117. Ferris, M.J., Muyzer G., Ward D.M.1996. Denaturing gradient gel electrophoresisprofiles of16S rRNA-defined populations inhabiting a hot spring microbial matcommunity. Appl. Environ. Microbiol.,62(2):340-346.
    118. Ferris M.J., Ward D.M.1997. Seasonal distributions of dominant16S rDNA definedpopulations in a hot spring microbial mat examined by denaturing gradient gelelectrophoresis. App lied and Environmental Microbiology,63(4):1375-1381.
    119. Fischer S.G., Lerman L.S.1983. DNA fragments differing by single base pairsubstitutions are separated in denaturing gradient gels: Correspondence with meltingtheory. Proc. Natl. Acad. Sci. USA.,80:1579-1583.
    120. Fredrickson J.K., Balkwill D.L., Romine, M.F., et al.1999. Ecology, physiology, andphylogeny of deep subsurface Sphingomonas sp. J. Ind. Microbiol. Biot.,23:273-283.
    121. Fromin N., Hamelin J., Tarnawski S., et al.2002. Statistical analysis of denaturing gelelectrophoresis (DGGE) fingerprinting patterns. Environ Microbiol.,4:634-643.
    122. Furlong M.A., Singleton D.R., Coleman D.C., et al.2002. Molecular and culture basedanalyses of prokaryotic communities from an agricultural soil and the burrows and castsof the earthworm Lumbricus rubellus. Appl. Environ. Microbiol.,68:1265-1279.
    123. Gans J, Wolnsky M, Dunbar J.2005. Computational improvements reveal greatbacterial diversity and high metal toxicity in soil. Science,309:1387-1390.
    124. Garland J.L., Mills A.L.1991. Classification and characterization of heterotrophicmicrobial communities on the basis of patterns of community level sole carbon sourceutilization. Appl. Environ. Microbiol.,57:2351-2359.
    125. Gerth K., Bedorf N., Hofle G., et al.1996. Epothilons A and B: antifungal and cytotoxiccompounds from Sorangium cellulosum (Myxobacteria). Physicochemical andbiological properties, Journal of Antibiotics,49(6):560-563.
    126. Lefebvre T., Miambi E., Pando A., et al.2009. Gut-specific actinobacterial communitystructure and diversity associated with the wood-feeding termite species, Nasutitermescorniger (Motschulsky) described by nested PCR-DGGE analysis. Insect. Soc.,56:269-276.
    127. Kortemaa H., Pennanen T., Smolander A., et al.1997. Distribution of antagonisticStreptomyces griseoviridis in rhizosphere and nonrhizosphere sand. Journal ofPhytopathology,145:137-143.
    128. Haba E., Pinazo A., Jauregui O., et al.2003. Physico-chemical characterization andantimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa47T2NCBIM40044. Biotechnology and Bioengineering,81:316-322.
    129. Harman, G.E.2000. Myths and dogmas of biocontrol Changes in perceptions derivedfrom research on Trichoderma harzianum T-22. Plant Dis.,84:377-393.
    130. Heuer H., Hartung K., Wieland G., et al.1999. Polynucleotide probes that target ahypervariable region of16S rRNA genes to identify bacterial isolates corresponding tobands of community fingerprints. Appl Environ Microbiol,65:1045-1049.
    131. Hill T.C.A., Walsh K.A., Harris J.A., et al.2003. Using ecological diversity measureswith bacterial communities. FEMS Microbiol. Ecol.,43:1-11.
    132. Howell C.R., Hanson L.E., Stipanovic R.D., et al.2000. Induction of terpenoidsynthesis in cotton roots and control of Rhizoctonia solani by seed treatment withTrichoderma virens. Phytopathology,90:248-252.
    133. Hu H., Ochi K.2001. Novel approach for improving the productivity of antibioticproducing strains by inducing combined resistant mutations. Appl Environ Microbiol,67:1885-1892.
    134. Hugenholtz P., Goebel B.M., Pace N.R.1998. Impact of culture-independent studies onthe emerging phylogenetic view of bacterial diversity. J. Bacteriol.,180:4765-4774.
    135. Jangid K., Williams M.A., Franzluebbers A.J., et al.2008. Relative impacts of land-use,management intensity and fertilization upon soil microbial community structure inagricultural systems. Soil Biol. Biochem.,40:2843-2853.
    136. Kelly J.J., H ggblom M., Tate R.L.1999. Effects of the land application of sewagesludge on soil heavy metal concentrations and soil microbial communities. Soil BiolBiochem,31:1467-1470.
    137. Kemp P.F., Aller J.Y.2004. Bacterial diversity in aquatic and other environments: what16S rDNA libraries can tell us. FEMS Microbiol Ecol,47:161-177.
    138. Lane D.J.1991.16S/23S rDNA sequencing. In Nucleic acid techniques in bacterialsystematics ed. Stackebrandt E, Goodfellow M, New York: Wiley.115-175.
    139. Lin Y.T., Huang Y.J., Tang, S.L., et al.2010. Bacterial community diversity inundisturbed perhumid montane forest soils in Taiwan. Microb. Ecol.,59:369-378.
    140. Lin Y.T., Lin C.P., Chaw S.M., et al.2010. Bacterial community of very wet and acidicsubalpine forest and fire-induced grassland soils. Plant Soil,332,417-427.
    141. Liu W.T., Chan O.C., Fang H.H.P.2002. Microbial community dynamics during startup of acid ogenic anaerobic reactors. Water Res,36:3203-3210.
    142. Lupwayi N.Z., Rice W.A., Clayton G.W.1998. Soil microbial diversity and communitystructure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem.,30:1733-1741.
    143. Maire N., Borcard D., Laczko E., et al.1999. Organic matter cycling in grassland soilsof the Swiss Jura mountains: biodiversity and strategies of the living communities. SoilBiol. Biochem.,31:1281-1293.
    144. Marschner H.1995. Mineral nutrition of higher plants. London: Academic Press,333-347.
    145. McCaig A.E., Glover L.A., Prosser J.I.1999. Molecular analysis of bacterial communitystructure and diversity in unimproved and improved upland grass pastures. ApplEnviron Microbiol.,65:1721-1730.
    146. Morris S.A., Radajewski S., Willison T.W., et al.2002. Identification of the functionallyactive methanotroph population in a peat soil microcosm by stable-isotope probing.Appl. Environ. Microbiol.,68:1446-1453.
    147. Mullins T.D, Britschgi T.B, Krest R.L., et al.1995. Genetic comparisons reveal thesame unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities.Limnol. Oceanogr.,40:148-158.
    148. Muyzer G.1999. DGGE/TGGE a method for identifying genes from natural ecosystems.Curr. Opin. Microbiol.2:317-322.
    149. Muyzer G., de Waal E.C., Uitterlinden A.G.1993. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerase chainreaction-amplified genes coding for16S rRNA. Appl. Environ. Microbiol.,59:695-700.
    150. Muyzer G., de Waal E.C., Uitterlinden A.G.1993. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerase chainreaction amplified genes coding for16S rRNA. Appl. Environ. Microbiol.,59:695-700.
    151. Nocker A., Burr M., Camper A.K.2007. Genotypic microbial community profiling: acritical technical review.Microbial Ecology,54(2):276-289.
    152. Ohwaki Y., Hirata H.1992. Differences in carboxylic acid exudation among P-starvedleguminous crops in relation to carboxylic acid contents in plant tissues andphospholipid level in roots. Soil Science Plant Nutrion,38:235-243.
    153. Olsson S., Alstrom.2000. Characterisation of bacteria in soils under barley monocultureand crop rotation. Soil Biology and Biochemistry,32:1443-1451.
    154. vre s L.2000. Population and community level approaches for analysing microbialdiversity in natural environments. Ecol Letts,3(3):236-251.
    155. Pfeifer B.A., Khosla C.2001. Biosynthesis of polyketides in heterologous hosts.Microbiology and Molecular Biology Reviews,65(1):106-118.
    156. Ponder F, Tadros M.2002. Phospholipid fatty acids in forest soil four years afterorganic matter removal and soil compaction. Appl Soil Ecol,19:173-182.
    157. Pullman G.S., DeVay J.E.1982. Effect of soil flooding and paddy rice culture on thesurvival of Verticillium dahliae and incidence of verticillium wilt in cotton.Phytopathology,72:1285-1289.
    158. Dick R.P., Rasmussen P.E., Kerle E.A.1988. Influence of long-term residuemanagement on soil enzyme activities in relation to soil chemical properties of awheat-fallow system. Biol Fertil Soils,6:159-164.
    159. Ravenschlag K, Sahm K, Pernthaler J, et al.1999. High bacterial diversity inpermanently cold marine sediments. Applied and Environmental Microbiology,65(9):3982.
    160. Salomonová S., Lama ová J., Rulík M., et al.2003. Determination of phospholipid fattyacids in sediments. Facultas Rerum Naturalium,42:39-49.
    161. Sarathchandra S.U., Ghani A., Yeates G.W., et al.2001. Effect of nitrogen andphosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biol.Biochem.,33:953-964.
    162. Schimel J.P., Gulledge J.M., Clein-Curley J.S., et al.1999. Moisture effects onmicrobial activity and community structure in decomposing birch litter in the Alaskantaiga.31(6):831-838.
    163. Schloss P.D., Handelsman J.2005. Introducing DOTUR, a computer program fordefining operational taxonomic units and estimating species richness. Appl EnvironMicrobiol,71:1501-1506.
    164. Schloss P., Handelsman J.2006. Toward a census of bacteria in soil. PLoS Comput Biol,2(7):786-793.
    165. Sekiguchi H., Tomilka N., Najagara T.2001. A single band does not always representsingle bacterial strains in denaturing gradient gel electrophoresis analysis.Biotechnology Letters,23(15):1205-1208.
    166. Sigler W.V., Turco R.F.2002. The impact of chlorothalonil application on soil bacterialand fungal populations as assessed by denaturing gradient gel electrophoresis. Appl.Soil Ecol.21:107-118.
    167. Smalla K., Wieland G., Buchner A., et al.2001. Bulk and rhizosphere soil bacterialcommunities studied by denaturing gradient gel electrophoresis: plant-dependentenrichment and seasonal shifts revealed. Appl. Environ. Microbiol.,67:4742-4751.
    168. Smit E., Leeflang P., Gommans S., et al.2001. Diversity and seasonal fluctuations ofthe dominant members of the bacterial soil community in a wheat field as determined bycultivation and molecular methods. Appl Environ Microbiol,67:2284-2291.
    169. Smit E., Leeflang P., Wernars K.1997. Detection of shifts in microbial communitystructure and diversity in soil caused by copper contamination using amplifiedribosomal DNA restriction analysis. FEMS Microbiol Ecol,23:249-261.
    170. Solbrig O.T.1991. From genes to ecosystems: a research agenda for biodiversity.Cambridge, Mass: IUCN, SCOPE, UNESCO.
    171. S rensen S.R., Ronen Z., and Aamand J.2001. Isolation from agricultural soil andcharacterization of a Sphingomonas sp. able to mineralize the phenylurea herbicideisoproturon. Appl. Environ. Microbiol.,67:5403-5409.
    172. Sun H.Y., Deng S.P., and Raun W.R.2004. Bacterial community structure and diversityin a century-old manure-treated agroecosystem. Appl. Environ. Microbiol.,70:5868-5874.
    173. Teske A., Wawer C., Muyzer G., et al.1996. Distribution of sulfate-reducing bacteria ina stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-numbercounts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNAfragments. Appl. Environ. Microbiol.62(4):1405-1415.
    174. Torsvik V., Daae F.L., Sandaa R.A., et al.1998. Novel techniques for analysingmicrobial diversity in natural and perturbed environments. J Biotech.,64:53-62.
    175. Torsvik V. and Ovreas L.2002. Microbial diversity and function in soil: from genes toecosystems. Curr. Opin. Microbiol.5,240-245.
    176. Torsvik V., Salte K., S rheim R., et al.1990. Comparison of phenotypic diversity andDNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol.,56:776-781.
    177. Toyota K., Kuninaga S.2006. Comparison of soil microbial community between soilsamended with or without farmyard manure. Appl. Soil Ecol,33:39-48.
    178. Tyler G., Strom L.1995. Differing organic acid exudation patterns explain calcifuge andacidifuge behaviour of plants. Ann. Bot.,75(1):75-78.
    179. Watve G.M., Gangal R.M.1996. Problems in Measuring Bacterial Diversity and aPossible Solution. Applied and environmental microbiology,62(11):4299–4301.
    180. Weltzien H.C.1989. Some e.ects of composted organic materials on plant health.Agriculture, Ecosystems and Environment,27:439-446.
    181. Wintzingerode F.V., G bel U.B., Stackebrandt E.1997. Determination of microbialdiversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMSMicrobiol Rev,21(3):213-229.
    182. Yang Y.H., Yao J., Hu S., et al.2000. Effects of agricultural chemicals on DNAsequence diversity of soil microbial community: a study with RAPD marker.Microb.Ecol.,39:72-79.
    183. Yao H., He Z., Wilson M.J., et al.2000. Microbial biomass and community structure ina sequence of soils with increasing fertility and changing land use. Microbiol. Ecol.,40:223-237.
    184. Zelles L., Bai Q.Y., Beck T., et al.1992. Signature fatty acids in phospholipids andlipopolysaccharides as indicators of microbial biomass and community structure inagricultural soils.Soil Biol Biochem.,24:317-323.
    185. Zelles L.1999. Fatty acid patterns of phospholipids and lipopolysaccharides in thecharacterisation of microbial communities in soil: a review. Biol. Fertil. Soils.,29:111-129.
    186. Zhang W., Ki J.S., Qian P.Y.2008. Microbial diversity in polluted harbor sediments I:bacterial community assessment based on four clone libraries of16S rDNA. Estuarine,Coastal and Shelf Science,76(3):668-681.
    187. Zhou X.Q., Wang Y.F., Huang X.Z., et al.2008. Effect of grazing intensities on theactivity and structure of methane-oxidizing bacterial community in the grassland ofInner Mongolia. Nutr. Cycl. Agroecosyst.,80:145-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700