用户名: 密码: 验证码:
木质纤维素分解复合菌群NSC-7菌种组成及种间协作机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球上每年产生的植物光合作用产物可达2000亿吨,木质纤维素是超过其一半的主要成分,在木材、秸秆、农林产品加工副产品、畜禽粪便中都含有大量木质纤维素。由于木质纤维素分解难,它的分解成为限制含木质纤维素生物质利用及环境治理上的瓶颈环节。如,富含木质纤维素的生物质由于不占粮食而且能量密度较大,就成为全世界都在关注的生物质能源开发和利用的对象。但由于木质纤维素的分解糖化很难限制了该资源的进一步开发。秸秆还田是增加土壤有机质恢复土壤地力的有效途径,但在我国特殊的农作制度下,秸秆中的木质纤维素分解慢,影响下茬作物的生长,从而限制着秸秆直接还田的推广,采用化学方法处理木质纤维素也存在再次污染环境的问题,而利用微生物分泌的纤维素复合酶加快分解木质纤维素无论对生物质资源的转化利用还是环境治理都具有重要意义。
     本研究在尊重自然界群体效应的前提下,利用限制性培养法筛选到一组具有分解木质纤维素和农药(林丹)双重功能的复合菌系NSC-7,本文对NSC-7的菌种组成多样性和种间协作机理进行深入研究。
     NSC-7在14 d的培养过程中,可降解稻秆总干重的73.6%,其中降解纤维素58.2%,半纤维素82.1%,木质素5.4%。用GC-MS检测发酵液产物,发现有乙醇、乙酸、丙酸、丁酸、戊酸、甘油、尿素、乙二酸乙二脂、2-甲基丙酸、乙二醇等10种化合物,其中含量较大的依次为乙酸、甘油、丁酸、丙酸。复合系可同时分泌纤维素酶和半纤维素酶,且各种纤维素酶活性都呈单峰曲线,其中纤维素内切酶(CMC)、总纤维素酶(FPU)、外切酶(AC)和β-糖苷酶活性(CB)都在第8 d达到最大值,分别为4.48 U/mL、15.83 U/mL、7.51 U/mL和25.78 U/mL。半纤维素酶活性(XY)在第5 d达到最高值为280.9 U/mL。
     在有氧条件下,利用传统的平板画线法分离到11株单菌,将获得的11株单菌按照体积比1:1重新组合后不具备分解纤维素的能力。利用单层和双层滤纸平板法检测NSC-7复合菌群的分解能力,发现只有双层平板上的滤纸能够分解,说明NSC-7复合系内降解纤维素的关键菌属于厌氧或微好氧菌。为了获取复合菌群内全部菌株的组成信息,本研究利用现代分子生态学技术对NSC-7构建克隆文库,获得195个16S rDNA片断,经DGGE筛选获得25个代表性克隆,其序列比对结果显示有60%的近缘种为已知菌,分别归属于Clostridium、Petrobacter、Bacteria、Paenibacillus,proteobacterium 5个属,其余40%菌的近缘种属于难培养菌。
     从已分离的11株单菌株组合后不具备分解纤维素能力的实验结果推断,分解纤维素的关键菌很可能在没有分离到的Clostridium属内。根据Clostridium在分解纤维素过程中具有吸附于纤维素粉的特性,利用冲洗和离心沉淀等方法获得一组具备分解纤维素能力但无法分开的“3株梭菌组合”,将该组合与3株不具分解纤维素能力的单菌株分别重新组合,发现有两株单菌株Pseudoxanthomonas taiwanensis和Petrobacter sp.都有促进其分解的能力。通过理化指标测定发现,这两株菌具备高效利用纤维二糖的性质,消除纤维素的中间产物(纤维二糖)对纤维素分解的阻遏或抑制作用,很可能是这两株菌促进纤维素分解的一个重要原因。
     NSC-7复合系经90~110℃高温处理30 min后,仍具备分解纤维素的能力,只是随着处理温度的升高,剩余菌群内菌株的数量和种类,以及发酵液中挥发产物种类也随之减少,分解能力也逐渐减弱,但随着继代次数的不断增加分解能力又有所恢复,说明复合系自身具备一定的抗逆境能力。
Cellulose account for more than 50 percent of the primary product of photosynthesis in terrestrial environments,and the most abundant renewable bioresource produced in the biosphere(200 billion dry tons/year),lignocellulose in wood,straw,agricultural waste, livestock dejecta and so on.The cellulose molecule is very stable,which restrict its widely used to produce sustainable biobased products and bioenergy to replace depleting fossil fuels.
     The synergic mechanism and microbial component diversity of the microbial community NSC-7 with efficient cellulose and lindan degradating ability was determined.The results showed that NSC-7 could degrade 73.6%of rice staw in weight,including 82.1%of cellulose, 58.2%of hemicellulase,and 5.4%of lignin within fourteen days.In addition,ethanol,propiolic acid,acetic acid,ethanedioic acid diethyl ester,propionic acid 2-methyl,urea,pentanol, butanoic acid,ethanol,2,2-oxybis and glycerin the ten kinds of material were detected in volatile products by gas chromatography mass spectrometry(GC-MS).NSC-7 could produce cellulase and hemicellulase simultaneity.And the maximum of endoglucanases,exoglucanases,β-glucosidases and the total cellulase activity were 4.48 U/mL,15.83 U/mL,25.78 U/mL and 7.5 U/mL,respectively,on the day 8,and the maximum of hemicellulase activity were 280.6 U/mL on the day 5.
     For determine the bacterial compose of the community,11 isolate strains were detected by plate isolation under aerobic condition,while the community reset by the 11 isolate strains without capacity of degrading cellulose.The capacity of degrading of the filter paper in double deck plate and monolayer plate were determined,only the filter paper in double deck plate were degraded,that means the main or key microbe are anaerobic.The Denaturing Gradient Gel Electrophoresis(DGGE) and construction of 16S rDNA clone library were used to identify the composition diversity of NSC-7 community,with 25 strains detected,in that about 60% closest relative among them was know the detailed information and they were belonged to Clostridium,Petrobacter,Bacteria,Paenibacillus,proteobacterium respectively.Furthermore, there were 40%closest relative belonged to uncultured bacterium clone.
     Due to the isolate strains without capacity of degrading cellulose,a conclusion could be made that the key microbe may be in the uncultured bacterium of Clostridium sp.According to the character of Clostridium sp.with the capability of adhibit in the cellulose power in degradation process,therefore,washing by the PBS buffer and centrifuging the deposition were used to isolated the Clostridium sp.However,we obtained the microbial community "key microbial community " with three strains(Uncultured bacterium clone、Clostridium sp. PML14 16S、Clostridium straminisolvens)which could not be isolate until now.The "key microbial community" was assembled with three isolates which without the capability of degradation cellulose(Pseudoxanthomonas taiwanensis,Bacillus sp.Petrobacter sp.).The results showed that the two isolates(A-Pseudoxanthomonas taiwanensis and 6-Petrobacter sp.) could promot the degradation capability of "key microbial".More research found that the two isolates with the capability of high degradated and utilized cellobiose,a conclusion was deduce that utilized cellobiose maight be the main reason for isolate improve the cellulose degradation.
     The microbial community NSC-7 was treated under 90℃,100℃,105℃and 110℃temperature about 30 min.After treated,each of them still with the cellulose degradating ability,however,the kinds and quantity of microbial and the kinds of volatile products became less than before,and the ability of degration cellulose became less efficient than before.While with the subculture times increased,the capability of the degradation resume.
引文
[1]Zhang Y H,Himmel P,Mielenz K.Outlook for cellulase improvement:screening and selection strategies.Biotechnology Advances.2006,24(5):452-481.
    [2]Wolfenden R,Snider M J.The depth of chemical time and the powder of enzyme as catalysts.Acc Chem Res.2001,34(12):938-945.
    [3]Schwarz W H.The cellulosome and cellulose degradation by anaerobic bacteria.Appl Microbiol Biotechnol.2001,56:634-649.
    [4]Bayer E A,Kenig R,Lamed R,Adherence of Clostridium thermocellum to cellulose.J Bacteriol.1983,156:818-827.
    [5]V(a|¨)ljam(a|¨)e P,Pettersson G,Johansson G.Mechanism of substrate inhibition in cellulose synergistic degradation.Eur J Biochem.2001,268:4520-4526.
    [6]Schwarz W H.The cellulosome and cellulose degradation by anaerobic bacteria.Appl Microbiol Biotechnol.2001,56:634-649.
    [7]郭亮,董红敏,李保明.畜禽废弃物资源化利用的有效途径.农业工程学报.2001,17(增刊):150-152.
    [8]Wen Z,Wei L,Shulin C,Hydrolysis of animal manure lignocellulosics for reducing sugar production.Bioresource Technology.2004,91:31-39.
    [9]Stevenson D M,Weimeer P J.Isolation and characterization of a Trichoderma strain capable of fermenting cellulose to ethanol.Appl Microbiol Biotechnol.2002,59:721-726.
    [10]Zyabreva N V,Isakova E P,Biryukov V V.Selection of a mixed culture of celluloltic thermophilic anaerobes from various natural sources.Applied Biochemistry and Microbiology.2001,37(4):363-367.
    [11]Massadeh M I,Wan M,Wan Y.Synergism of cellulase enzymes in mixed culture solid substrate fermentation.Biotechnology Letters.2001,23:1771-1774.
    [12]Knauf M,Moniruzzaman M,Lignocellulosic biomass processing:a perspective.Int Sugar J.2004106:147-150.
    [13]吕秀阳,迫田章义,铃木基之.纤维素在临界水中的分解动力学和产物分布.化工学报.2001,52(6):556-559.
    [14]崔宗均,李美丹,朴哲,等.一组高效稳定纤维素分解菌复合系MCl的筛选及功能.环境科学.2002,23(3):36-39.
    [15]郭庭双,Sanchez MD,郭佩玉.秸秆养畜-中国的经验见:联合同粮食及农业组织.粮农组织家畜生产及卫生文集149.罗马:联合国粮食及农业组织.2002,186.
    [16]曹建峰.秸秆的综合利用技术分析.能源研究与信息.2006,22(1):22-25.
    [17]Teeri T T.Crystalline cellulose degradation:new insight into the function of cellubiohydrolyases.Trends Biotechnol.1997,15:160-167.
    [18]Beguin P,Aubert J P.The biological degradation of cellulose.FEMS Microbiology Reviews.1994,13:25-28.
    [19]Fierobe H P,Bayer E A,Tardif C.Degradation of cellulose substrate by cellulosome chimeras. The Journal of Biological Chemistry.2002,277(51):49621-49630.
    [20]Murashima K,Kosugi A,Doi R H.Synergistic effects on crystalline cellulose degradation between cellulosomal cellulase from Clostridium cellulovorans.Journal of Bacteriology.2002,5:5088-5095.
    [21]Mingardon F,Perret S,Belaich A.Heterologous production,assembly,and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824.Appl Environ Microbiol.2005,71(3):1215-1222.
    [22]Schloss P D,Hay A G,Wilson D B.Quantifying bacterial population dynamics in compost using 16S rRNA gene probes.Appl Microbiol Biotechnol.2005,66(4):457-463.
    [23]Schwarz W H.The cellulosome and cellulose degradation by anaerobic bacteria.Appl Microbiol Biotechnol.2001,56:634-649.
    [24]Bayer E A,Belaich J P,Shoham Y.The cellulosomes:multienzyme machines for degradation of plant cell wall polysaccharides,Annu Rev Microbio1.2004,58:521-554.
    [25]Wood T M,McCrae S I.Synergism between enzyme involved in the solubilization of native cellulose.Adv.Chem.Ser.1979,181:181-209.
    [26]Schwarz W H.The cellulosome and cellulose degradation by anaerobic bacteria.Appl Microbiol Biotechnol.2001,56:634-649.
    [27]Kurasawa T,Yachi M,Suto M.Induction of cellulase by gentiobiose and sulfur-containing ananlog in P.Purpurogenum.Applied and Environmental Microbiology.1992,58(1):106-110
    [28]Tilbeurgh H,Tomme P,Claeyssens M.Limited proteolysis of the cellobiohydrolase from T.Reesei.FEBS Lett.1986,204(2):223-227.
    [29]Linder M,Teeri T T.The roles and function of cellulose-binding domains.J Biotechnol.1997,57:15-28.
    [30]Gilkes N R,Henrissat B,Kilburm D G.Domains in microbial β-1,4-glycanases:sequence conversation,function,and enzyme families.Microbiol Rev.1991,55:303-315.
    [31]阎伯旭,高培基.纤维素酶的底物专一性.生命科学.2000,12(2):86-88.
    [32]Leschine S B.Cellulose degradation in anaerobic environments.Annu Rev Microbiol.1995,49:399-426.
    [33]Malherbe S,Cloete T E.Lignocellulose biodegradation:Fundaments and applications.Re/Views in Environmental Science and Bio/Technology.2002,1:105-114.
    [34]Ciruela A,Gilbert H J,Ali B R S.Synergistic interaction of the cellulosome integrating protein (CipA) from endoglucanase.FEBS Letters.1998,422:221-224.
    [35]Laurent G,Sandrine P,Christian G.Characterization of the cellulolytic complex(Cellolosome)produced by Clostridium cellulolyticum.Applied and Environmental Microbiology.1997,63(3):903 -909.
    [36]Gohse T K,Bisaria V S.Studies on the mechanism of enzymatic hydrolysis of cellulosic substances.Biotechnology and Bioengineering.1979,ⅩⅪ:131-146.
    [37]Zhang Y H P,Lynd L R.Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems.Biotechnol Bioeng.2004,88:797-824.
    [38]Zhang Y H P,Lynd L R,Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum.J Bacteriol.2005,187:99-106.
    [39]Tomme P,Warren R A,Gilks N R,Cellulose hydrolysis by bacteria and fungi.Adv Microb Physiol.1995,37:1-81.
    [40]Leonowicz A,Matuszewska A,Luterek J.Biodegradation of lignin by white rot fungi.Fungal Genet Biol,1999,27:175-181
    [41]V(a|¨)ljam(a|¨)e P,Pettersson G,Johansson G Mechanism of substrate inhibition in cellulose synergistic degradation.Eur J Biochem.2001,268:4520-4526.
    [42]李宪臻.放线菌和粘纤维细菌对纤维素降解机理的研究:[博士学位论文].济南:山东大学,1996.
    [43]Reese E T.Degradation of polymeric carbohydrates by microbial enzymes.Recent Adv Phytochem.1977,11:311-367.
    [44]Schwarz W H.The cellulosome and cellulose degradation by anaerobic bacteria.Appl Microbiol Biotechnol.2001,56:634-649.
    [45]Kuhad R C,Singh A,Ericksson K E L.Microorganism and enzyme involved in the degradation of plant fiber cell walls.Adv Biochem.Eng Biotechnol.1997,57:45-125.
    [46]Chang M,Folding chain model and annealing of cellulose.J Polym Sci.1971,36:343-347.
    [47]Okasaki M,Moo Y M.Kinetics of enzymatic hydrolysis of cellulose analytical description of a machanistic model.Biotechnology and Bioengineering.1978,20:637-663.
    [48]Vikman M,Karjomaa S,Kapanen A.The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions.Appl Microbiol Biotechnol.2002,59:591-598.
    [49]席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用.环境科学.2001,22(8):122-125.
    [50]Fan Z,McBride J E,Zyl W H.Theoretical analysis of selection-based strain improvement for microorganisms with growth dependent upon extracytoplasmic enzymes,Biotechnol Bioeng.2005,92(1):35-44.
    [51]王伟东,崔宗均,王小芬,等.快速纤维素分解菌复合系MCl对秸秆的分解能力及稳定性.环境科学.2005,26(5):156-160.
    [52]刘长莉,王小芬,牛俊玲,等.一组多功能细菌复合系的酶活表达特性及菌种组成.第十次全同环境微生物学术研讨会.广东,2007,74-75.
    [53]Bornscheuer U T,Pohl M.Improved biocatalysts by directed evolution and rational protein design.Curr Opin Chem Biol.2001,5(2):137-143.
    [54]Benkovic S J,Mames S.A perspective on enzyme catalysis.Science.2003,301(5637):1196-1202.
    [55]Wilson D B,Studies of Thermobifida fusca plant cell wall degrading enzymes.Chem Rec.2004,4(2):72-82.
    [56]Wither S G,Mechanism of glycosyl transferase and hydrolases.Carbohydr Polym.2001,44:325-337.
    [57]Escovar K J M,Wilson D B.Integration of computer modeling and initial studies of sitedirected mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca.Appl Biochem Biotechnol.2004,113(1-3):287-297.
    [58]Hibbert E G,Baganz F,Hailes H C.Directed evolution of biocatalytic processes.Biomol Eng.2005,22(1-3):11-19.
    [59]Catcheside D E,Rasmussen J P,Yeadon P J.Diversification of exogenous genes in vivo in Neurospora.Appl Microbiol Biotechnol.2003,62:544-549.
    [60]Kim Y S,Jung H C,Pan J G.Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants.Appl Environ Microbiol.2000,66(2):788-793.
    [61]Murashima K,Chen C L,Kosugi A.Heterologous production of Clostridium cellulovorans engB,using protease-deficient Bacillus subtilis,and preparation of active recombinant cellulosomes.J Bacteriol.2002,184(1):76-81.
    [62]Wang T,Liu X,Yu Q,et al.Directed evolution for engineering pH profile of endoglucanase Ⅲfrom Trichoderma reesei.Biomol Eng.2005,22(1-3):89-94.
    [63]Kaper T,Brouns SJ,Geerling AC.DNA family shuffling of hyperthermostable betaglycosidases.Biochem J.2002,368:461-470.
    [64]Murashima K,Kosugi A,Doi RH,Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD.Mol Microbiol.2002,45(3):617-626.
    [65]Hao X C,Yu X B,Yan Z L.Optimization of the medium for the production of cellulase by the mutant Trichoderma reesei WX-112 using response surface methodology.Food Technology and Biotechnology.2006,44(1):89-94.
    [66]祝小,耿秀蓉,潘康成,等.枯草芽孢杆菌Pab02产纤维素酶活性的研究.饲料研究,2007,1:61-63.
    [67]崔宗均,王小芬.高效微生物复合系的应用及前景.第十次全国环境微生物学术研讨会,广东,2007,6-7.
    [68]中国农业年鉴编辑委员会.中国农业年鉴.北京:中国农业出版社,2005.177.
    [69]Ishii K,Nakagawa T,Fukui M.Application of denaturing gradient gel electrophoresis(DGGE)in microbial ecology.Microbes and Environments.2000,15(1):59-73.
    [70]Kato S,Haruta S,Cui Z J,et al.Stable coexistence of five bacterial strains as a cellulosedegrading community.Applied and Environmental Microbiology.2005.71:7099-7106.
    [71]Klein D.Quantification using real-time PCR technology:applications and limitations.Trends in Molecular Medicine.2002,8:257-260.
    [72]Klotz M G,Norton J M,Multiple copies of ammonia monooxygenase(am o) operons have evolved under biased AT/CG mutational pressure in ammonia-oxidizing auto trophic bacteria.FEMS Microbiology Letters.1998,168:303-311.
    [73]Kolb S,Knief C,Stubner S,et al.Quantitative detection of methanotrophs in soil by novel pmoA targeted real-time PCR assays.Appl Environ Microbiol.2003,69(5):2423-2429.
    [74]Kumar S,Tamura K,Jakobsen I B,et al.MEGA:molecular evolutionary genetics analysis software.Bioinformatics.2001,17:1244-1245.
    [75]Kung J L,Ranjit N K.The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage.Journal of Dairy Science.2001,84:1149-1155.
    [76]Kung J R,Sheprerd A C,Smagala A M,et al.The Effect of preservatives based on propionic acid on the fermentation and aerobic stability of com silage and a total mixed ration.Journal of Dairy Science.1998,81:1322-1330.
    [77]Rangjit N K.The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage.Journal of Dairy Science.2001,84:1156-1159.
    [78]Kwon H S,Yang E H,Yeon S W,et al.Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.FEMS Microbiology Letters.2004,239:267-275.
    [79]Cocolin L,Rantsiou K,Iacumin,L,et al.Study of the ecology of fresh sausages and characterization of populations of lactic acid bacteria by molecular methods.Appl Environ Microbiol.2004,70:1883-1894.
    [80]Muyzer G.,Waal E C D,Uitterlinden A G Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.Applied and Environmental Microbiology.1993,59:695-700.
    [81]Randazzo C L,Torriani S,Akkermans A D L,et al.Diversity,dynamics,and activity of bacterial communities during production of an aitisanal Sicilian cheese as evaluated by 16S rRNA analysis.Appl Environ Microbiol.2000,68:1882-1892.
    [82]Thomas T A.An automated procedure for the determination of soluble carbohydrates in herbage.Journal of the Science of Food and Agriculture.1977,28:639-642.
    [83]Zhu H,Qu F,Zhu L H.Isolation of genomic DNAs from plants,fungi and bacteria using benzyl chloride.Nucleic Acids Res.1993,21,5278-5280.
    [84]Muyzer G,Waal E C D.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.Appl Envir Microbiol.1993,59(3):695-700
    [85]Haruta S,Cui Z,Huang Z,et al.Construction of a stable microbial community with high cellulose degradation ability.Appl Microbiol Biot.2002,59(5):529-534.
    [86]Sekiguchi H,Watanabe M,Nakahara T,et al.Succession of bacterial community structure along the chang jiang river determined by denaturing gradient gel electrophoresis and clone library analysis.Appl Envir Microbiol.2002,68:5142-5150
    [87]Cremonesi L,Firpo S,Ferrari M,et al.Double-gradient DGGE for optimized detection of DNA point mutations.Biotechniques.1993,22:326-330
    [88]Sambrook J,Fritsch E F,Maniatis T.Molecular cloning:a laboratory manual,2nd.New York:Cold Spring Harbor Laboratory Press.1989
    [89]Randazzo C L,Torriani S,Akkermans A D L,et al.Diversity,dynamics,and activity of Bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis.Appl Envir Microbiol.2002,68:1882-1892
    [90]Bodelier P L E,Meima F M,Zwart G et al.New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers.FEMS Microbiol Ecol.2005,52:163-174
    [91]Juteau P,Tremblay D,Villemur R,et al.Analysis of the bacterial community inhabiting an aerobic therrnophilic sequencing batch reactor(AT-SBR) treating swine waste.Appl Microbiol Biotechnol.2005,66:115-122
    [92]Wim J,Drent G A,Lanpor,W M,et al.Fermentation of inulin by Clostridium thermosuccinogenes sp.nov.,a thermophilic anaerobic bacterium isolated from various habitats,Appl Envir Microbiol.1991,57(2):455-462
    [93]高祥照,马文奇,马常宝.中国作物秸秆资源利用现状分析.华中农业大学学报,2002,21(3):242-247.
    [94]Barriada P M,Gonzalez M J,Muniategui S.Comparison of pressurized liquid extraction and microwave assisted extraction for the determination of organochlorine pesticides in vegetables,Talanta.2006,7(12):14-17.
    [95]Natalia C,Rosa P,Manuel H,et al.Pesticide analysis in herbal infusions by solid-phase microextraction and gas chromatography with atomic emission detection.Talanta.2006,7(14):11-17.
    [96]Liu J B,Wang W D,Yang H Y,et aL The process of rice-straw degradation and dynamic trend of pH by the microbial community of MC1.Journal of Environmental Sciences.2006,18(6):1142-1146.
    [97]Tomoyuki H,Shin H,Yoshiyuki U,et al.Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester.Appl Environ Microbiol,2006,72(2):1623-1630.
    [98]Tomoyuki H,Shin H,Yoshiyuki U,et al.Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester.Appl Environ Microbiol.2006,72(2):1623-1630.
    [99]Atif H A,Yasmeen M I.Induction,production,repression,and de-repression of exoglucanase synthesis in Aspergillus niger.Bioresource Technology.2004,94(3):311-319.
    [100]Souichiro K,Shin H,Cui Z J,et al.Stable coexistence of five bacterial strains as a cellulose-degrading community.International Journal of Systematic and Evolutionary Microbiology.2004,(54):2043-2047.
    [101]Moreira N,Growing expectations:new technology could turn fuel into a bump crop,Sci News Online.2005,168(14):209-224.
    [102]Reddy N,Yang Y.Biofibers from agricultural byproducts for industrial applications,Trends Biotechnol.2005,(23):220-227
    [103]Demain A L,Newcomb M,Wu J H D,Cellulase,clostridia,and ethanol,Microbiol Mol Biol Rev.2005,(69):124-154.
    [104]Berner R A,The long-term carbon cycle,fossil fuels and atmospheric composition,Nature.2003,(426):323-326.
    [105]Lynd L R,Weimer P J,Van W H.Microbial cellulose utilization:fundamentals and biotechnology.Microbiol Mol Biol Rev.2002,66(3):506-577.
    [106]Mccarthy J K,Uzelac A,Davis D F,et al.Improved catalytic efficiency and active site modification of 1,4-beta-d-glucan glucohydrolase a from Thermotoga neapolitana by directed evolution.J Biol Chem.2004,279(12):11495-11502.
    [107]Brumbauer A,Reczey K.Beta -glucosidase production of two different Aspergillus strains.Acta Alimentaria.1999,28(4):361-370.
    [108]陈凤莲,方桂珍,许世玉.木聚糖酶合成菌株的筛选及其产酶条件的研究.四川食品与发酵.2007,43(138):24-27.
    [109]王伟东,崔宗均,王小芬,等.快速纤维素分解菌复合系MCl对秸秆的分解能力及稳定性.环境科学.2005,26(5):156-160.
    [110]Desvaux M,Guedon E,Petitdemange H.Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium.Appl Envir Microbiol.2000,66(6):2461-2470.
    [111]Wang L L,Yan X Z,Zhou M F,et al.A study on degradation of straw fibre by multienzyme from Admixture Strains.Acta Agriculturae Universitatis Jiang xiensis.2005,27(4):521-524.
    [112]Mandel M,Sternberg U.Recent advances in cellulose technology.J Ferment.Tcchnol.1976,54(4):267-286.
    [113]Takao S,Kamagata Y,Sasaki H.Cellulase production by penirillum purpurogenam.J Ferment Technol.1985,63(2):127-134.
    [114]夏黎明,沈雪亮.芽孢杆菌产纤维素酶的研究.林产化学与工业.2002,22(3):54-58.
    [115]Lee Y E,Lim P O.Purification and characterization of two thermostabte xylanases from Paenibacillus sp.DG- 22.J Microbiol Biotechnol.2004,14:1014-1021.
    [116]Hatsumi S,Hironori I,Shohei A,Isolation and characterization of a new Clostridium sp,and performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor,Appl Environ Microbiol.2006,72(5):3702-3709.
    [117]Murashima K A,Kosugi D R H.Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation.J Bacteriol.2003,185:1518-1524.
    [118]Koukiekolo R,Cho H Y,Kosugi A,et al.Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases andcontribufion of scaffolding protein CbpA.Appl.Environ Microbiol.2005,71:3504-3511.
    [119]Cha J,Satoshi M,Helen C,et al.Effect of Multiple Copies of Cohesins on Cellulase and Hemicellulase Activities of Clostridium cellulovorans Mini-cellulosomes.J Microbiol Biotechnol.2007,17(11),1782-1788.
    [120]Christine C,Daniel M,Evelyne T,et al.Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans,a metalloresistant beta-proteobacterium with an unsequenced genome.Biochimie,2006,88(6):595-606.
    [121]Bayer E A,Belaich J P,Shoham Y,et al.The cellulosomes:multienzyme machines for degradation of plant cell wall polysaccharides,Annu Rev Microbiol.2004,58:521-554.
    [122]Demain A L,Newcomb M,Wu J H D,Cellulase,clostridia,and ethanol,Microbiol Mol Biol Rev.2005,69:1247-1254.
    [123]Kosugi AY,Amano KM,Doi RH.Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans.J Bacteriol.2004,(186):6351-6359.
    [124]Takagi M S,Hashida M A,Goldstein D R H.The hydrophobic repeated domain of the Clostridium cellulovorans cellulose-binding protein(CbpA) has specific interactions with endoglucanases.J Bacteriol.1993,175:7119-7122.
    [125]Johnvesly B S,Virupakshi G N,Patil R.,et al.Cellulase-Free thermostable alkaline xylanase from thermophilic and alkalophilic Bacillus sp.JB-99.J Microbiol.Biotechnol.2002.12(1):153-156.
    [126]Tachaapaikoon C Y S,Lee K,Rantanakhanokchai S,et al.Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1.J.Microbiol.Biotechnol.2006,16:613-618.
    [127]Jonathan C,Diana I,Raphael L,et al.Conversion of Thermobifeda fusca free exoglucanases into cellulosomal components:Comparative impact on cellulose-degrading activity,Journal of Biotechnology,2008,(135):351-357.
    [128]Christine C,Daniel M,Evelyne T,et al.Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans,a metalloresistant beta-proteobacterium with an unsequenced genome,Biochimie,2006,88(6):595-606.
    [129]Bouchez T,Patureau D,Dabert P,et al.Ecological study of a bioaugrnentation failure.Environ Microbiol.2000,2:179-190.
    [130]刘长莉,王小芬,牛俊玲,等.一组多功能细菌复合系NSC-7的培养特性及稳定性.微生物学通报,2008,35(5):720-724.
    [131]Kusuma K G H,Chon J S,Lee J.et al.Vascular leakage in severe dengue vires infections:a potential role for the nonstructural viral protein NS 1 and complement,pathogenesis of dengue hemorrhagic fever.2006:193:1078-1088.
    [132]Wu S C,Yeung Y,Duan RY.et al.Functional production and characterization of a fibrinspecific single-chain antibody fragment from Bacillus subtilis:Effects of molecular chaperones and a wall-bound protease on antibody fragment production.Appl Environ Microbio1,2002,(68):3261-3269.
    [133]刘长莉,王小芬,牛俊玲,等.一组多功能细菌复合系的酶活表达特性及菌种组成.第十次全国环境微生物学术研讨会,广东,2007年12月,74-75.
    [134]刘长莉,王小芬,牛俊玲,等.一组纤维素分解菌复合系NSC-7的酶活表达特性.微生物 学通报,2008,35(5):725-730.
    [135]Kongruang S,Han M.J,Breton C I G et al.Quantitative analysis of cellulose-reducing ends,Appl Biochem Biotechnol.2004,(116):213-231.
    [136]Notley S M,Pettersson B,Wagberg L.Direct measurement of attractive van der Waals' forces between regenerated cellulose surfaces in an aqueous environment,J Am Chem Soc.2004,126(43):13930-13931.
    [137]Tuohy M G,Walsh D J,Murray P G Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii,Biochim Biophys Acta.2002,1596:366-380.
    [138]Barr B K,Holewinski R J.4-Methyl-7-thioumbelliferyl-beta-d-cellobioside:a fluorescent,nonhydrolyzable substrate analogue for cellulases,Biochemistry.2002,41:447-4452.
    [139]Teymouri F,Laureano P L,Alizadeh H.Optimization of the ammonia fiber explosion(AFEX)treatment parameters for enzymatic hydrolysis of corn stover,Bioresour Technol.2005,96:2014-2018.
    [140]Lynd L R,Van Z W H,McBride J E.Consolidated bioprocessing of cellulosic biomass:an update,Curr Opin Biotechnol.2005,16:577-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700