用户名: 密码: 验证码:
黑胸散白蚁肠道内可培养的好氧与兼性厌氧共生细菌的多样性研究及共生鞭毛虫的系统发育分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木食性白蚁是一类能高效降解木质纤维素的昆虫,其对木质纤维素等植物源食物的消化与肠道共生微生物密切相关。据研究共生微生物在白蚁食物消化和纤维素降解方面起着重要的作用,但迄今为止,人们对共生微生物在肠道内的代谢生理与作用机制却知之甚少。据报道白蚁肠道微生物的数量在109-1011细胞之间,而且种类十分丰富,推测它们在木质纤维素的消化,利用代谢物产能,生物固氮和尿酸循环等方面可能起着重要的作用。本实验以在我国长江流域广泛分布的木食性白蚁,黑胸散白蚁(Reticulitermes chinensis Snyder)为对象,研究了该白蚁肠道共生鞭毛虫的多样性,并通过对其肠道中可培养的好氧与兼性厌氧细菌的分离、纯化和鉴定,肠道内这部分共生菌的种群结构和分布状况进行了初步分析,探讨了细菌在共生环境中可能起到的作用和对微环境产生的影响,并对其中一株细菌进行了比较详细的分类鉴定和研究。研究黑胸散白蚁肠道中可培养共生微生物的多样性,有助于了解这些微生物在复杂的代谢过程中的作用,发现和利用新的微生物资源,为阐明共生微生物与木食性白蚁之间的共生机制,和以木质纤维素为基础的生物质能源的开发奠定了理论基础。本论文的研究主要取得了以下几个方面的进展:
     采用传统的平板菌落计数法,结合以16S rDNA序列为基础的系统发育学分析技术,研究了黑胸散白蚁肠道中好氧和兼性厌氧细菌的数量和种群结构。采用三种培养基从黑胸散白蚁肠道中总共分离到104株好氧和兼性厌氧菌。104株细菌根据扩增片段限制性酶切图谱分析主要分为55种ARDRA型。这55种类型的代表性菌株16S rRNA基因序列经与Genbank数据库比对分析,属于20个属。其中30.7%的细菌种类为芽孢杆菌属细菌,占绝对优势,其次是乳球菌属细菌,占20.2%,肠杆菌属细菌在三种培养基中均有发现,是分布最广泛的一类细菌。
     将分离菌株的16S rRNA基因序列的和Genbank数据库中已知菌株序列进行相似性比对,表明有6株菌的基因序列与已知细菌的相似性低于97%,可能是一些新属种的细菌。本论文对其中一株细菌TM-1T进行了详细的分类学研究,该株细菌的16S rRNA基因序列与异常球菌属细菌Deinococcus gobiensis DSM 21396T的相似性最高为94%。系统发育分析表明TM-1T在系统进化树上与Deinococcus属其他种聚在一支,16S rRNA基因序列同源性约在87-94%之间。些生理生化指标及细胞壁肽聚糖成分上也有明显差异,因此将TM-1T鉴定为Deinococcus属新种。
     采用实时荧光定量PCR技术还对分离细菌中的一株乳球菌属细菌Lactococcus sp. TSB-13以及肠道中的总细菌数进行了定量。以菌株Lactococcus sp.TSB-13的16S rDNA片段的特异性引物和总细菌的16S rDNA片段引物,结合实时荧光定量技术,确定在黑胸散白蚁肠道中细菌的数量约为2.06×105个/条,而乳球菌属Lactococcus sp.TSB-13在黑胸散白蚁肠道中的个数为110个/条,该菌株占整个菌群总量的0.05%。
     本研究还利用分子系统学方法结合荧光原位杂交技术,首次对黑胸散白蚁肠道内共生的鞭毛虫进行了报道。发现与黑胸散白蚁共生的锐滴虫目鞭毛虫主要有3种,分别是Pyrsonympha grandis、Dinenympha exilis和D.parva,副基体纲的鞭毛虫有4种,主要属于Spirotrichonymphade、Trichonymphidae和Trichomonadidae三大类。虽然依据光学显微镜下的观察,并不是所有的鞭毛虫都得到了鉴定,但根据系统发育分析和荧光探针的原位杂交的结果,已经显示在黑胸散白蚁肠道内共生的鞭毛虫具有较高的多样性。
Wood-feeding termites are one of the most important insects that can digest lignocellulose effectively. Although it was assumed that symbiotic microbiota play important roles in the process of cellulose degradation, so far, little was known about the physiology and metabolic activities of most of the gut symbionts. It has been estimated that termites harbor a dense and diverse population of bacteria (between 109-1011 cells per gut), which may involve in the digestion of wood cellulose, nitrogen fixation and uric acid recycling. To obtain a better understanding of the microbiota inhabiting the intestinal tract of wood-feeding termites, the subterranean termite, Reticulitermes chinensis (Snyder) widely distributed in the area of Yangtze River, was used as a model. The population structure and distribution of the aerobic and facultative anaerobic bacteria in the gut of this termite was evaluated using culture-dependent method. In total 104 bacterial strains were isolated from the gut of R. chinensis with three types of media. In addition, the symbiotic flagellates were phylogenetically characterized using molecular techniques such as clonal analysis,RFLP and fluorescence in situ hybridization. All of the results form the basis for futher studies on the metabolic mechanisms of the gut microbiota, the discovery and use of new microbial resources. The main results of this study are as follows:
     The quatity and community structure of the aerobic and facultative anaerobic bacteria were studied by spread plate method combined with 16S rDNA sequence-based phylogenetic analysis. In total 104 bacterial strains, which were classfied into 55 ribotypes by ARDRA patterns, were isolated from three different media. Blast search based on the 16S rRNA gene sequnces of the representatives of the 55 ribotypes showed that all of the isolates belong to 20 bacterial genera. Quatitative analysis showed that 30.7% of the isolates belong to Bacillus, representing an absolute dominant population, whereas bacteria affiliated with Lactococcus account for 20.2% in the whole community. Enterobacter bacterial isolates have been found in all three kinds of media.
     Based on the 16S rRNA gene sequences of the isolates,6 newly isolated strains could be novel bacterial genus or species since their sequnces similarity are lower than 97% compared with the other bactera retrieved from Genbank. One of the isolates, Strain TM-1T exhibited maximum 16S rRNA gene sequence similarity (94%) with Deniococcus gobiensis DSM 21396T. On the basis of the phylogenetic, chemotaxonomic and phenotypic data, strain TM-1T was supposed to a novel species of the genus Deinococcus spp.
     Real-time quantitative PCR method was used for measuring the abundance of bacteria and strain Lactococcus sp.TSB-13 in termite gut. PCR primers targeting the strain Lactococcus sp. TSB-13-specific region of the 16S rRNA gene were tested.The termite gut sample was analyzed by RTQ-PCR to determine the relative abundance of strain Lactococcus sp.TSB-13 16S rRNA gene compared to the total abundance of eubacterial rDNA.The rDNA fraction of strain Lactococcus sp.TSB-13 compared to all Eubacteria were 0.05%.
     Phylogenetic characterization of the symbiotic flagellates in the gut of R.chinensis was also reported for the first time. With the combination of phylogentic analysis of small subunit rRNA gene sequences and fluorescence in situ hybridization techniques, three oxymonads and four parabasalids were identified. The three oxymonad protists in the intestinal gut were P. grandis, D. exilis and D. parva, whereas the identified parabasalids belonged to the order Spirotrichonymphade, Trichonymphidae and Trichomonadidae.
引文
1.Amann, R., Ludwig, W., Schleifer, K. H. (2000). Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24(5):555-565.
    2.Bauer, S.,Tholen, A.,Overmann, J., et al.(2000). Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol 173:126-137.
    3.Berchtold, M., Chatzinotas, A., Schonhuber, W., et al. (1999). Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol 172(6):407-416.
    4. Boga, H., Brune, A. (2003). Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts.Appl Environ Microbiol 69(2):779-786.
    5.Brauman, A., Labat, M., Garcia, J. L. (1990b).Preliminary studies on the gut microbiota of the soil-feeding termite:Cubitermes speciosus.In:R.Lesel(Ed.)Microbiology in Poecilothermes.Elsevier.Amsterdam,The Netherlands.73-77.
    6.Brauman, A., Breznak, J. A., Labat, M., et al.(1992). Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384-1387.
    7.Breznak, J. A., Brune, A. (1994). Role of Microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Enromol.39:453-487.
    8.Breznak, J. A., Graber, J. (2005). Folate Cross-Feeding Supports Symbiotic Homoacetogenic Spirochetes. Appl Environ Microbiol.71(4):1883-1889.
    9.Brune, A. (1998). Termite guts:the world's smallest bioreactors.Trends Biotechnol.16:16-21.
    10.Brune, A., Frenzel, P., Cypionka, H. (2000). Life at the oxic-anoxic interface:microbial activities and adaptations. FEMS Microbiol Rev.24:691-710.
    11.Brune, A., Stingl, U. (2005). Prokaryotic symbionts of termite gut flagellates:phylogenetic and metabolic implications of a tripartite symbiosis. Prog Mol Subcell Biol 41:39-60.
    12.Cowling, E. B., Merrill, W. (1966). Nitrogen in wood and its role in wood deterioration.Canadian Journal of Botany.44:1539-1554.
    13.Droge, S., Frohlich, J., Radek, R., et al. (2006). Spirochaeta coccoides sp. nov., a Novel Coccoid Spirochete from the Hindgut of the Termite Neotermes castaneus. Applied Environmental Microbiology 72(1):392-397.
    14.Ebert, A., Brune, A. (1997). Hydrogen Concentration Profiles at the Oxic-Anoxic Interface:a Microsensor Study of the Hindgut of the Wood-Feeding Lower Termite Reticulitermes flavipes. Appl. Environ. Microbiol.63(10):4039-4046.
    15.Eutick, M., O'Brien, R., Slaytor, M. (1978). Bacteria from the Gut of Australian Termites. Appl. Environ. Microbiol 35(5):823-828.
    16.FeIske, A., Akkermans, A. D., et al. (1998). In situ detection of an uncultured predominant bacillus in Dutch grassland soils. Appl Environ Microbiol 64(11):4588-4590.
    17. Geissinger, O., Herlemann, D. P. R., Morschel, E., Maier, U. G., Brune, A. (2009). The ultramicrobacterium "Elusimicrobium minutum " gen. nov., sp. nov., the first cultivated representative of the Termite Group 1 phylum. Appl Environ Microbiol.75(9):2831-2840.
    18.Gibson, U. E., Heid,C. A., and Williams, P. M. (1996). A novel method for real time quantitative RT-PCR. Genome research 6:995-1001.
    19.Graber, J., Leadbetter, J.,Breznak, J. A.(2003). Description of Treponema azonutricum sp. nov and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol.70(3):1315-1320.
    2O.Heid, C. A., Stevens,J., Livak, K. J.,et al. (1996). Real time quantitative PCR. Genome research 6:986-994.
    21. Herlemann, D. P.R., Geissinger, O., Ikeda-Ohtsubo, W., Kunin, V., Sun, H., Lapidus, A., Hugenholtz, P., Brune, A. (2009). Genomic analysis of "Elusimicrobium minutum," the first culitivated representative of the phylum "Elusimicrobia,". Appl Environ Microbiol. 75(9):2841-2849.
    21.Hethener, P., Brauman, A., Garcia, J. (1992). Clostridium termitidis sp. nov.,a cellulolvtic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. System. Appl. Microbiol. 5:52-58.
    22.Holland, P. M., Abramson, R. D. R. Watson, et al. (1991). Detection of specific polymerase chain reaction product by utilizing the 5'----3'exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 88:7276-7280.
    23.Higuchi, R., Dollinger G, P. S. Walsh,et al. (1992). Simultaneous amplification and detection of specific DNA sequences. Bio/technology (Nature Publishing Company) 10:413-417.
    24.Hongoh,Y., Sharma, V., Prakash, T., et al.(2008). Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. PANS 105(14):5555-5560.
    25.Hongoh, Y., Ohkuma, M., et al. (2003). Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44(2): 231-242.
    26.Hungate, R. E. (1946).Studies on cellulose fermentation. Ⅱ:An anaerobic cellulose-decomposing actinomycete,Micromonospora propionici.n.sp.J.Bacteriol.51:51-56
    27.Konig,H.(2006). Bacillus species in the intestine of termites and other soil invertebrates.Journal of Applied Microbiology.101:620-627.
    28.Kitts, C. L. (2001). Terminal restriction fragment patterns:a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2(1):17-25.
    29.Leadbetter,J.,Breznak,J.(1996). Physiological Ecology of Methanobrevibacter cuticularis sp. nov.and Methanobrevibacter curvatus sp. nov., isolated from the Hindgut of the Termite Reticulitermes flavipes. Appl Environ Microbiol.62(10):3620-3631.
    30.Leadbetter,J.,Crosby,L.,Breznak,J.(1998). Methanobrevibacter filiformis sp. nov.,a filamentous methanogen from termite hindguts.Arch Microbiol.169:287-292.
    31.Lead better,J.,Schmidt,T.M.,Graber,J.R.et al. (1999). Acetogenesis from H2 Plus CO2 by Spirochetes from Termite Guts.Science.283:686-689.
    32.Lilburn,T.G.,Schmidt,M.,Breznak, J. A. (1999). Phylogenetic diversity of termite gut spirochaetes. Environmental Microbiology 1(4):331-345.
    33.Lilburn,T. G., Kim, K. S., Ostrom, N. E., et al.(2001). Nitrogen Fixation by Symbiotic and Free-Living Spirochetes. Science 292:2495-2498.
    34.Messer, A. C.,Monica, J. L. (1989). Effect of Chemical Treatments on Methane Emission by the Hindgut Microbiota in the Termite Zootermopsis angusticollis. Microb Ecol.18:275-284.
    35.Muyzer, G., Waal, E. C., et al. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695-700.
    36.Noda, S., Hongoh Y., Sato,T., et al. (2009). Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites.BMC Evol Biol 9:47-58.
    37.Ohkuma, M., Kudo, T. (1996). Phylogenetic Diversity of the Intestinal Bacterial Community in the Termite Reticulitermes speratus. Appl Environ Microbiol 62(2):461-468.
    38.Ohkuma, M. (2002). Symbiosis in the termite gut-culture-independent molecular approaches. In: Seckbach J (ed) Symbiosis:mechanisms and model systems. Kluwer, Dordrecht, pp.717-730.
    39.Ohkuma, M. (2003). Termite symbiotic systems:efficient bio-recycling of lignocellulose.Appl Microbiol Biotechnol 61(1):1-9.
    40.Ohkuma, M. (2008). Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16(7):345-352.
    41.Ohkuma, M., Iida, T., et al. (1999). Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181(1):123-129.
    42.Paster, B. J.,Pelletier, Dewhirst, D.A., F.E., et al.(1996). Phylogenetic position of the spirochetal genus Cristispira. Appl Environ Microbiol 62(3):942-946.
    43.Potrikus, C.J., Breznak, J. A.(1981). Gut bacteria recycle uric acid nitrogen in termites:A strategy for nutrient conservation. Proceeding of the National Academy of Sciences USA.78:4601-4605..
    44.Potrikus, C. J.,Breznak, J.A. (1980). Uric Acid-Degrading Bacteria in Guts of Termites Reticulitermes flavipes (Kollar). Appl Environ Microbiol 40:117-124.
    45.Schultz, J. E., Breznak, J.A. (1978). Heterotrophic Bacteria Present in Hindguts of Wood-Eating Termites Reticulitermes flavipes. Appl Environ Microbiol 35(5):930-936.
    46.Stingl, U., Radek, R., Brune, A. et al. (2005). "Endomicrobia":cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes.Appl Environ Microbiol 71(3):1473-1479.
    47.Thayer, D. W. (1976). Facultative wood-digesting bacteria from the hindgut of the termite Reticulitermes hesperus. J Gen Microbiol 95:287-296.
    48.Thayer, D.W.(1978).Carboxymethy cellulsase produced by facultative bacteria from the hindgut of the termite Reticulitermes hesperus. J.Gen.Microbiol.106:13-18.
    49.ThoIen, A., Brune, A. (2000). Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environmental Microbiology 2(4):436-449..
    50.ThoIen, A., Schink, B., Brune, A. (1997). The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol.24:137-149.
    51.Tokura, M., Ohkuma, M., Kudo, T. (2000). Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol.33:233-240.
    52.Vaneechoutte, M., Riegel,P., et al. (1995). Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium. Res Microbiol 146(8):633-641.
    53.Wenzel, M., Berchtold, M., Konig, H., et al. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology 92:32-40.
    54.Yamada, A., Inoue, T., Noda, S., Hongoh, Y., Ohkuma, M. (2007). Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites.Mol. Ecol.16 (18):3768-3777..
    55.Yang, H., Schmitt-Wagner, D., Stingl, U., et al. (2005). Niche heterogeneity determines bacterial community structure in the termite gut(Reticulitermes santonensis). Environ Microbiol 7 (7): 916-932.
    56.石玉,张燕鸿,杨红.(2009).黑胸散白蚁肠道共生古菌的系统发育分析.微生物学报,49(12):1655-1659.
    1.Adams, L., Boopathy, R. (2005).Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresour Technol.96(14):1592-1598.
    2. Gerge, M., Garrity, M., Winters, et al. (2001) Bergry's Manual of Systematic Bacteriology. Springer-Verlag.
    3.Bauer, S., Tholen, A., Overmann, J., et al.(2000). Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol 173:126-137.
    4.Brauman, A., Dore, J., Eggleton, P., et al. (2001). Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35(1):27-36.
    5. Breznak, J. A, Brune, A. (1994). Role of Microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Enromol.39:453-487.
    6. Brune, A. (1998). Termite guts: the world's smallest bioreactors.Trends Biotechnol.16:16-21.
    7. Brune, A., Frenzel, P., Cypionka, H. (2000). Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev.24:691-710.
    8.Brune, A. (2006). Symbiotic Associations Between Termites and Prokaryotes. In: The Prokaryotes, 3rd edn, Vol.1:Symbiotic Associations, Biotechnology, Applied Microbiology (eds Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E), pp:439-474. Springer, New York.
    9.Brune, A. (2007). Microbiology:woodworker's digest. Nature 450(7169):487-488.
    10.Brune, A., Miambi, E., Breznak, J. A. (1995). Roles of Oxygen and the Intestinal Microflora in the Metabolism of Lignin-Derived Phenylpropanoids and Other Monoaromatic Compounds by Termites.Appl Environ Microbiol 61(7):2688-2695.
    11.Cruden, D.L. and Markovetz, A. J. (1979).Carboxymethyl Cellulose Decomposition by Intestinal Bacteria of Cockroaches.Appl Environ Microbiol.38(3):369-372.
    12.Edwards, U., Rogall, T., Emda, M., et al. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843-7853.
    13. Konig, H., Frohlich, J., Hertel, H. (2002). Diversity and Lignocellulolytic Activities of Cultured Microorganisms. Berlin Heidelberg, Springer-Verlag.Soil Biology.6:271-301.
    14. Konig, H.(2006). Bacillus species in the intestine of termites and other soil invertebrates. Journal of Applied Microbiology.101:620-627.
    15.Kumar, S., Tamura, K., Masatoshi, N.(2004). MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5(2):150-163.
    16.Lambais, M. R., Crowley, D. E., Cury, J. C.,et al. (2006). Bacterial diversity in tree canopies of the Atlantic forest.Science 312:1917.
    17. Thayer, D. W. (1976). Facultative wood-digesting bacteria from the hindgut of the termite Reticulitermes hesperus. J Gen Microbiol 95:287-296.
    18.ThoIen, A., Schink, B., Brune,A. (1997). The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp.. FEMS Microbiol Ecol.24:137-149.
    19.Vila, J., Marcos, M. A., Jimenez, M.T.,et al. (1996). A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex.J Med Microbiol 44(6):482-489.
    20.Weidner, S., Arnold, W., Puhler, A. (1996). Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 62(3):766-771.
    21.Weisburg, W. G., Barns, S. M., Pelletier, D. A.et al. (1991).16S ribosomal DNA amplification for phylogenetic study.J Bacteriol 173(2):697-703.
    22. Wenzel, M., Berchtold, M., Konig, H. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology 92:32-40.
    1. Anderson, A.W., Nordan, H. C., Cain, R. F., et al. (1956).Studies on a radio-resistant micrococcus.The isolation,morphology,culturalcharacteristics and resistance to gamma radiation.Food Technol.10:575-577.
    2.Anderson, R. and Hansen, K. (1985). Structure of a novel phosphoglycolipid from Deinococcus radiodurans. J Biol Chem 260(22):12219-12223.
    3.Asker, D., Awad, T. S., Beppu, T., et al. (2009). Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol 59:144-149.
    4.Brook, B. W, Murray, R. G. E.(1981). Nomenclature for "Micrococcus radiodurans" and other radion-resistant coccus; Deinococcaceae fam. nov. and Deinococcus gen.nov., including five species. Int J Syst Bacteriol.31:353-360.
    5.Brune, A., Miambi, E., Breznak, A. (1995). Roles of Oxygen and the Intestinal Microflora in the Metabolism of Lignin-Derived Phenylpropanoids and Other Monoaromatic Compounds by Termites. Appl Environ Microbiol 61(7):2688-2695.
    6.Collins, M. D. (1985). Isoprenoid quinone analysis in classification and identification. In Chemical methods in Bacterial Systematics, pp.267-287. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
    7.Dong, X.-Z., Cai, M.-Y. (2001). Determinative Manual for Routine Bacteriology. Beijing: Scientific Press (English translation).
    8.Edwards, U., Rogall, T., Emde, M., et al. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843-7853.
    9.Ferreira, A. C., Nobre, M. R, Rainey, A., et al. (1997). Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47(4):939-947.
    10.Gerhardt, P., Murray, R. G. E., Wood, W. A. et al. (1994). Methods for general and molecular bacteriology, American Society for Microbiology, Washington D. C.
    11. Hasegawa, T., M. Takizawa, and S, Tanida. (1983). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol,29:319-322.
    12.Henckel, T., Friedrich, M., Conrad, R. (1999). Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65(5):1980-1990.
    13.Hirsch, P., Gallikowski, C. A., Siebert, J., et al. (2004). Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27(6): 636-645.
    14.1m, W. T., Jung, H. M., Lenoid, N., et al. (2008). Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58:2348-2353.
    15.Kampfer, P., Lodders, N., Huber, B., et al. (2008). Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol 58,2803-2806.
    16.Kumar, S., Tamura, K., Nei, M. (2004). MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5,150-163.
    17.Marmur, J. and Doty, P. (1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109-118.
    18. Miller, L. T.1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. Journal of clinical microbiology,16:584-586.
    19.Ohkuma, M., Noda, S., Horikoshi, K., et aL(1995). Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett.134(1):45-50.
    20. Palys, T., Nakamura, L. K., Cohan, F. M. (1997). Discovery and classification of ecological diversity in the bacterial world:the role of DNA sequence data. Int J Syst Bacteriol. 47(4):1145-1156.
    21.Peng, F., Zhang, L., L, X., et al. (2009). Deinococcus xinjiangensis sp. nov., isolated from desert soil, Int JSyst Evol Microbiol 59:709-713.
    22.Raj, H. D., Duryee, F. L., Deeney, A. M., et al. (1960).Utilization of carbohydrates and amino acids by Micrococcus radiodurans. Can J Microbiol 6:289-298.
    23. Shashidhar, R. and Bandekar, J. R. (2009). Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol 59(Pt 11):2714-2717.
    24.Shinzato, N., Matsumoto, T., Yamaoka, I., et al. (1999). Phylogenetic diversity of symbiotic methanogens living in the hindgut of lower termite Reticulitermes speratus analyzed by PCR and in sity hybridization. App Environ Microbiol 65(2):837-840.
    25.Staneck, J. L. and Roberts, G. D. (1974). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226-231.
    26.Suresh, K., Reddy, G S., Sengupta, S., et al. (2004). Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54: 457-461.
    27.Thompson, J. D., Gibson, T. J., Jeanmougin, F., et al. (1997). The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876-4882.
    28.Weon, H. Y., Kim, B. Y., Son, J-A, et al. (2007). Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 57:1685-1688.
    29.Wu, C., Lu, X., Qin, M. (1989). Analysis of menaquinone compound in microbial cells by HPLC. Microbiology (English translation of Mikrobiologiya) 16:176-178.
    30.Oved, T., Shaviv, A., Goldrath, T., Mandelbaum, R. T., et al.(2001). Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Applied and environmental microbiology 67:3426-3433.
    1. Bauer, S., Tholen A., Overmann, J., Brune A. (2000). Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood-and soil-feeding termites by molecular and culture-dependent techniques.
    2. Brune, A., Miambi, E., Breznak, J. A. (1995).The termite gut microflora as an oxygen sink microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol.61:2688-2695.
    3. Brune, A. (1998). Termite guts:the world's smallest bioreactors.Trends Biotechnol.16:16-21.
    4. Klappenbach, J. A., Saxman, P. R., Cole, J. R., et al. (2001). rrndb:the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res 29(1):181-184.
    5. Muyzer, G., Waal, E. C. D., Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59 (3):695-700.
    6. Ohkuma, M. (1996). Phylogenetic Diversity of the Intestinal Bacterial Community in the Termite Reticulitermes speratus. Appl. Microbiol.
    7.Skovhus, T. L., Ramsing, N. B., Holmstrom, C., et al. (2004). Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl Environ Microbiol 70(4):2373-2382.
    8.Suzuki, M. T., Taylor, L. T., Delong, E. F. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl Environ Microbiol 66(11): 4605-4614.
    9. Tholen, A., Schink, B., Brune, A. (1997). The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol.24:137-149.
    1.Breznak, J.A., Brune, A. (1994). Role of Microorganisms in the digestion of lignocellulose by termites. Annu Rev Enromol.39:453-487.
    2.Cleveland, L. R. (1923) Correlation between the Food and Morphology of Termites and the Presence of Intestinal Protozoa. Amer. Journ. Hyg.,4:444-461.
    3.Dacks, J. B., Silberman, J. D., Simpson, G. B., et al. (2001).Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol.18(6):1034-1044.
    4. Fuchs, B. M., Wallner, G., Beisker, W., Schwippl, I., Ludwig, W., Amann, R. (1998) Flow cytometric analysis of the In Situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973-4982
    5.Gunderson, J., Hinkle, G., Leipe, D., et al.(1995). Phylogeny of trichomonads inferred from small-subunit rRNA sequences. J Eukaryot Microbiol 42(4):411-415.
    6.Hungate, R. E. (1955). Mutualistic Intestinal Protists.In Hutner SH, Lwoff A (eds) Biochemistry and Physiology of Protists. Academic Press, New York, Vol.2, pp159-199.
    7.Keeling, P. J., Poulsen, N., McFadden, G. I. (1998). Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J Eukaryot Microbiol 45(6):643-650.
    8.Kudo, T., Ohkuma, M., Moriya, S., et al. (1998). Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2(3):155-161.
    9.Kumar, S., Tamura, K., Masatoshi, Nei. (2004). MEG A3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5,150-163.
    10. Li, L., Frohlich, J., Pfeiffer, P., et al. (2003). Termite gut symbiotic archaezoa are becoming living metabolic fossils. Eukaryot Cell 2(5):1091-1098.
    11.Stingl, U., Brune, A. (2003).Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes. Protist.154(1):147-155.
    12.Michael, F., Dolan, M. F..(2001). Speciation of termite gut protists:the role of bacterial symbionts. Int.Microbiol.4:203-208.
    13.Moriya, S., Tanaka, K., Ohkuma, M., et al. (2001). Diversification of the microtubule system in the early stage of eukaryote evolution:elongation factor 1 alpha and alpha-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists. J Mol Evol 52(1):6-16.
    14.Ohkuma, M., Ohtoko, K., Moriya, S., et al. (1998). Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit rRNA sequence. J Eukaryot Microbiol 45(4):439-444.
    15.Ohkuma, M., Ohtoko, K., Hda, T., et al. (2000). Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and parabasalian symbionts in the hindgut of termites. J Eukaryot Microbiol 47(3):249-259.
    16.Ohtoko, K., Ohkuma, M., Moriya, S., et al. (2000). Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles 4(6):343-349.
    17. Moriya, S., Tanaka, K., Ohkuma, M., et al. (2001). Diversification of the Microtubule System in the Early Stage of Eukaryote Evolution: Elongation Factor 1α and a-Tubulin Protein Phylogeny of Termite Symbiotic Oxymonad and Hypermastigote Protists. J.Mol.Evol.52:6-16.
    18..Moriya, S., Dacks, J. B., Takagi, A., et al.(2003). Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. J Eukaryot Microbiol.50(3):190-197.
    19.Yamin, M. (1979).Termite flagellates. Sociobiology 4:1-119.
    20.Youshimura, T., Ed. (1993). Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera:Rhinotermitidae) Ⅱ.Selective defaunation of protozoa and its effect on cellulose metabolism. Mokuzai Gakkaishi 39:221-226.
    21.黄远达,周志伯,胡远扬等.(1999).中国白蚁学概论,pp.154,湖北科学技术出版社,武汉。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700