用户名: 密码: 验证码:
套作大蒜或青蒜消减大棚黄瓜连作障碍的效果及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设施黄瓜的连作障碍日趋严重,已成为制约黄瓜可持续生产的主要限制因子。本试验采用大蒜或青蒜与大棚黄瓜连续套作的种植模式,分别从黄瓜生长发育、生理变化及产量品质,土传病害发生、土壤生物特性、养分有效性及化学性状变化等方面,系统研究套蒜消减黄瓜连作障碍的效果及机理,为建立大蒜和青蒜与黄瓜高效可持续套作模式提供理论和技术依据。主要结果如下:
     1.第一年套作,除G064品种外,其他品种大蒜均显著促进黄瓜株高和茎粗增长,而青蒜则抑制黄瓜生长。第二、三年套作,大蒜和青蒜均显著增加黄瓜株高、茎粗、雌花数、总叶片数和第五功能叶面积。套作大蒜和青蒜可增加黄瓜叶片中叶绿素含量,显著降低丙二醛含量和SOD、POD及CAT活性。
     2.从第一套作年春茬开始,套作大蒜和青蒜的产量优势开始显现。第一套作年春茬,套作大蒜品种G005比黄瓜单作提高产量13.4%;第二套作年秋茬,套作青蒜提高产量11.9%。至第三年套作,套作产量优势逐渐减弱,与单作无显著差异。第一套作年秋茬,套作不同品种大蒜和青蒜对黄瓜品质无显著影响。第一年春茬,套作处理可显著提高黄瓜果实Vc含量。第二套作年,套作黄瓜果实干物质、可溶性蛋白和Vc含量均不同程度地提高。第三套作年,大蒜和青蒜可显著增加黄瓜果实干物质、可溶性蛋白、Vc和可溶性糖的含量。
     3.随种植年限增加,连作黄瓜枯萎病和根结线虫病发病率逐渐上升,而套作大蒜和青蒜均显著降低枯萎病和根结线虫的发病率,且青蒜的效果更强。套作大蒜和青蒜可显著增加土壤细菌和放线菌数量,减少土壤真菌数量。套作第一年,土壤微生物种类和数量与动态取样时间及大蒜品种有关,规律不稳定。第二、三年,套作大蒜和青蒜对土壤细菌、真菌和放线菌数量的影响规律稳定。随种植年限的增加,土壤细菌和放线菌数量呈先缓慢下降后急速上升,然后再下降的变化趋势;土壤真菌数量呈“M”型动态变化,总体呈增加趋势。套作大蒜和青蒜显著影响土壤酶活性,影响程度与土壤酶种类及套作年限有关。除第一年秋茬和第三年春茬以外,套蒜处理均显著提高了土壤过氧化氢酶活性。第一年秋茬,套作不同品种大蒜和青蒜均显著降低土壤蔗糖酶和脲酶活性,其后的套作处理反而显著提高这两种酶的活性。连续3年套作处理均显著提高了土壤碱性磷酸酶活性。
     4.套作大蒜和青蒜显著增加了土壤碱解氮含量。与单作相比,秋茬黄瓜套作大蒜和青蒜后土壤速效磷和速效钾含量增加,但随着大蒜和青蒜的生长,土壤速效磷和速效钾含量减少;至下一年春季大蒜和青蒜收获后,套作系统的土壤速效磷和钾的含量逐渐增加,最终趋于一致或高于单作。随种植年限增加,连作土壤pH值呈下降趋势,而套作处理先降低后提高土壤pH值,对土壤酸度有一定的稳定能力。从第二套作年开始,大蒜和青蒜均显著降低土壤EC值,缓解连作土壤次生盐渍化。
     5.大棚套作大蒜的收获期比露地提早30~40d。青蒜可于秋季连续收割4茬,且均具有商品性。综合效益分析表明,套作大蒜和青蒜可显著增加大棚单位时空的净产值。第一年套作大蒜G005、G064和G087分别提高净产值15.6%、17.2%和19.6%,套作青蒜提高净产值达33.6%;第二年套作大蒜G087和青蒜分别提高净产值19.0%和38.1%;第三年套作大蒜G087和青蒜分别提高净产值14.7%和28.3%。
     6.盆栽试验研究套作不同数量青蒜对连作黄瓜养分吸收和土壤微生物群落结构的影响。结果显示,套作青蒜可显著提高黄瓜生物量,增加植株中N、P、K、Ca和Mn含量,减少Mg、Zn和Fe含量。同时增加土壤有机质含量,平衡土壤氮、磷、钾比例。套作青蒜显著增加黄瓜根际和非根际土壤细菌、放线菌、菌根真菌、原生生物和细菌/真菌的数量,降低真菌数量,使土壤由真菌型向细菌型转化。套作中等数量青蒜(每株黄瓜300g、450g和600g蒜头)效果为好。
     7.离体抑菌试验研究大蒜根系分泌物和青蒜挥发物分别对黄瓜土传和叶部病害的抑制作用。结果证实,大蒜根系分泌物可显著抑制黄瓜枯萎病菌菌丝生长和孢子萌发,且随浓度增加抑制效果增强。当大蒜根系分泌物浓度为0.28mg·ml~(-1)时,对菌丝和孢子的抑制率分别为40.0%和60.4%。青蒜挥发物显著抑制黄瓜靶斑病菌菌丝生长和孢子萌发,当浓度为2.50mg·ml~(-1)时,对菌丝和孢子的抑制率分别为55.3%和93.3%。扫描和透射电子显微镜观察菌丝体形态和结构发现,大蒜根系分泌物和青蒜挥发物处理的菌丝体皱褶、干瘪、易断裂,细胞壁变薄、破裂,胞内空腔增多,胞质不均匀,核区不明显。
     总结连续3年试验结果认为,套作大蒜或青蒜可以消减黄瓜连作障碍,其机理与大蒜根系分泌物及活体挥发物对黄瓜生长和生理的化感调节作用、对黄瓜根部和叶部病害的抑菌作用、对土壤微生物数量和群落结构、土壤酶活性及土壤养分有效性等调节作用有关,大棚黄瓜套作大蒜或青蒜都是大棚黄瓜高效可持续生产模式。
Continuous cropping obstacles are becoming more and more serious. It has restrictedsustainable production of cucumber in protected cultivation. In this study, garlic or greengarlic was continuously intercropped with cucumber to investigate the effect and mechanismof intercropping alleviating continuous cropping obstacles of cucumber in plastic tunnel. Thegrowth and development, physiological changes, disease incidence, yield and quality ofcucumber, and microbial feature, nutrient status, pH and EC value of the soil was analysed.The objective of this study is to provide a theoretical and technical basis to the establishmentof the efficient and sustainable intercropping patterns of garlic and green garlic withcucumber. The main results summarized as follows:
     (1) Except cultivar G064, intercropping with other cultivars of garlic significantlyimproved the growth of cucumber plant height and stem diameter. Conversely, intercroppingwith green garlic inhibited cucumber growth in the first intercropping year. The intercroppedgarlic and green garlic significantly enhanced the plant height, stem diameter, number offemale flowers and total number of leaves, and the leaf area of the fifth functional leaf ofcucumber in the second and third cropping year. Compared with monocropping, intercroppingwith garlic and green garlic significantly increased chlorophyll content, decreased MDAcontent, SOD, POD and CAT activity of cucumber leaves.
     (2) Since spring cultivation of the first intercropping year, yield advantages ofintercropping with garlic and green garlic started to appear, compared with monocropping. Inspring cultivation of the first year, garlic cultivar G005increased cucumber yield by13.4%;in autumn cultivation of the second year, green garlic increased cucumber yield by11.9%.There was no significant difference of cucumber yield between intercropping andmonocropping in the third year. In autumn cultivation of the first intercropping year, differentcultivars of garlic and green garlic had no significant effect on cucumber fruit quality. In spring cultivation of the first year, intercropping treatment significantly increased Vc contentof cucumber fruit. Dry matter, soluble protein and Vc content were significantly improved byintercropping in the second year. Intercopping with garlic and green garlic significantlyincreased the content of dry matter, soluble protein, Vc and soluble sugar of cucumber fruit inthe third year.
     (3) The inhibitory effect of cultivar G064and green garlic among treatments was better.With continuous cropping increasing, the incidence rate of cucumber fusarium wilt and rotknot nematode disease was increasing in monocropping. Intercropping treatmentssignificantly inhibited the incidence rate of cucumber fusarium wilt and the nematode, and thegreen garlic showed stronger inhibitory effect. Intercropping with garlic and green garlicsignificantly increased the amount of soil bacteria and actinomyteces, while decreased theamount of soil fungi, compared with monocropping. In the first year, soil microbial speciesand amount was related to the dynamic sampling date and garlic cultivar. The previous trendwas not stable. In the second and third year, the effect trend of intercropping with garlic andgreen garlic on the soil microbe was stable. With the planting year increasing, the amount ofbacteria and actinomyteces was first decreasing slowly, then increasing rapidly and lastdecreasing; the amount of fungi was increasing as “M” dynamic change. Intercropping withgarlic and green garlic significantly influenced the activities of soil enzymes, which werevaried with enzyme species and intercropping years. Except autumn cultivation in the firstyear and spring cultivation in the third cropping year, intercropping significantly improvedsoil catalase activity. In the autumn cultivation of the first year, intercropping systemssignificantly reduced soil invertase and urease activities. Subsequently, intercroppingtreatment significantly improved enzymes activities. In the three continuous intercroppingyears, intercropping systems significantly improved soil alkaline phosphatase activity.
     (4) Intercropping with garlic and green garlic significantly increased soil available Ncontent, compared with monocropping. In autumn cultivation each intercropping year,intercropping treatments increased soil available P and K at the early growth stage ofcucumber. However, with the garlic and green garlic growing, the available P and K contentdecreased in intercropping systems. Up to the spring cultivation in the next year, the availableP and K content in the intercropping systems was no difference or higher than themonocropping after garlic and green garlic harvest. With the planting year increasing, soil pHvalue was gradually declining in monocropping. Intercropping treatment first reduced thenenhanced soil pH value, stabilizing soil acidity. From the second to the third intercroppingyear, intercropping treatments significantly reduced the soil EC value. It demonstratedintercropping treatments alleviated replant soil secondary salinization.
     (5) The harvest time of garlic in the intercropping systems planting in plastic tunnel was30~40days earlier than in the open field. Green garlic was continuously cut for four times inthe autumn season and had good commercial character. By productivity benefit analysis,intercropping garlic and green garlic significantly increase net output each planting year andarea in plastic tunnel. In the first year, intercropping with garlic cultivar G005, G064andG087increased the net output by15.6%,17.2%and19.6%, respectively; green garlicincreased the net output by33.6%. In the second year, the net output was increased by19.0%and38.1%when intercropping with garlic and green garlic. In the third year, the net outputwas increased by14.7%and28.3%in garlic-cucumber and green garlic-cucumberintercropping system, respectively.
     (6) Pot experiment was carried out to investigate the effect of intercropping withdifferent amounts of green garlic on nutrient uptake and soil microbial community structure.The results demonstrated that intercropping with green garlic significantly increasedcucumber biomass, N, P, K, Ca and Mn content, while decreased Mg, Zn and Fe content.Moreover, intercropping improved soil organic matter content and balance the proportion ofN, P and K. Intercropping with green garlic significantly increased population of soil bacteria,actinomycetes, AM fungi, Protozoa and B/F ratio, while decreased population of total fungi.Intercropping make soil from a more bacterial dominated to a more fungal communitystructure. Intercropping with moderate amounts of green garlic (300g,450g and600g garlicbulbs for each cucumber) showed better effect.
     (7) Antibacterial test in vitro was carried out to investigate inhibitory effect of garlic rootexudates and green garlic volatiles on growth of soil-borne and leaf disease. The resultsshowed that garlic root exudates significantly inhibited mycelial growth and sporegermination of cucumber fusarium wilt, and the effect was increasing with the concentions ofgarlic root exudates increasing. Inhibition rate of mycelial growth and spore germination was40.0%and60.4%when the concentration was0.28mg·ml~(-1). Green garlic volatilessignificantly inhibited mycelial growth and spore germination of cucumber target spot.Inhibition rate of mycelial growth and spore germination was55.3%and93.3%when theconcentration was2.50mg·ml~(-1). Mycelial morphology and structure observed by scanningand transmission electron microscopy demonstrated that treated mycelium was ruga, wizenedand easy to breakage; had thinner cell wall, more cavity, nonuniform cytoplast andunconspicuous nucleus zone.
     The experiment of continuous intercropping in three years demonstrated thatintercropping with garlic or green garlic alleviated continuous cropping obstacles ofcucumber. The mechanism were related to the allelopathy regulating effect of garlic root exudat and live volatile matter on the growth and physiology of cucumber, the incidence ofroot and leaf diseases, the microbial population and community structure, the soil enzymesactivities and soil nutrient availability. Intercropping garlic or green garlic with cucumber is aefficient and sustainable productive pattern.
引文
鲍士旦.2000.土壤农化分析.北京:中国农业出版社
    曹慧,杨浩,孙波,赵其国.2002.不同种植时间菜园土壤微生物生物量和酶活性变化特征.土壤,4:197~200
    陈晓红,邹志荣.2002.温室蔬菜栽培连作障碍研究现状及防治措施.陕西农业科学,12:16~20
    陈晓群,姚军,朱文清,张学军.2004.设施蔬菜地土壤硝态氮的变化及其对环境的影响.宁夏农林科技,5:4~5
    陈振翔,于鑫,夏明芳,戴朝霞,孙成.2005.磷脂脂肪酸分析方法在微生物生态学中的应用.生态学杂志,24(7):828~832
    程智慧,金瑞,佟飞.2007.蒜苗挥发物对黄瓜幼苗生长的化感效应研究.西北农业学报,16(3):149~152
    程智慧,宋莉,孟焕文.2008.大蒜鳞茎粗提物对黄瓜枯萎病的抑菌作用和防病效果.西北农林科技大学学报(自然科学版),36(5):113~118
    程智慧,张坤,王辉,肖雪梅.2010.大蒜鳞茎粗提液对黄瓜霜霉病的防治效果.北方园艺,(11):167~170
    崔洪宇,吴波,吴东凯,吴菊.2007.蔬菜嫁接抗病增产机理的探讨.北方园艺,10:71~74
    丁金城,喻衣蓉,居玉玲,马享优.1989.西瓜连作障碍及其对策的初步研究.华北农学报,4(4):82~87
    董林林,李振东,王倩.2008.大蒜鳞茎浸提液对黄瓜幼苗的化感作用.华北农学报,23(增刊):7~50
    杜慧玲,冯两蕊,郭平毅.2005.不同使用年限蔬菜大棚土壤溶质含量变化的试验研究.农业工程学报,21(5):127~130
    杜社妮,白岗栓.2010.轮作对日光温室土壤环境生态修复的影响.吉林农业大学学报,32(4):407~412
    樊治成.1993.大蒜品种资源的分类和利用.[博士学位论文].杨凌:西北农业大学
    高俊凤.2000.植物生理学实验技术.西安:兴界图书出版社
    高子勤,张淑香.1998.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应.应用生态学报,9(5):549~554
    关松荫.1986.土壤酶及研究法.北京:农业出版社:274~276,294~297,309~312,323
    郭晓冬.2003.设施栽培条件下土壤的连作障碍及防治措施.甘肃农业科技,7:38~40
    郝丽霞,程智慧,孟焕文,孙金利,韩玲.2010.设施番茄套作大蒜的生物和生态效应—套播时期对不同品种大蒜生长发育和产量的影响.生态学报,30(19):5316~5326
    郝丽霞.2010.大棚番茄套作大蒜的生物效应和生态效应研究.[硕士学位论文].杨凌:西北农林科技大学
    郝艳如,劳秀荣.2002.玉米/小麦间作对根际土壤和养分吸收的影响.中国农学通报,20(4):20~23
    贺丽娜,梁银丽,高静,熊亚梅,周茂娟,韦泽秀.2008.连作对设施黄瓜产量和品质及土壤酶活性的影响.西北农林科技大学学报(自然科学版),36(5):155~159
    胡元森,刘亚峰,吴坤,窦会娟,贾新成.2006.黄瓜连作土壤微生物区系变化研究.土壤通报,37(1):126~129
    胡元森,吴坤,刘娜,陈红歌,贾新成.2004.黄瓜不同生育期根际微生物区系变化研究.中国农业科学,37(10):1521~1526
    黄高宝,张恩和.1998.禾本科、豆科作物间套种植对根系活力影响的研究.草业学报,7(2):18~22
    姜忠廷,刘林德,郑宪清,李双喜,袁大伟,何七勇,吕卫光.2012.三种套作模式对连作西瓜生长和土壤微生物区系的影响.上海农业学报,28(1):60~64
    金瑞,程智慧,佟飞,周艳丽.2007.离体蒜苗挥发物的化感作用及其成分分析.西北植物学报,27(11):2286~2291
    金瑞.2007.蒜苗挥发物化感作用研究.[硕士学位论文].杨凌:西北农林科技大学
    金扬秀,谢关林,孙祥良,蔡雪涛.2003.大蒜轮作与瓜类枯萎病发病的关系.上海交通大学学报(农业科学版),21(1):9~12
    孔垂华,胡飞.2001.植物化感(相生相克)作用及其应用.北京:中国农业出版社
    李阜棣.1996.土壤微生物学.中国农业出版社,北京
    李刚,文景芝,吴凤芝,张齐凤,叶楠.2006.连作条件下设施黄瓜根际微生物种群结构及数量消长.东北农业大学学报,37(4):444~448
    李洪连,徐敬友.2001.农业植物病理学实验实习指导.中国农业出版社.150~151
    李明,税军峰,马永清.2006.化感作用在设施黄瓜连作中的应用研究.中国生态农业学报,14(4):25~28
    李文庆,杜秉海,骆洪义.1996.大棚栽培对土壤微生物区系的影响.土壤肥料,(2):31~33
    李文庆,贾继文,李贻学.1997.大棚蔬菜种植对土壤理化及生物性状影响规律的研究.菜园土壤肥力与蔬菜合理施肥.河海大学出版社, pp.76~79
    李珍珍,吴珏,杨银娟曹欢欢,牛庆良,黄丹枫.2011.土壤改良剂对设施黄瓜生长及土壤状况的影响.上海农业学报,27(2):87~91
    李志华,沈益新,倪建华,赵玲玲.2002.豆科牧草化感作用初探.草业科学,19(8):28~31
    梁银丽,陈志杰,徐福利,严勇敢,杜社妮,张成娥.2003.日光温室不同连作年限对黄瓜生理特性的影响.西北植物学报,23(8):1398~1401
    刘德,吴凤芝,栾非时,王华,于海涛.1998.不同连作年限土壤对大棚黄瓜根系活力及光合速率的影响.东北农业大学学报,29(3):219~222
    刘辉.2005.大蒜反季节栽培品种筛选及温光效应研究.[硕士学位论文].杨凌:西北农林科技大学
    刘建国,张伟,李彦斌,孙艳艳,卞新民.2009.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响.中国农业科学,42(2):725~733
    刘鸣韬,张定法,孙化田.2003.黄瓜靶斑病菌的生物学特性.中国蔬菜,(4):17~18
    刘同金,程智慧,赵慧玲,常立,余婷.2013.适宜与大棚基质栽培番茄套作的大蒜品种及其套播期研究.园艺学报,40(3):555~561
    泷岛.1983.防止连作障碍的措施.日本土壤肥料学杂志,(2):170~178
    陆景陵.2003.植物营养学.北京:中国农业大学出版社,245~256
    吕卫光,余廷园,诸海涛,沈其荣,张春兰.2006.黄瓜连作对土壤理化性状及生物活性的影响研究.中国生态农业学报,14(2):119~121
    吕卫光,张春兰,袁飞,彭宇.2002.化感物质抑制连作黄瓜生长的作用机理.中国农业科学,35(1):106~109
    马云华,魏珉,王秀峰.2004.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报,,15(6):1005~1008
    马云华,魏珉,王秀峰.2004.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报,15(6):1005~1008
    逄焕成,李玉义,严慧峻,梁业森,侯训波.2009.微生物菌剂对盐碱土理化和生物性状影响的研究.农业环境科学学报,28(5):951~955
    漆智平, I.M.若, J.豪迈尔.1996.木薯-野花生间作的根系分布及营养吸收的研究.土壤肥料,6(4):15~17
    松本满夫.1978.不同地区连作水稻根面丝状真菌的研究.日本土壤肥料学杂志,49:443~447.
    宋莉,程智慧,孟焕文.2007.大蒜鳞茎粗提物对西瓜枯萎病菌的抑杀效应.西北农林科技大学学报(自然科学版),35(3):135~138
    苏世鸣,任丽轩,霍振华,杨兴明,黄启为,徐阳春,周俊,沈其荣.2008.西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响.中国农业科学,41(3):704~712
    孙彩菊,程智慧,孟焕文,李晓敏,赵慧玲,刘同金.2012.大棚番茄连续定位套蒜第3年度土壤微生物数量和酶活性的变化.西北农林科技大学学报(自然科学版),40(12):97~105
    孙磊,陈兵林,周治国.2007.麦棉套作Bt棉花根系分泌物对土壤速效养分及微生物的影响.棉花学报,19(1):18~22
    孙群,胡景江.2006.植物生理学研究技术.杨凌:西北农林科技大学出版社
    孙祥良,谢关林,金扬秀.2003.轮作与甜瓜类枯萎病发病的关系.浙江大学学报(农业与生命科学版),29(1):65~66
    孙艺文,吴凤芝.2013.小麦、燕麦残茬对连作黄瓜生长及土壤酶活性的影响.中国蔬菜,4:46~51
    佟飞,程智慧,金瑞,周艳丽.2007.大蒜植株水浸液醇溶成分的化感作用.西北农林科技大学学报(自然科学版),35(6):119~124
    王春会,程智慧,牛青,梁静娜,薛书浩.2009.大蒜植株超声波浸提液对不同受体蔬菜的化感作用.西北农林科技大学学报(自然科学版),37(7):103~109
    王东凯,杨威,吴凤芝.2012.不同栽培模式对设施黄瓜生长发育及土壤微生物数量的影响.东北农业大学学报,43(7):95~99
    王芳,王敬国.2005.连作对茄子苗期生长的影响研究.中国生态农业学报,13(1):79~81
    王人民,丁元树.1998.稻田年内水旱轮作对土壤肥力的影响.中国水稻科学,12(2):85~90
    王田涛,王琦,王惠珍,张恩和.2013.连作条件下间作模式对当归生长特性和产量的影响.草业学报,22(2):55~61
    王玉彦,吴凤芝,周新刚.2009.不同间作模式对设施黄瓜生长及土壤环境的影响.中国蔬菜,(16):8~13
    王志勇,武继承,姚健.2004.不同利用方式下土壤养分变化特征研究.中国地壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会文集(面向农业与环境的土壤科学专题篇)
    尉婷婷,程智慧,冯武焕.2010.大蒜鳞茎粗提物对番茄灰霉病的抑菌和防治效果.西北农业学报,19(6):176~180
    魏玲,程智慧,张亮.2008.不同品种大蒜秸秆水浸液对番茄的化感效应.西北农林科技大学学报(自然科学版),36(10):139~145
    吴凤芝,刘德,栾非时.1999.大棚土壤连作年限对黄瓜产量及品质的影响.东北农业大学学报,30(3):245~248
    吴凤芝,刘德,王东凯,栾非时,王伟,刘元英.1998.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜,(4):5~8
    吴凤芝,栾非时,王东凯,王伟,刘元英.1996.大棚黄瓜连作对根系活力及其根际土壤酶活性影响的研究.东北农业大学学报,27(3):255~258
    吴凤芝,孟立君,王学征.2006.设施蔬菜轮作和连作土壤酶活性的研究.植物营养与肥料学报,12(4):554~558
    吴凤芝,孟立君,文景芝.2002.黄瓜根系分泌物对枯萎病菌菌丝生长的影响.中国蔬菜,(5):26~27
    吴凤芝,王澍,杨阳.2008.轮套作对黄瓜根际土壤细菌种群的影响.应用生态学报,19(12):2717~2722
    吴凤芝,王伟,栾非时.1999.土壤灭菌对大棚连作黄瓜生长发育影响.北方园艺,(4):300
    吴凤芝,王学征.2007.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系.中国农业科学,40(10):2274~2280
    吴凤芝,赵凤艳,谷思玉.2002.保护地黄瓜连作对土壤生物化学性质的影响.农业系统科学与综合研究,18:20~22
    吴凤芝,赵凤艳,刘元英.2000.设施蔬菜连作障碍原因综合分析与防治措施.东北农业大学学报,31(3):241~247
    吴凤芝,周新刚.2009.不同作物间作对黄瓜病害及土壤微生物群落多样性的影响.土壤学报,46:899~906
    吴会芹,董林林,王倩.2011.大蒜对日光温室黄瓜生长及土壤生物学特性的影响.中国农业大学学报,16(3):95~99
    吴金水,林启美,黄巧云,肖和艾.2006.土壤微生物生物量测定方法及其应用.气象出版社,北京
    吴文君.1988.植物化学保护实验技术导论.西安:陕西科学技术出版社
    吴艳飞,张雪艳,李元,魏文杰,高丽红.2008.轮作对黄瓜连作土壤环境和产量的影响.园艺学报,35(3):357~362
    咸丰.2007.反季节栽培大蒜品种筛选及其发育调控.[硕士学位论文].杨凌:西北农林科技大学
    肖靖秀,郑毅.2005.间套作系统中作物养分吸收利用与病虫害控制.农艺科学,21(3):150~154
    谢家仪,董光军,刘振英.2005.扫描电镜的微生物样品制备方法.电子显微学报,437:975~980
    邢宇俊,程智慧,周艳丽,徐重益,徐强,张勇.2004.保护地蔬菜连作障碍原因及其调控.西北农业学报,13(1):120~123
    徐福利,梁银丽,杜社妮,陈志杰.2003a.陕北日光温室大棚黄瓜和番茄施肥存在的问题及改进措施.陕西农业科学,(1):19~20,62
    徐福利,梁银丽,杜社妮,陈志杰.2003b.杨凌示范区日光温室蔬菜施肥现状及存在问题对策.西北农业学报,12(3):124~128
    徐建华,利荣千,王建波.1995.黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化.植物病理学报,25(3):239~242
    杨彬,陈修斌,杨德江,鄂利锋.2008.辣椒套作大蒜对辣椒疫病防治效果研究初探.河西学院学报,24(2):59~60
    杨建霞.2005.日光温室黄瓜连作障碍研究及防治对策.甘肃农业,11:209~209
    叶俊,胡家阳,杨银娟,李珍珍,曹欢欢,黄丹枫.2010.微生物制剂对设施黄瓜连作障碍的修复试验.长江蔬菜(学术版),(12):60~63
    伊东正.1987.野菜栽培技术.诚文堂新光社
    于占东,宋述尧.2003.稻草配施生物菌剂对大棚连作土壤的改良作用.农业工程学报,19(l):177~179
    喻景权,杜尧舜.2000.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报,31(1):124~126
    喻景权,松井佳久.1999.豌豆根系分泌物自毒作用的研究.园艺学报,26(3):175~179
    袁飞,彭宇,张春兰,沈其荣.2004.有机物料减轻设施连作黄瓜苗期病害的微生物效应.应用生态学报,15(5):867~870
    章爱群,贺立源,赵会娥,门玉英,郭再华.2008.根分泌物对活化土壤中难溶性磷的作用.水土保持学报,22(5):102~105
    张恩和,张福锁.2003.小麦大豆间套作种植对磷素在土壤中的转化及其有效性的影响.土壤通报,31(3):130~131
    张国红,任华中,高丽红.2005.京郊日光温室土壤微生物状况和酶活性.中国农业科学,138:1447~1452
    张学军,陈晓群,王黎民,赵桂芳,朱文清.设施蔬菜连作障碍原因与防治措施研究.科学技术与工程,3(6):591~593
    赵莉,罗建新,黄海龙,肖巧琳.2007.保护地土壤次生盐渍化的成因及防治措施.作物研究,21(5):547~554
    赵萌,李敏,王淼焱,王玉,张学义.2008.西瓜连作对土壤主要微生物类群和土壤酶活性的影响.微生物学通报,35(8):1251~1254
    赵平,范茂攀,赵秀英,郑毅.2004.玉米辣椒混作条件下磷素养分吸收利用研究.江苏农业科学,4:99~101
    赵平,李少明,范茂攀,李金强,郑毅.2004.玉米辣椒间作条件下钾素养分吸收利用研究.湖北农业科学,3:32~34
    赵尊练,杨广君,巩振辉,郭建伟.2007.克服蔬菜作物连作障碍问题之研究进展.中国农学通报,23:278~282
    中国科学院南京土壤研究所微生物室.1985.土壤微生物研究法.北京:科学出版社
    周克福.2010.蔬菜作物化感作用及其利用.长江蔬菜(学术版),(8):7~11
    周晓芬,杨军芳.2004.不同施肥措施及EM菌剂对大棚黄瓜连作障碍的防治效果.河北农业科学,8:89~92
    周艳丽,程智慧,孟焕文,高红春.2007b.大蒜根系水浸液及根系分泌物的化感作用评价.西北农林科技大学学报(自然科学版),35(10):87~92
    周艳丽,程智慧,孟焕文.2007a.大蒜根系分泌物对不同受体蔬菜的化感作用.应用生态学报,18(1):81~86
    周艳丽,程智慧.2012.大蒜根系分泌物化感作用及化感物质的比较.西北农林科技大学学报(自然科学版),40(2):116~120
    周艳丽,王艳,李金英,薛艳杰.2011.大蒜根系分泌物的化感作用.应用生态学报,22(5):1368~1372
    周艳丽.2007.大蒜(Allium sativum L.)根系分泌物的化感作用研究及化感物质鉴定.[博士学位论文].杨凌:西北农林科技大学
    周志红,骆世明,牟子平.1997.番茄(Lycopersicon)的化感作用研究.应用生态学报,8(4):445~449
    朱林,彭宇,袁飞,张春兰.2001a.几种有机物料对连作黄瓜生长的影响.安徽农业科学,29(2):214~216
    朱林,张春兰,沈其荣.2001b.施用稻草等有机物料对黄瓜连作土壤pH、EC值和微生物的影响.安徽农业大学学报,28(4):350~353
    Abdel-Monaim M F, Abo-Elyousr K A M.2012. Effect of preceding and intercropping crops onsuppression of lentil damping-off and root rot disease in New Valley-Egypt. Crop Protection,32:41~46
    Acosta-Martínez V, Burow G, Zobeck T M, Allen V G.2010. Soil Microbial Communities and Function inAlternative Systems to Continuous Cotton. Soil Biology&Biochemistry,74:1181~1192
    Acosta-Martínez V, Cruz L, Sotomayor-Ramírez D, Pérez-Alegría L.2007. Enzyme activities as affectedby soil properties and land use in a tropical watershed. Applied Soil Ecology,35:35~45
    Acosta-Martínez V, Zobeck T M, Gill T E, Kennedy A C.2003. Enzyme activities and microbialcommunity structure in semiarid agricultural soils. Biology and Fertility of Soils,38:216~227
    Adu-Gyamfi J J, Myaka F A, Sakala W D, Odgaard R, Vesterager J M, H gh-Jensen H.2007. Biologicalnitrogen fixation and nitrogen and phosphorus budgets in farmer-managed intercrops ofmaize–pigeonpea in semi-arid southern and eastern Africa. Plant and Soil,295:127~136
    Ahmad I, Cheng Z H, Meng H W, Liu T J, Wang M Y.2013. Effect of pepper-garlic intercropping systemon soil microbial and bio-chemical properties. Pakistan Journal of Botany,45(2):695~702
    Ayache J, Beaunier L, Boumendil J, Ehret G, Laub D.1997. Sample preparation handbook for transmissionelectron microscopy techniques. New York Dordrecht Heidelberg London: Springer
    Bais H P, Weir T L, Perry L G, Gilroy S, Vivanco J M.2006. The role of root exudates in rhizosphereinteractions with plants and other organisms. Annual Review of Plant Biology,57:233~266
    Barone F E, Tansey M R.1997. Isolation, purification, synthesis, and kinetics of the anticandidalcomponent of Allium sativum and hypothesis for its mode of action. Mycologia,69(4):793~825
    Baziramakenga R, Leroux G D, Simard R R.1995. Effects of benzoic and cinnamic acids on membranepermeability of soybean roots. Journal of Chemical Ecology,21(9):1271~1285
    Bollag J M, Senesi N, Huang P M.1992. Interactions between soil minerals and microorganisms: impact onthe terrestrial ecosystem. New York: Marcel Dekker,307~379
    Boulter J I, Trevors J T, Boland G J.2002. Microbial studies of compost: bacterial identification, and theirpotential for turfgrass pathogen suppression. World Journal of Microbiology and Biotechnology,18:661~671
    Brussaard L, Ruiter P C, Brown G G.2007. Soil biodiversity for agricultural sustainability. Agriculture,Ecosystems and Environment,121:233~244
    Carney K M, Matson P A, Bohannan B J M.2004. Diversity and composition of tropical soil nitrifiersacross a plant diversity gradient and among land-use types. Ecology Letters,7:684~694
    Cavallito C J, Buck J S, Suter C M.1944. Allicin, the antibacterial principle of Allium sativum. Journal ofthe American Chemical Society,(66):1950~1954
    Cheng Z H, Wang C H, Xiao X M, Khan M A.2011. Allelopathic effects of decomposing garlic stalk onsome vegetable crops. African Journal of Biotechnology,10(69):15514~15520
    Dai C C, Chen Y, Wang X X, Li P D.2013. Effects of intercropping of peanut with the medicinal plantatractylodes lancea on soil microecology and peanut yield in subtropical China. Agroforest Systems,87:417~426
    David S S.1996. Chemistry and mechanisms of Allelopathic interactions. Agronomy Journal,88:876~885
    Dick R P.1992. Long-term effects of agricultural systems on soil biochemical and microbial parameters.Agriculture, Ecosystems and Environment,40:25~36
    Ding Y, Luo W, Xu G.2006. Characterisation of magnesium nutrition and interaction of magnesium andpotassium in rice. Annals of Applied Biology,149:111~123
    Doran J W, Zeiss M R.2000. Soil health and sustainability: managing the biotic component of soil quality.Applied Soil Ecology,15:3~11
    Drijber R, Doran J, Parkhurst A, Lyon D.2000. Changes in soil microbial community structure with tillageunder long-term wheatfallow management. Soil Biology&Biochemistry,32:1419~1430
    Einhellig F A.2004. Mode of allelochemical action of phenolic compounds. In: Mac as F A, Galindo J C G,Molinillo J M G and Cutler H G (Eds.), Allelopathy, chemistry and mode of action of allelochemicals.BocaRaton: CRC Press:217~239
    Feng Y, Motta A C, Reeves D W, Burmester C H, Santen E, Osborne J A.2003. Soil microbial communitiesunder conventional-till and no-till continuous cotton systems. Soil Biology&Biochemistry,35:1693~1703
    Focke M, Feld A, Lichtenthalar H K.1990. Allicin a naturally occurring antibiotic from garlic. Federationof European Biochemical Societies (FEBS) Letters,206:106~108
    Francis C A.1986. Mutiple cropping system. New York: Macmillan Publishing Company,376~383
    Frostega rd A, B th E.1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungalbiomass in soil. Biology and Fertility of Soils,22:59~65
    Garcia R P, Garcia M I.1990. Laboratory evaluation of plant extracts for the control of Aspergillus growthand aflatoxin production. Proceeding of the Japanese Association of Mycotoxicology. HorticulturalAbstracts,60:6543
    Gechev T, Willekens H, Montagu M V, Inzé D, Camp W V.2003. Different responses of tobaccoantioxidant enzymes to light and chilling stress. Journal of Plant Physiology,160:509~515
    Geijersstam L A, M rtensson A.2006. Nitrogen fixation and residual effects of field pea intercropped withoats. Acta Agriculturae Scandinavica Section B-Soil and Plant Science,56:186~196
    Ghosh P K, Bandyopadhyay K K, Wanjari R H, Manna M C, Misra A K, Mohanty M.2007. Legume effectfor enhancing productivity and nutrient use-efficiency in major cropping systems-an Indianperspective: a review. Journal of Sustainable Agriculture,30:61~86
    Gómez-Rodríguez O, Zavaleta-Mejía E, González-Hernández V A, Livera-Mu oz M, Cárdenas-Soriano E.2003. Allelopathy and microclimatic modification of intercropping with marigold on tomato earlyblight disease development. Field Crops Research,83:27~34
    Gregorich E G, Ellert B H, Drury C H, Liang B C.1996. Fertilization effects on soil organic matterturnover and corn residue carbon storage. Soil Science Society of America Journal,60:472~476
    Hallak A M G, Davide L C, Souza I F.1999. Effects of sorghum (Sorghum bicolor L.) root exudates on thecell cycle of the bean plant (Phaseolus vulgaris L.) root. Genetics and Molecular Biology.22(l):95~99
    Han X, Cheng Z H, Meng H W, Yang X L, Ahmad I.2013. Allelopathic effect of decomposed garlic(Allium Sativum L.) stalk on lettuce (Sativa var. Crispa L.). Pakistan Journal of Botany,45(1):225~233
    Han X, Cheng Z H, Meng H W.2012. Soil properties, nutrient dynamics, and soil enzyme activitiesassociated with garlic stalk decomposition under various conditions. Plos one,7(11):1~8
    Hickman M V.2002. Long-term tillage and crop rotation effects on soil chemical and mineral properties.Journal of Plant Nutrition,25:1457~1470
    Huang H C, Chou C H, Erickson R S.2006. Soil sickness and its control. Allelopathy Journal,18:1~21
    Inal A, Gunes A, Zhang F, Cakmak I.2007. Peanut/maize intercropping induced changes in rhizosphere andnutrient concentrations in shoots. Plant Physiology and Biochemistry,45:350~356
    Jain D K, Stroes-Gascoyne S, Providenti M, Tanner C, Core I.1997. Characterization of microbialcommunities in deep ground water from granitic rock. Canadian Journal of Microbiology,43:272~283
    Jain M K, Apitz-Castro R.1987. Garlic: molecular basis of the putative ‘vampire-repellant’ action andother matters related to heart and blood. Trends in Biochemical Science,12:252~254
    Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C.2007. Soil healththrough soil disease suppression: which strategy from descriptors to indicators? Soil Biology&Biochemistry,39:1~23
    Jeffrey M, Zobel A M.2002. Kale intercropping for insect control in cabbage crops as an alternate toinsecticides application. Allelopathy Journal,9(1):53~57
    Jensen E S.1996a. Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biology&Biochemistry,28:159~162
    Jensen E S.1996b. Grain yield, symbiotic N2fixation and interspecific competition for inorganic N inpea-barley intercrops. Plant and Soil,182:25~38
    Kamal K, Hagagg L, Awad F.2000. Improved Fe and Zn acquisition by guava seedlings grown incalcareous soils intercropped with graminaceous species. Journal of Plant Nutrition,23:2071~2080
    Karlidaga H, Yildirima E.2009. Strawberry intercropping with vegetables for proper utilization of spaceand resources. Journal of Sustainable Agriculture,33(1):107~116
    Katanelson H, Rouatt J W, Peterson E A.1962. The rhizosphere effect of mycorrhizal and nonmycorrhizalroots of yellow birch seedlings. Canadian Journal of Botany,40:377~382
    Kennedy A C, Smith K L.1995. Soil microbial diversity and the sustainability of agricultural soils. Plantand Soil,170:75~86
    Khan M A, Cheng Z H, Xiao X M, Khan A R, Ahmed S S.2011. Ultrastructural studies of the inhibitioneffect against Phytophthora capsici of root exudates collected from two garlic cultivars along withtheir qualitative analysis. Crop Protection,30:1149~1155
    Khan M A, Cheng Z H.2010. Influence of garlic root exudates on cyto-Morphological alteration of thehyphae of Phytophthora capsici, the cause of phytophthora blight in pepper. Pakistan Journal ofBotany,42:4353~4361
    Klose S, Moore J M, Tabatabai M A.1999. Arylsulfatase activity of microbial biomass in soils as affectedby cropping systems. Biology and Fertility of Soils,29:46~54
    Kourtev P S, Ehrenfeld J G, H ggblom M.2003. Experimental analysis of the effect of exotic and nativeplant species on the structure and function of soil microbial communities. Soil Biology&Biochemistry,35:895~905
    Kreye C, Bouman B A M, Faronilo J E, Llorca L.2009. Causes for soil sickness affecting early plantgrowth in aerobic rice. Field Crop Research,114:182~187
    Kroppenstedt R M.1992. Thegenus Nocardiopsis. In Balows A et al.(ed.) The prokaryotes.2nd. ed.Springer-Verlag, Berlin. pp:1139~1156
    Kuo C G, Chou M H, Park H G.1981. Effects of Chinese Cabbage residue on mungbean. Plant and Soil,(61):473~477
    Lagomarsin A, Benedetti A, Marinari S, Pompili L, Moscatelli M C, Roggero P P, Lai R, Ledda L, Grego S.2011. Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem.Biology and Fertility of Soils,47:283~291
    Lai R Q, You M S, Lotz L A P, Vasseur L.2011. Response of green peach aphids and other arthropods togarlic intercropped with tobacco. Agronomy Journal,103:856~863
    Lalande R, Gagnon B, Simard R R, C té D.2000. Soil microbial biomass and enzyme activity followingliquid hog manure application in a long-term field trial. Canadian Journal of Soil Science,80:263~269
    Latif M A, Mehuys G R, Mackenzie A F, Alli I, Faris M A.1992. Effects of legumes on soil physicalquality in a maize crop. Plant and Soil,140:15~23
    Li D, Wu Z, Liang C, Chen L.2004. Characteristics and regulation of greenhouse soil environment.Chinese Journal of Ecology,23:192~197
    Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z.2001. Wheat/maize or wheat/soybean stripintercropping. I. Yield advantage and interspecific interactions on nutrients. Field Crops Research,71:123~137
    Li L, Tang C, Rengel Z, Zhang F S.2003. Chickpea facilitates phosphorus uptake by wheat from an organicphosphorus. Plant and Soil,248:297~303
    Li L, Tang C, Rengel Z, Zhang F S.2004. Calcium, magnesium and microelement uptake as affected byphosphorus sources and interspecific root interactions between wheat and chickpea. Plant and Soil,261:29~37
    Li W Q, Du B H, Luo H Y, Ding F J.1996. The influence of greenhouse cultivation on soil microflora. SoilFertility,2:31~33
    Li X P, Mu Y H, Cheng Y B, Liu X G, Nian H.2013. Effects of intercropping sugarcane and soybean ongrowth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiologiae Plantarum,35:1113~1119
    Li Y F, Ran W, Zhang R P, Sun S B, Xu G H.2009. Facilitated legume nodulation, phosphate uptake andnitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system.Plant and Soil,315:285~296
    Liang B C, MacKenzie A F, Schnitzer M, Monreal C M, Voroney P R, Beyaert R P.1998.Management-induced change in labile soil organic matter under continuous corn in eastern Canadiansoils. Biology and Fertility of Soils,26:88~94
    Lin X G, Yin R, Zhang H Y, Huang J F, Chen R R, Cao Z H.2004. Changes of soil microbiologicalproperties caused by land use changing from rice–wheat rotation to vegetable cultivation.Environmental Geochemistry and Health,26:119~128
    Liu W T, Marsh T L, Cheng H, Forney L J.1997. Characterization of Microbial diversity by determiningterminal restriction fragment length polymorphisms of genes encoding16S rRNA. Applied andEnvironmental Microbiology,63(11):4516~4522
    Lupwayi N Z, Rice W A, Clayton G W.1998. Soil microbial diversity and community structure underwheat as influenced by tillage and crop rotation. Soil Biology&Biochemistry,30:1733~1741
    Macnaughton S J, Donnell A G.1994. Tuberculostearic acid as a means of estimating the recovery (usingdispersion and differential centrifugation) of actinomycetes from soil. Journal of MicrobiologicalMethods,20:69~77
    Madigan M T, Martinko J M, Parkerer J.1999. Brock-Biology of microorganisms.9th edition. London:Prentice Hall,53~55
    Marschner H.1995. Mineral Nutrition of Higher Plants.2nd edn. Academic Press, London
    Marschner H.1998. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency innutrient acquisition. Field Crop Research,56:203~207
    Mayeux P R, Agrawal K C, Tou J S H, King B T, Lippton H L, Hyman A L, Kadowiz P J, McNamara D B.1998. The pharmacological effects of allicin, a constituent of garlic oil. Agents Actions,24:182~190
    Miller M, Dick R P.1995. Thermal stability and activities of soil enzymes as influenced by crop rotations.Soil Biology&Biochemistry,27:1161~1166
    Miron T, Rabinkov A, Mielman D, Wilchek M, Weiner L.2000. The mode of action of allicin. Biochimicaet Biophysica Acta,1463:20~30
    Mogahed M I.2003. Influence of intercropoing on population dynamics of major insect-pests of potato(Solanum tuberosum) in North Sinai Governorate, Egypt. Indian Journal of Agricultural Sciences,73:546~549
    Mohammad S F.1986. Characterization of a potent inhibitor of platelet aggregation and release reactionisolated from Allium sativum (garlic). Thrombosis Research,44(6):793~806
    Morris R A, Garrity D P.1993. Resource Capture and utilization in intercropping: water. Field CropResearch,34:303~317
    Morsya M R, Jouvebm L, Hausmanbm J, Hoffmannbm L, Stewartam J M.2007. Alteration of oxidativeand carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrastingin chilling tolerance. Journal of Plant Physiology,164:157~167
    Mueller S, Durigan J C, Banzatto D A, Kreuz C L.1998. Benefits to yield and profits of garlic and beetintercropping under three weed management epochs. Pesquisa Agropecuaria Brasileira,33:1361~1373
    Nishio M, Kusano S.1975. Effect of root residues on the growth of upland rice. Soil Science and PlantNutrition,21:391~395
    Obagwu J, Emechebe A M, Adeoti A A.1997. Effect of extracts of garlic (Allium sativum L.) bulb andneem (Azadirachta indica Juss) seed on the mycelial growth and sporulation of Colletotrichum capsici.Journal of Agricultural Technology,5:51~55
    Ohno T, Grunes D L.1985. Potassium-Magnesium Interactions Affecting Nutrient Uptake by WheatForage. Soil Science Society of America Journal,49:685~690
    Olasantan F O, Ezumah H C, Lucas E O.1996. Effects of intercropping with maize on themicro-environment, growth and yield of cassava. Agriculture, Ecosystems and Environment,57:149~158
    Olsson S, Alstr S.2000. Characterisation of bacteria in soils under barley monoculture and crop rotation.Soil Biology&Biochemistry,32:1443~1451
    Pankhurst C E, Ophel-keller K, Doube B M, Gupta V V S R.1996. Biodiversity of soil microbialcommunities in agricultural systems. Biodiversity and Conservation,5:197~209
    Peterson J K, Harrison H F.2002. Suppression effect of Capsicum Chinese Jacq. On Southern rootnotnematode in peppers and tomato. Allelopathy Journal,9(1):59~62
    Portz D, Koch E, Slusarenko A J.2008. Effects of garlic (Allium sativum) juice containing allicin onPhytophthora infestans and downy mildew of cucumber caused by Pseudoperonospora cubensis.European Journal of Plant Pathology,122:197~206
    Prasad T K.1997. Role of catalase in inducing chilling tolerance in preemergent maize seedlings. PlantPhysiology,114:1369~1376
    Rathore O P, Nema G K, Verma H D.1999. Intercroppoing of medicinal, pulse and spice crops in autumnplanted sugarcane (Saccharum officinarum) in Madhya Pradesh. Indian Journal of Agronomy,44:692~695
    Ren L X, Su S M, Yang X M, Xu Y C, Huang Q W, Shen Q R.2008. Intercropping with aerobic ricesuppressed fusarium wilt in watermelon. Soil Biology&Biochemistry,40:834~844
    Rice E L.1984. Allelopathy. Second Edition. Academy Press.
    R mheld V, Marschner H.1986. Mobilization of iron in the rhizosphere of different plant species.Advances in Plant Nutrition,2:155~204
    Roslev P, Iversen N, Henriksen K.1998. Direct fingerprinting of metabolically active bacteria inenvironmental samples by sub-strate specific radiolabelling and lipid analysis. Journal ofMicrobiological Methods,31:99~111
    Rossum M W P C, Alberda M, Plas L H W.1997. Role of oxidative damage in tulip bulb scalemicropropagation. Plant Science,130:207~216
    Russell P E, Mussa A E.1977. The use of garlic to control foot rot of Phaseolus vulgaris caused byFusarium solani f. sp phaseoli. Annals of Applied Biology,86:369~372
    Saha S, Prakash V, Kundu S, Kumar N, Mina B L.2008. Soil enzymatic activity as affected by long termapplication of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N-WHimalaya. European Journal of Soil Biology,44:309~315
    Schneider R W.1982. Suppressive soils and plant disease. American Phytopathological Society, St. Paul,MN, pp:88
    Schutter M E, Sandeno J M, Dick R P.2001. Seasonal, soil type, alternative management influences onmicrobial communities of vegetable cropping systems. Biology and Fertility of Soils,34:397~410
    Shanmugham K.1988. Effect of onion and green gram intercrops on phosphorous release and its uptake bycotton. Current Science,57:1128~1130
    Simon A, Sivasithamparam K.1989. Pathogen-suppression: a case study in biological suppression ofGaeumannomyces graminis var. tritici in soil. Soil Biology&Biochemistry,21:331~337
    Singh H P, Batish D R, Daizy R, Kohli R K.1999. Autotoxity: concept, organisms, and ecologicalsignificance. Critical Reviews in Plant Sciences,18(6):757~772
    Singh J S, Raghubanshi A S, Singh R S, Srivastava S C.1989. Microbial biomass act as a source of plantnutrients in dry tropical forest and savanna. Nature.338:499~500
    Singh M, Singh U B, Ram M, Yadav A, Chanotiya C S.2013. Biomass yield, essential oil yield and qualityof geranium (Pelargonium graveolens L. Her.) as influenced by intercropping with garlic (Alliumsativum L.) under subtropical and temperate climate of India. Industrial Crops and Products,46:234~237
    Singh S N, Shukla J P, Agrawal M L, Singh G P.1999. Spices intercropping with autumn-planted sugarcane(Saccharum officinarum). Indian Journal of Agronomy,44:64~67.
    Sivaraman K, Palaniappan S P.1996. Turmeric-maize and onion intercropping systems. III. Nutrientuptake. Journal of Spices and Aromatic Crops,5(1):49~57
    Slusarenko A J, Patel A, Portz D.2008. Control of plant diseases by natural products: Allicin from garlic asa case study. European Journal of Plant Pathology,121:313~322
    Sterling S J, Eagling R D.2001. Agronomic and allicin yield of Australian grown garlic (Allium sativum).Acta Horticulturae,444:63~73
    Stoll V A, Seebeck E.1947. Allicin, the put mother substance of garlic oil. Experientia,(3):114~115
    Sturz A V, Christie B R.2003. Beneficial microbial allelopathies in the root zone: the management of soilquality and plant disease with rhizobacteria. Soil and Tillage Research,72:107~123
    Timothy S, Prather W, Thomas L, Steve O, Ronald V et al.2000. Interplanting grasses into alfalfa controlsweeds in older stands. California agriculture,54(6):37~41
    Tunlid A, Barid B H, Trexler M B.1985. Determination of phospholipid ester-linked fatty acid andpolyβ-hydroxybuty rate for the stimulation of bacterial biomass and activity in the rhizosphere of therape plant brassica napus,(L.). Canadian Journal of Microbiology,31:1113~1119
    Unlu H, Sari N, Solmaz I.2010. Intercropping effect of different vegetables on yield and some agronomicproperties. Journal of Food Agriculture and Environment,8:723~727
    Vandermeer J.1992. The ecology of intercropping. Cambridge university press,1~14
    Veneklaas E J, Stevens J, Cawthray G R, Turner S, Grigg A M and Lambers H.2003. Chickpea and whitelupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant andSoil,248:187~197
    Wan F X, Chen P.2004. Soil Enzyme Activities under Agroforestry Systems in Northern Jiangsu Province.Forestry Studies in China,6(2):21~26
    Warnock R E.1970. Micronutrient uptake and mobility within corn plants (Zea mays L.) in relation tophosphorus-induced zinc deficiency. Soil Science Society of America Journal,34:765~769
    Wasaki J, Yamamura T, Shinano T, Osaki M.2003. Secreted acid phosphatase is expressed in cluster lupinin response to phosphorus deficiency. Plant and Soil,248:129~136
    Willey R W.1990. Resource use in intercropping systems. Agricultural Water Management,17:215~231
    Xiao X M, Cheng Z H, Meng H W, Khan M A, Li H Z.2012. Intercropping with garlic alleviatedcontinuous cropping obstacle of cucumber in plastic tunnel. Acta Agriculturae Scandinavica SectionB-Soil and Plant Science,62(8):696~705
    Xie H, Wang X X, Dai C C, Chen J X, Zhang T.2007. Effects of intercropping peanut with medicinalplants on soil microbial community. Chinese Journal of Applied Ecology,18:693~696
    Xue J C.1994. The soil factors causing physiological defect of vegetable cultivated in protected farmlandand countermeasures. Soil Fertility,1:4~9
    Yang C H, Huang G B, Chai Q, Luo Z X.2011. Water use and yield of wheat/maize intercropping underalternate irrigation in the oasis field of northwest China. Field Crops Research,124:426~432
    Yao H Y, Bowman D, Wei S.2006. Soil microbial community structure and diversity in a turfgrasschronosequence: land-use change versus turfgrass management. Applied Soil Ecology,34:209~218
    Yao H Y, Jiao X D, Wu F Z.2006. Effects of continuous cucumber cropping and alternative rotations underprotected cultivation on soil microbial community diversity. Plant and Soil,284:195~203.
    Ye S F, Yu J Q, Peng Y H, Zheng J H, Zou L Y.2004. Incidence of fusarium wilt in Cucumis sativus L. ispromoted by cinnamic acid, an autotoxin in root exudates. Plant and Soil,263:143~150
    Yu J Q, Matsui Y.1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). Journalof Chemical Ecology,20(1):21-31
    Yu J Q, Matsui Y.1997. Effects of root exudates of cucumber (Cucumis sativus L.) and allelochemicals onion uptake by cucumber seedlings. Journal of Chemical Ecology,23(3):817~827
    Yu J Q, Shou SY, Qian Y R, Zhu Z J, Hu W H.2000. Autotoxic potential of cucurbit crops. Plant and Soil,223:147~151
    Yu J Q, Ye S F, Zhang M F, Hu W H.2003. Effects of root exudates and aqueous root extracts of cucumber(Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber.Biochemical Systematics and Ecology,31:129~139
    Zelles L, Bai Q Y, Ma R X, Rackwitz R, Winter K, Beese F.1994. Microbial biomass, metabolic activityand nutritional status determined from fatty acid patterns and poly-hydroxybutyrate inagriculturally-managed soils. Soil Biology&Biochemistry,26:439~446
    Zhang B C, Huang G B, Li F M.2007. Effect of limited single irrigation on yield of winter wheat andspring maize relay intercropping. Pedosphere,17(4):529~537
    Zhang L, Werf W, Zhang S, Li B, Spiertz J H J.2007. Growth, yield and quality of wheat and cotton inrelay strip intercropping systems. Field Crops Research,103:178~188
    Zhao H C, Zhao H, Wang B C, Wang J B.2005. Effect of local stress induction on resistance-relatedenzymes in cucumber seeding. Colloids and Surfaces B: Biointerfaces,43:37~42
    Zheng Y, Zhang F, Li L.2003. Iron availability as affected by soil moisture in intercropped peanut andmaize. Journal of Plant Nutrition,26:2425~2437
    Zhou H B, Chen J L, Liu Y, Frédéric F, Eric H, Claude B, Sun J R, Cheng D F.2013. Influence of garlicintercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields inChina. Journal of Integrative Agriculture,12(3):467~473
    Zhou X G, Wu F Z.2012. Dynamics of the diversity of fungal and Fusarium communities duringcontinuous cropping of cucumber in the greenhouse. FEMS Microbiology Ecology,80:469~478.
    Zhou X G, Yu G B, Wu F Z.2011. Effects of intercropping cucumber with onion or garlic on soil enzymeactivities, microbial communities and cucumber yield. European Journal of Soil Biology,47:279~287
    Zhu Y G, Smith F A, Smith S E.2002. Phosphorus efficiencies and their effects on Zn, Cu, and Mnnutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. Australian Journal ofAgricultural Research,53:211~216
    Zuo Y M, Li X, Cao Y P, Zhang F S, Christie P.2003. Iron nutrition of peanut enhanced by mixed croppingwith maize: possible role of root morphology and rhizosphere microflora. Journal of Plant Nutrition,26:2093~2110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700