用户名: 密码: 验证码:
红麻对重金属的吸收特征及外源GSH缓解镉毒的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化工、采矿行业的加速发展及农业中大量化肥和农药使用,重金属不可避免地被带入到土壤环境中,破坏了土壤生态环境。农作物吸收重金属进入食物链,进而危害人体健康甚至造成生命威胁。植物修复技术是一种利用植物吸收带走土壤中重金属的技术,具有环保洁净、操作简便、成本低廉、不会造成二次污染等优良特征。
     红麻(Hibiscus cannabinusl)是锦葵科木槿属一年生韧皮纤维作物,又是一种能源植物,不进入食物链,具有耐旱、耐盐碱、速生、生物产量高、根系发达、抗逆性强等特征。我国红麻种质资源库大约有1700多份种质资源,为筛选可用于重金属植物修复的品种奠定了良好的基础。筛选高耐性、高富集重金属且高产优质的品种,不仅对土壤重金属污染修复有重要意义,而且可以带来一定的经济价值。
     本研究主要做了以下工作,对福建闽中南农田土壤环境做了调查和测定,并对种植红麻体内重金属含量进行了测评,研究了红麻对重金属的吸收特征;采用水培实验的方法研究了重金属镉对红麻幼苗生长的影响及红麻镉吸收特征,筛选出了高耐、高富集镉的红麻品种;以水培实验筛选出的四种不同类型的红麻品种为材料,进行盆栽土培实验,进一步研究了红麻对重金属镉的吸收累积特征及其品种间的差异;研究了高耐品种和低耐品种的抗氧化系统对镉胁迫响应的差异;研究镉胁迫对红麻根尖细胞结构的影响;采用蛋白组学的方法研究了镉胁迫下红麻叶片的蛋白组响应及还原型谷胱甘肽对镉胁迫的缓解作用。主要研究结果如下:
     1.闽中南红麻种植田土壤重金属含量及其富集特征的研究
     通过野外采样和室内分析相结合的方法,分析了闽中南4个地点山地农田土壤重金属全量和有效态含量,研究了农田内12个采样点的种植红麻福红952对Cu、Cd、Zn、Cr、Ni和Pb6种重金属的吸收与富集特征。结果表明,漳浦县前亭镇某村山地Cr和Ni平均含量达187.1mg·kg-1和109.5mg·kg-1,分别是土壤环境质量标准(Ⅱ级)的1.3倍和2.7倍,是福建省土壤元素背景值的4.5倍和7.6倍,是全国土壤元素背景值的2.9倍和4.8倍。红麻对重金属的迁移能力较强,当季对Cu最高累积量为251.6g·hm-2;Pb最高累积量为263.4g·hm-2;Zn最高累积量为1021.1g·hm-2;Cr最高累积量为105.0g.hm-2;Cd最高累积量为8.6g·hm-2;Ni最高累积量为112.1g·hm-2;。
     2.不同红麻品种苗期对镉胁迫的适应性、吸收特征及耐性评价
     以53个产自不同地域和表型特征的红麻品种为材料,通过设置Cd浓度为30μM进行水培实验,结果表明Cd胁迫对红麻株高、根长、色素含量、地上部和根系生物量等都有显著影响,且浓度越高对红麻生长影响越大。采用隶属函数对红麻耐性指标进行聚类分析,将红麻品种分为3类:高耐型、中耐型、低耐型。同时,测定了红麻苗期Cd吸收特征和富集量,并对耐性指标和Cd累积总量进一步聚类分析,将供试红麻品种分为4类:高耐高吸收型、高耐低吸收型、低耐低吸收型和低耐高吸收型。
     3.不同基因型红麻品种镉吸收的富集特征
     以四种不同Cd吸收类型中的代表品种为材料,即高耐高吸收型(福红991)、高耐低吸收型(粤743)、低耐低吸收型(ZM412)和低耐高吸收型(福红航992),研究了不同基因型红麻品种镉吸收的富集特征。红麻品种各器官中镉含量随镉浓度增加呈上升趋势,在高耐镉品种各器官中的镉含量顺序:根>茎>叶>麻皮,低耐镉品种各器官中的镉含量顺序:根>叶>茎>麻皮。非施肥和施肥条件下,红麻品种间地上部Cd含量存在着显著差异。当Cd处理浓度为120mg/kg时,在施肥条件下,福红991和福红航992地上部Cd含量均超过100mg/kg,其中福红991达到了117.96mg/kg。在Cd污染浓度为10mg/kg土壤中,如果种植福红航992每年每公顷可以产原麻3662.8kg,同时清除土壤中Cd0.74kg/hm2;在土壤Cd浓度为50mg/kg中,如果种植福红991每年每公顷可以产原麻1400kg以上,同时可以吸附Cd2.58kg/hm2。
     4.红麻抗氧化系统对镉胁迫的响应
     水培实验结果表明,Cd胁迫处理抑制了红麻的生长,福红991和ZM412的抗氧化系统对Cd胁迫处理响应存在显著差异性。SOD、POD和CAT活性在Cd处理梯度上,两个品种均有不同程度的波动,不过福红991的GR活性,在Cd浓度为20μM时达到最大值,随Cd处理浓度不断升高而降低,但仍高于对照,说明了GR在抵御Cd胁迫中的重要性,同时暗示了在不同Cd胁迫水平上,福红991保持了较好的细胞膜稳定性。为了监测Cd污染对红麻生长的影响,福红991的GR活性可以作为生物标记,此外,ZM412的MDA含量可作为生物标记。
     5.不同镉处理浓度对红麻根尖细胞结构的影响
     Cd胁迫处理,导致了红麻根系活力降低和根膜透性增加,说明Cd对红麻根系造成了严重损伤。当Cd浓度较低时,细胞壁和细胞膜出现黑色沉积,将Cd离子挡在原生质之外,起到保护作用,但随着Cd处理浓度的增加,红麻根尖皮层细胞出现质壁分离和原生质膜破裂现象,且细胞内细胞器逐渐减少,核膜和核仁解体,游离在细胞质中,这些超微结构的改变给红麻细胞造成了不可拟的损伤。
     6.添加不同浓度还原型谷胱甘肽对红麻镉毒害的缓解效应
     添加不同浓度GSH,对提高两个基因型红麻幼苗的根长、株高、地上部鲜重、干重及叶绿素含量均有显著效果,在GSH处理浓度为50μM时,两品种的根长与对照之间无明显差异,福红991株高、地上部鲜重和干重与对照无显著差异,当GSH浓度为150μM时,叶片的叶绿素含量基本恢复到对照水平,说明GSH起到了缓解Cd对红麻的毒害作用。对红麻生长相关指标进行综合分析,当GSH浓度为50gM时,GSH对红麻缓解效应达到了一个比较理想阈值,在浓度为100gM时有小幅下降,浓度更高时与50μM相差不大,考虑到GSH应用到环境中治理镉毒害的实用性及价格因素,认为50μM GSH对红麻的镉毒害缓解作用最佳。
     7.红麻叶片蛋白质组对中低浓度镉毒响应的基因型差异及外源谷胱甘肽的缓解效应
     本节研究了50μM GSH对Cd胁迫下红麻叶片蛋白质谱表达的影响及基因型差异。结果表明,在Cd胁迫下ZM412的生长受到更加明显的抑制。经软件分析,鉴定了存在显著差异表达的蛋白点72个,LC-MS/MS质谱分析鉴定出50个差异蛋白点。其中有8个蛋白,在Cd胁迫时上调表达,应该与Cd耐性相关,它们是参与光合作用、防御和运输的蛋白。另外,GSH缓解镉胁迫响应蛋白有21个,这些蛋白是参与光合作用、蛋白质合成、信号转导、防御及能量和物质代谢的蛋白,这些结果可能暗示了,GSH在这些方面的作用提高了红麻耐镉能力。
With the accelerated development of the chemical industry, mining industry and large amounts of chemical fertilizers and pesticides used in agriculture, heavy metals were inevitably brought into the soil with destroying the ecological environment. The crops absorbed heavy metals into the food chain, thereby endangered human health and even life-threatening. Phytoremediation technology was a method of using plants to clear heavy metals from polluted soil, with excellent characteristics of environmental protection, convenient operation, low cost and no secondary pollution.
     Kenaf (Hibiscus:Malvaceae) was an annual bast fiber crop, and it was also an bast fiber plant not entering the food chain Which was drought tolerance, alkali resistant, fast-growing, high productive, rich root, anti-stress. The genetic resources center of kenaf had about over1700germplasm resources, which laid a good foundation for selecting materials of using for phytoremediation. Therefore, selecting materials of high endurance, enrichment and yield was significant to remedy heavy metals in contaminated soil. At the same time, it would brought some economic value.
     In this study, we investigated heavy metal concentrations and bioaccumulation of kenaf growed in south-central farmland of Fujian province. We studied the effects of cadmium on the growth and absorption characteristics of kenaf seedlings by doing hydroponic experiments, and selected varieties which had high resistance and enrichment to cadmium. We did pot culture experiments using the four different varieties which were selected from the hydroponic experiments, studying the characteristics of the accumulation of cadmium between the varieties. Antioxidant system differences in response to cadmium stress were studied between the high resistant varieties and low resistant varieties. By using the proteomics, that responsed to cadmium stress of kenaf leaves and mitigating effect of GSH were studied.
     1. Heavy metal concentrations and bioaccumulation of kenaf growed in south-central farmland of Fujian province.
     By the means of field investigation and laboratory analysis, total contents and Bio-available contents of soil heavy metals were analyzed by collecting samples from cultivated soil in four areas of the center and south of Fujian Province, and uptake and accumulation of Cu, Cd, Zn, Cr, Ni and Pb in12sample sites of Fuhong952were also analyzed. The results showed that Cr(187.1mg-kg"1) and Ni(109.5mg·kg-1) in cultivated soil of Zhangpu far exceeded soil environmental quality standards (grade II), were respectively4.5times and7.6times background value of soil elements in Fujian Province, and is respectively2.9times and4.8times of the background value of soil elements in China Though content of Cd was low in four areas, Bio-available contents accounted for more than15%of total content. The bioaccumulation factor of Cd in kenaf were more than1. The highest accumulation contents of shoots.
     2. Adaptability, accumulation and tolerance evaluation in Cd-stressed kenaf cultivars
     Collected53kenaf varieties from different regions and phenotypic characteristics, the concentration of Cd was30μM in hydroponics experiments. The results showed that Cd stress had significant effects on height, root length, pigment, shoot and root biomass of kenaf plants. The higher the concentration, the greater the impact on kenaf growth. The tolerance index was analyzed in clustering based on the membership function, kenaf varieties were divided into three kinds:high-tolerance, middle-tolerance, low-tolerance. In addition, we measured uptake and accumulation of Cd in seedling stage. The tolerance index and total accumulation were analyzed in clustering. Kenaf varieties were further divided into four kinds:high-tolerance and high-accumulation, high-tolerance and low-accumulation, low-tolerance and high-accumulation, low-tolerance and low-accumulation.
     3. Accumulation of Cd in different kenaf varieties
     Used representative varieties in four types [high-tolerance and high-accumulation (Fuhong991), high-tolerance and low-accumulation(Yue743), low-tolerance and high-accumulation(Fuhonghang992), low-tolerance and low-accumulation(ZM412)] like chapter2as materials, cadmium accumulation kept upward trend in various organs of kenaf with increasing concentration of cadmium, cadmium accumulation in various organs of the high-tolerance:root> stem> leaves> bark, cadmium accumulation in various organs of the low-tolerance:root> leaf> stem>bark. Under unfertilization and fertilization conditions, there were significant differences among shoots accumulation of kenaf varieties, Cd accumulation in shoot of Fuhong991and Fuhonghang992were more than100mg/kg as Cd concentration was120mg/kg, and Fuhong991was up to117.96mg/kg. Fuhonghang992per hectare per year could harvest raw fiber3662.8kg in the soil (Cd,10mg/kg), and remove Cd0.74mg/hm2from polluted soil. Fuhong991per hectare per year can produce raw fiber more than1400kg in the soil (Cd,50mg/kg) and uptake Cd2.58kg/hm2.
     4. Antioxidant system in response to cadmium stress of Kenaf
     Antioxidative enzymes and lipid peroxidation were analysed under control (0.5-strength Hoagland's nutrient solution) or five levels of cadmium stress (0.5-strength Hoagland's nutrient solution containing different concentrations of Cd2+) in two kenaf plants (FuHong991and ZM412), the results showed that cadmium stress effected the growth of Kenaf. In different Cd of enzyme(SOD, POD, CAT) activities, there were fluctuation in different degrees of two varieties FuHong991is more tolerant to cadmium than ZM412. The lipid peroxidation was enhanced only in the leaves of Cd-stressed ZM412. These findings indicate that GR might play important roles in Cd-stressed FuHong991and ZM412and that the leaf and root cell membranes of FuHong991have a greater stability than those of ZM412. For the purposes of pollution monitoring of Cd, the GR activity in the roots and leaves may serve as a biomarker of FuHong991, and MDA might serve as biomarker of ZM412.
     5. Effects Of cadmium stress on kenaf apical cell structure
     This study carried out experiments to investigate changes of shape, inter structures and cell microstructures of kenaf roots under Cd stress using obersvation and biomicroscopic technique. With the increase of Cd concentration, in cells of root cortex plasmolysis and the destruction of plasmalemma became more serious, cell organelles disintegrated completely, nucleus membrane finally disappeared leading to nucleolus and nucleoplasm distributing in cytoplasm, dark sediment distributed in cytoplasm, plasmalemma and vessel walls.
     6. Mitigating effection of cadmium toxicity of Kenaf by adding different concentrations of GSH
     By adding different concentrations of GSH, there were significant effects to increase the root length, plant height, shoot fresh weight, dry weight and chlorophyll content of Kenaf seedlings of two varieties. When concentration of GSH was50μM, there was no significant difference in root length between two varieties and the control. There was no difference in plant height, shoot fresh weight, dry weight between Fuhong991and the control. When the concentration of GSH was150μM, the chlorophyll content of leaves basically recovered to the control levels, which showed that GSH played alleviate toxic effect of Cd on Kenaf. When concentration of GSH was50μM, alleviating effect of GSH reached a more ideal threshold. Comprehensive comparative analysis of results showed concentration of50μM could serve as an effective mitigation of Cd.
     7. The proteomic of Kenaf leaves of different genotypic responsed to Cd stress and alleviating effect of GSH
     By using GSH (50μM), the protein expression map and genotypic difference of Cd stress of Kenaf leaves were studied. The results show that the growth of ZM412was significantly inhibited by Cd stress. By software analysis,72protein spots that existed differential expression were identified. We identified50proteins by LC-MS/MS mass spectrometry analysis.8proteins upregulated the expression under Cd stress. Which should be associated with Cd tolerance, and they were involved in photosynthesis, defense and transport. In addition,21proteins responsed to alleviating Cd stress of GSH, these proteins were involved in photosynthesis, protein synthesis, signal transduction, defense, energy and material metabolism. It suggested that GSH played important role in improving tolerance of Kenaf Cd stress.
引文
[1]Sanita di, Toppi L, Gabrielli R. Response to cadmium in higher Plants. Environmental and ExPerimental Botany,1999,41:105-130.
    [2]余贵芬,青长乐.重金属污染土壤治理研究现状.农业环境与发展,1998,15(4):22-24.
    [3]Ralphp J, Burehett M D. photosynthetic response of Halophilia to the heav y metal stress. Environ Pollution,1998,103:91-101.
    [4]Clemens S. Toxic metal acculnulation, responses to Cd exposure and mecha-nislns of tolerance in Plants. Bioeheme,2006,88:1707-1719.
    [5]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展.土壤通报,2004,35(3):366-370
    [6]郑喜绅,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法.土壤与环境,2002,11(1):79-84.
    [7]吴光红,朱兆洲,刘二保,等.天津城市排污河道沉积物中重金属含量及分布特征.环境科学,2008,29(2):413-420.
    [8]Oliva S R, Espinosa A J F. Monitoring of heavy metals in topsoils, atmos-pheric particles and plant leaves to identify possible contamination sources. M-i croehemical Journal,2007,86(1):131-139.
    [9]邹晓锦,仇荣亮,黄穗虹,等.广东大宝山复合污染土壤的改良及植物复垦.中国环境科学,2008,28(9):775-780.
    [10]骆永明.中国主要土壤环境问题及对策[M].南京:河海大学出版社,2008.26-29.
    [11]Raskin I, Ensley B D. Phytoremediation of toxic metals:using plants to c lean up. Alexander M. Biodegradation and bioremediation. London:Academic Press,1999:61-70.
    [12]戴军,刘腾辉.广州菜地生态环境的污染特征[J],土壤通报,1995,26(3):102-104.
    [13]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006.34(3):549-552.
    [14]赵其国.净土洁食问题[EB].科学时报,http://www.cas.ac.cn/html/Dir/2003/ 06/19/5673.htm.
    [15]山根忠昭,颜景波(译).重金属污染土壤的改良方法[J].农业新技术新方法译丛,1986,(5):1-7.
    [16]Chen H. M. Pollution of Heavy Metals in soil-Plant System[M]. Beijing: Science Press,1996:7-8.
    [17]陈怀满.环境土壤学[M].北京,科学出版社,2005,395-44.
    [18]Roh. Y, N. T. Edwards, et al. Thermal-treated soil for mercury removal:s oil and Phytotoxicity tests[J]. Journal of Environmental Quality,2000,29(2):4 15-424.
    [19]蒋小红,喻文熙,江家华等.污染土壤的物理/化学修复.环境污染与防治[J],2006,28(3):210-214.
    [20]周启星,宋玉芳.污染上壤修复原理与方法[M].北京:科学出版社,2004.
    [21]周东美,邓昌芬.重金属污染土壤的电动修复技术研究进展[J].农业环境科学学报,2003,22(4):505-508.
    [22]Van C. L. Elect Rokinetics Technology Overview RePort[R]. Groundwater Remediation Teehnologies Analysis Centre,1997,1-17.
    [23]Patterson, JW, Passino R. Metals speciation, separation and recovery[M]. Chelsea, MI:Lewis Publishers,1990,77-94.
    [24]陈文清,侯伶龙,刘深等.根际微生物促进下鱼腥草对福的富集作用[J].四川大学学报(工程科学版),2009,41(2):120-124.
    [25]Chaney R L, Minnie M, Li Y M, et al. Phytoremediation of soil metals[J]. Current opinion in biotechnology,1997,8:279-284.
    [26]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    [27]Cunningham S. D, Anderson T. A., Sehwab A P,, et al. Phytoremediation of soils contaminated with organic Pollutants [J]. Advances in Agronomy,1996,56:55-114.
    [28]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    [29]Heaton ACP, Rugh C L, wang N J, et al. Phytoremediation of mercury-and methyl-lmercury-polluted soil using genetically engineered plants[J]. Journal of soil contamination,1998,7(4):497-509.
    [30]惠琳.土壤重金属污染及植物修复技术[J].黑龙江水专学报,2006,33(1):102-104.
    [31]Banuelos G. S, Ajwa H. A, Mackey B, et al. Evaluation of Differentplant Species Used for Phytoremediation of High Soil Eelenium[J]. Jounal of Environmental Quality,1997,26(3):639-646.
    [32]EPA.. A citizen's g uide to Phytoremediation[R].1998.
    [33]郑茂波.钙离子对烟草富集镉量的影响研究[J].黑龙江水专学报,2005,32(2):86-88.
    [34]Salt D. E., Blayloek M., Kumar PBAN, et al. Phytoremediation:Anovel strategy for the removal of toxic metals from the environment using plants [J]. Bio-technology, 1995,13:468-475.
    [35]Salt D.E., Smith R. D., Raskin I. Phytoremediation. Annual Review of Plant Phys-iology and Plant Molecular[J]. Molecular biology,1998,49:643-668.
    [36]Raskin I., Kumar PBAN, Dushenkov S., et al. Bioconcentration of heavy metals Plants[J]. Journal of Current Opinion in Biotechnoloy,1994,5:285-290.
    [37]Lasat. M. M. Phytoextraction of toxic metals:A review of biological mechanisms [J]. Journal of Environmental Quality,2002,31:109-120.
    [38]BakerA. J. M, McGrath S. P., SidoliC. M. D., et al. The possibility of insitu heavy metal decontamination of polluted soil using crops metal-accumulating Plants [J]. Resources, Conservation and Recycling,1994,11:41-49.
    [39]Robisnon B. H., Brooks R, R., Howes A.W., et al. The potential of high-biomass Ni hyperaccumulation Berkheya coddii for Phytoremediation and Phytomining[J]. Journal of Geochemical Exploration,1997,60:115-126.
    [40]Blayloek M. J., Salt D. E, Dushenkov L, et al. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents[J]. Environmental Science and Technoloy,1997,31:860-865.
    [41]Ebbs S D, Lasat M W, Brady D J, et al. Phytoremediation of cadmium and zinc from a contaminated soil[J]. Journal of Environmental Quality,1997,26:1424-1430.
    [42]Wu J, Hsu F C, Cunnlngham S D. Chelate-assisted Pb Phytoextraetion:Pb availability, uptake and translocation constraints[J]. Environmental Scinece and Technology,1999,33:1898-1904.
    [43]Piechalak A, Tomaszewska B, Baralkiewicz D. Enhancing phytoremediative ability of Pisumsativum by EDTA application. Phytochemistry,2003,64:1239-1251.
    [44]Wagner J G Accumulation of cadmium in crop plants and its consequences to human health[J]. Advances in Agronomy,1993,51:173-210.
    [45]Kirkham M B. Cadmium in plants on Polluted soil:Effects of soil factors hyperaccumulation, and amendments [J]. Geoderma,2006,137:19-32.
    [46]Zarcinas B A, Pongsakul P, McLaughlin M J, et al. Heavy metals in soils and crops in Southeast Asia.2[J]. Thailand. Environmental Geochemistry and Health, 2004,26:359-371.
    [47]Herawati N, Suzuki S, Hayashi K, et al. Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia, and China by soil type[J]. Bulletin of Environmental Contamination and Toxicology,2000,64:33-39.
    [48]程衔亮,史舟,朱有为,刘超,李洪义.2006.浙江省优势农产区土壤重金属分异特征及评价.水土保持学报,20(1):103-107.
    [49]Authur B, Crews H., Morgan C. Optimizing plant genetic strategies for minizing environmental contamination in the food chain[J]. Internal Phytoremediation,2000, 2(1):1-21.
    [50]汪雅各,卢善玲,盛沛麟等.蔬菜重金属低累积轮作[J].上海农业学报,1990,6(3):41-49.
    [51]李军辉,卢瑛,尹伟.佛山市某工业区周边蔬菜重金属富集特征的研究[J].华南农业大学学报,2008,29(4):17-20.
    [52]赵秀兰,刘晓.不同品种烟草生长和福及营养元素吸收对福胁迫响应的差异[J].水土保持学报,2009,23(1):117-121.
    [52]黄会一,蒋德明等.木本植物对土壤中隔的吸取、积累和耐性[J].中国环境科学,1989,9(5):323-331.
    [53]Korcak R F. Cadmium distribution in field grown fruit trees[J]. Journal of Environmental Quality,1989,18(4):519-521.
    [54]Klang westin E, Eriksson J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils[J]. Plant and soil,2003,249:127-137.
    [55]张连忠,路克国,杨洪强.苹果幼树铜、锅分布特征与累积规律研究[J].园艺学报,2006,33(1):111-114.
    [56]梁景森,尚鹤,李柏忠等.北京市房山区绿化树种对Cd(镉)的吸收作用[J].林业科学研究,1995,11(2):142-246.
    [57]Sankaran R P, Ebbs S D. Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development[J]. Physiol Plant,2008,132(1):69-78.
    [58]Liu Wei, Shu Wensheng, Lan Chongyu. Viola baoshanensis, a plant that hyperaccumulates cadmium[J]. Chinese Science Bulletin,2004,9(1):29-32.
    [59]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征.环境科学,2005,26(3):167-171.
    [60]YE Hai-Bo, YANG Xiao-E, HE Bing, et al. Growth Response and Metal Accumulation of Sedum alfredii to Cd/Zn Complex-Polluted Ion Levels[J]. Acta Botanica Sinica,2003,45(9):1030-1036.
    [61]K. D. CARLSON, et al. Performance and trace metal content of carmbe and kenaf grown on sewage sludge-treated stripmine land[J]. Enrironraental Pollution (Series A),1982,29:145-161.
    [62]KURIHARA HIROYUKI, WATANABE MIO, HAYAKAWA TAKAHIKO. Phytoremediation with Kenaf (Hibiscus cannabinus) for Cadmium-Contaminated Paddy Field in Southwest Area of Japan[J]. Japanese Journal of Soil Science and Plant Nutrition,2005,76(1):27-34.
    [63]Arbaoui S, Evlard A, Mhamdi M E, et al. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals[J]. Biodegradation,2013, pubulished online.
    [64]G Nabulo, C. R. Black, S. D. Young. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge[J]. Environmental Pollution,2011, 159:368-376.
    [65]Babatunde Saheed Bada, Kamar Adekunle Raji. Phytoremediation potential of kenaf (Hibiscus cannabinus L.) grown in different soil textures and cadmium concentrations[J]. African Journal of Environmental Science and Technology,2010, 4(5):250-255.
    [66]Kovalchuk O, Titov V Hohn B, Kovalchuk I. A sensitive transgenic plant system to detect toxic inorganic compounds in the environment[J]. Nature Biotechnology, 2001,19:568-572.
    [67]Tschuschke S, Schmitt-Wrede H P, Greven H, Wunderlich F. Cadmium resistance conferred to yeast by a non-metallothionein-encoding gene of the earthworm Enchytraeus[S]. Journal of Biological Chemistry,2002,277:5120-5125.
    [68]Liao V H, Dong J, Freedman J H. Molecular characterization of a novel, Cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity[J]. Journal of Biological Chemistry,2002,277:42049-42059.
    [69]Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure[J]. Journal of Experimental Botany,2003,54:1833-1839.
    [70]Leustek T, Saito K. Sulfate transportand assimilation in plants [J]. Plant Physiology,1999,120:637-643.
    [71]Heiss S, Schafer H J, Haag-Kerwer A, Rausch T. Cloning sulfur assimilation genes of Brassica juncea L:cadmium differentially affects the expression of a putative low-affinity sulfate transport and isoforms of ATP sulfurylaseand APS reductase[J]. Plant Molecular Biology,1999,39:847-857.
    [72]Nocito F F, Pirovano L, Cocucci M, Sacchi G A. Cadmium-induced Sulfate uptake in maize roots[J]. Plant Physiology,2002,129:1872-1879.
    [73]Zhu Y L, Pilon-Smits EAH, Jouanin L, Terry N. Overexpression Of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance[J]. Plant Physiology,1999,119:73-79.
    [74]Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N. Cadmium tolerance and accumulation in Indianm ustard is enhanced by overexpressing γ-glutamylcysteine synthetase[J]. Plant Physiology,1999b,121:1169-1177.
    [75]Xiang C, Oliver D J. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis[J]. Plant Cell,1998,10:1539-1550.
    [76]Cobbett C S, Goldsbrough P. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology,2002,53:1 59-182.
    [77]Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure [J]. Journal of Experimental Botany,2003,54:1833-1839.
    [78]Garnieret J, Cebron A,Tallec G, Billen G, Sebilo M, Martinnz A. Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed[J]. Biogeochemistry,2006, 77:305-326.
    [79]Noctor G, Foyer, C H Ascorbate and glutathione:keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49: 249-279.
    [80]Iannelli M A, Pietrini F, Fiore L, Petrilli L, Massacci A. Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology and Biochemistry,2002, 40:977-982.
    [81]Shah K, Kumar R G, Verma S, Dubey R S. Effect of cadmium on lipid peroxide tion, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science,2001,161:1135-1144.
    [82]Sandalio L M, Dalurzo H C, Gomez M, Romero-Puertas M C, Del Rio L A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants[J]. Journal of Experimental Botany,2001,52:2115-2126.
    [83]Jacob C, Courbot M, Brun A, Steinman H M, Jacquot Ja, BoRon B, Chalot M. Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus[J]. European Journal of Biochemistry,2001,268:3223-3232.
    [84]Connolly E L, Fett J V, Guerinot M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation[J]. Plant Cell, 2002,14:1347-1357.
    [85]Pence N S, Larsen PB, Ebbs S D, et al. The molecular physiology of heavy metal transporter in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J]. Proceedings of the National Academy of Sciences ofthe United States ofAmerica,2000,97: 4956-4960.
    [86]Mills RF, Krijger G C, Baccarini P J, et al. Functional expression of AtHMA4, a Pro-type ATPase of the Zn/Co/Cd/Pb subclass. Plant Journal,2003,35:164-176.
    [87]Bernard C, Roosens N, Czernie P, et al. A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens[J]. FEBS Letters,2004,569:140-148.
    [88]Thomine S, Wang R, Ward J M, et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000,97:4991-4996.
    [89]Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis[J]. Planta,2001,212:475-486.
    [90]Gravot A, Lieutaud A, Verret F'Auroy P, et al. AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast[J]. FEBS Letters,561:22-28.
    [91]Hall J L, Williams L E. Transition metal transporters in plants[J]. Journal of Experimental Botany,2003,54:2601-2613.
    [92]Hirschi K D, Korenkov V D, Wilganowski N L, Wagner G J. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance[J]. Plant Physiology,2000,124:125-133.
    [93]Leonardi A, Damerval D, de Vienne D. Organ-specific variability and inheritance of maize proteins revealed by two-dimensional electrophoresis[J]. Genet. Res. Camb., 1988,52(1):97-103.
    [94]Kleffmann T, Russenberger D, von Zychlinski A, et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions[J]. Curr. Biol,2004,14(5):354-362.
    [95]Barreneche T, Bahrman N, Kremer A. Two-dimensional gel electrophoresis confirms the loe level of genetic differentiation between Quercus robur L and Quercus petraea (Matt) Liebl[J]. Forest Genet,1996,3(1):89-92.
    [96]Gallardo K, Signor C L, Vandekerckhove J, et al. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation[J]. Plant Physiol,2003,133(9):664-682.
    [97]Hajheidari M, Abdollahian-Noghabi M, Askari H, et al. Proteome analysis of sugar beet leaves under drought stress[J]. Proteomics,2005,5(4):950-960.
    [98]KANATA P A, HENRYK P. Trace elements in soils and plants[M]. NewYork: CRC Press,2000.
    [99]BERNHARD A Z, CHE F I, MIKE J M, et al. Heavy metals in soils and crops in southeast Asia. Peninsular Malay sia[J]. Environmental Geochemistry and Health, 2004,26:343-357.
    [100]MAPAND A F, MANGWA Y E N, NYAM A R, et al. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe[J]. Physics Chemistry of the Earth,2007,32:1399-1405.
    [101]丛源,郑萍等.北京农田生态系统土壤重金属元素的生态风险评价[J].地质通报,2008,27(5):681-688.
    [102]余江等.福建省菜园土壤重金属的含量及其污染评价[J].环境化学,2009,26(6):934-939.
    [103]马祥庆,侯晓龙..福建省城市垃圾及其渗滤液的重金属污染[J].福建农林大学学报(自然科学版),2007,36(5):515-519.
    [104]张金彪.福建省耕地土壤重金属含量和可浸提性研究[J].应用生态报,2003,14(2):273-276.
    [105]贾琳,杨林生,欧阳竹,等.典型农业区农田土壤重金属潜在生态风险评价[J].农业环境科学学报,2009,28(11):2270-2276.
    [106]SALT D E, BLAYIOCK M, KUMAR B A, et al. Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants [J]. Biotechnology,1995,13(5):468-474.
    [107]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报[J],2001,21(7):1196-1203.
    [108]程舟,鲛岛一彦,陈家宽.日本的红麻研究、加工和利用[J].麻业科学,2001,3(5):1671-1683.
    [109]王国庆等.红麻对Cu和Cu-EDDS的吸收和富集[J].土壤(Soils),2006, 38(5):626-631.
    [110]HO W M, ANG L H, LEE D K. Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscuscannabinus L.) for phytoremediation of sand tailings[J]. Journal of Environmental Sciences,2008,20:1341-1347.
    [111]冉永亮,邢维芹,梁爽,等.华北平原地区某铅冶炼厂附近土壤重金属有效性研究[J].生态毒理学报,2010,5(4):592-598.
    [112]王学礼,常青山,侯晓龙,等.三明铅锌矿区植物对重金属的富集特征[J].生态环境学报,2010,19(1):108-112.
    [113]WEI P C, ANDREW C C, LAO S W, YONG S Z. Metal uptake by corn grown on media treated with particle-size fractionated biosolids[J]. Science of the total environment,2008,392:166-173.
    [114]余江,黄志勇,陈婷,秦德萍.福建省菜园土壤重金属的含量及其污染评价[J].环境化学,2009,28(6):934-939.
    [115]国家环境保护局科技标准司.土壤环境质量标准(GB 15618-1995)[M].北京:科学出版社,1995.
    [116]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [117]赵明,蔡葵等.不同施肥处理对番茄产量品质及土壤有效态重金属含量的影响[J].农业环境科学学报,2010,29(6):1072-1078.
    [118]Xue S G, Chen Y X, LUO Y M. Mangse tolerance and hyperac-cumulation of phytolacca acinosa roxb[J]. Acta pedologica sinica,2004,6:889-895.
    [119]钟晓兰,周生路等.模拟酸雨对土壤重金属镉形态转化的影响[J].土壤(soils),2009,41(4):566-571.
    [120]杨海征,胡红青,黄巧云等.堆肥对重金属污染土壤Cu、Cd形态变化的影响[J].环境科学学报,29(9):1842-1848.
    [121]LI M H, HUANG X M, et al. Effects of Sludge for Agricultural Use on Content Changes of Different Forms of Soil Heavy Metal[J]. Journal ofAnhui Agri. Sci.,2008,36(23):10156-10158.
    [122]杨蕊梅,于天富.肥料及农药的使用对农田的影响[J].内蒙古农业科技,2011,1:107-108.
    [123]佘玮,揭雨成,邢虎成.湖南石门、冷水江、浏阳3个矿区的苎麻重金属含量及累积特征[J].生态学报,2011,31(3):874-881.
    [124]佘玮,揭雨成等.湖南冷水江锑矿区苎麻对重金属的吸收和富集特性[J].农业环境科学学报,2010,29(1):91-96.
    [125]CAIQ S, SHI G R. Cadmium tolerance and accumulation in eight potential energy crops[J]. Biotechnology Advances,2009,27:555-561.
    [126]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,3(20):514-523.
    [127]杨居荣,架建群等.农作物Cd耐性的种内和种间差异Ⅰ.种间差[J].应用生态学报,1994,2(5):192-196.
    [128]杨居荣,架建群等.农作物Cd耐性的种内和种间差异Ⅰ.种内差[J].应用生态学报,1995,6(增刊):132-136.
    [129]熊和平等.麻类作物育种学[M].2008,中国农业科学技术出版社.
    [130]Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions,1983,11:591-592.
    [131]Rout G R., Samantaray S., P. Das. P. Differential Cadmium Tolerance of Mung Bean and Rice Genotypes in Hydroponic Culture[J]. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science,1999,49(4):234-241.
    [132]陶向新.模糊数学在农业科学中的初步应用[J].沈阳农业大学学报,1982.
    [133]Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophyll and b of leaf extracts in different solvents[J]. Biochemical Society Transactions,1983,11:591-592.
    [134]吴启堂,陈卢等.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报,1999,19(1):104-107.
    [135]刘俊,廖柏寒,周航等.搞胁迫下大豆生长发育的生理生态特征[J].生态学报,2010,30(2):333-340.
    [136]夏增禄,穆丛如等.Cd、Zn、Pb及其相互作用对烟草小麦的影响[J].生态学报,1984,4(3):231-236.
    [137]纪淑娟,王俊伟,黄莉萍等.重金属福胁迫对小麦生长的影响及小麦锅污染预测的研究[J].粮食加工,2008,33(1):51-53.
    [138]佘玮,揭雨成等.苎麻耐镉品种差异及其筛选指标分析[J].作物学报,2011,37(2):348-354.
    [139]Singh B. R., NarwalR. P., Jeng A. S., et al. Crop uptake and extractability of cadmium in soil naturally high inmetals at different PH levels [J]. Soil Science Plant Analysis,1995,26(13/14):2123-2142.
    [140]Ye Z H., Baker A, J. M., Wong M. H., et al. Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, phragmitesaust ralis (Gav.) Trin. ex Steudel[J]. Annals of Botany,1997,80(3):363-370.
    [141]Raskin H., Ensley B. D. Phytoremediation of Toxic Metals:Using Plant to Clean up the Environment M]. John Wiley and Sons, Inc., London,1999,193-230.
    [142]Brooks, et al. Plants that hyperaccumulate heavy metals:Their role in phytoremediation, microbiology, archeology, mineral exploration and phytomining[J]. Cambridge Univ. Press,1998, Cambridge.
    [143]郑海龙,陈杰,邓文靖等.城市边缘带土壤重金属空间变异及其污染评价[J].土壤学报,2006,43(1):39-45.
    [144]Yoon J, Cao X D, Zhou Q X, et al. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site[J]. Total Environ,2006,368:456-464.
    [145]HO W M, ANG L H, LEE D K. Assessment of Pb uptake, translocation and immobilization in kenaf(Hibiscuscannabinus L.) for phytoremediation of sand tailings[J]. Journal of Environmental Sciences,2008,20:1341-1347.
    [146]王国庆等.红麻对Cu和Cu-EDDS的吸收和富集[J].土壤(Soils),2006, 38(5):626-631.
    [147]国家环境保护局科技标准司.土壤环境质量标准(GB 15618-1995)[M].北京:科学出版社,1995.
    [148]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1993:299-302.
    [149]许文宝,谢志南等.龙眼对镉的吸收分布特性及耐性研究[J].亚热带植物科学,2007,36(03):1-3.
    [150]黄冬芬,奚岭林等.不同耐镉基因型水稻农艺和生理性状的比较研究[J].作物学报,2008,34(5):509-517.
    [151]佘玮.苎麻对重金属吸收和积累特征及镉胁迫响应基因表达研究.湖南:湖南农业大学博士论文,2010.
    [152]Ma J F, Ueno D, Zhao F J, et al. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens[J]. Planta,2005,220: 731-736.
    [153]Salt D E, Prince R C, Backer AJM, et al. Zinc ligands in the metal hyperaccumulator Thlaspicaerulescensas determined using X-ray absorption spectroscopy[J]. Environ. Sci. Technol,1999,33:713-717.
    [154]Dinakar N, Nagajyothi P C, Suresh S, et al. Phytotoxicity of cadmium on protein, proline And antioxidant enzyme activities in growing Arachis hypogaea L. seedlings [J]. Environ. Sci, 2008,20:199-206.
    [155]杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制[J].植物营养与肥料学报,2002,8:8-15.
    [156]Salt D E., Pickering I J., Prince R C, et al. Metal accumulation by aquacultured seedlings of India mustard[J]. Environmental Science and Technology,1997, 31:1636-1644.
    [157]Ye Z H, Baker A J M, Wong M H, Willis A J. Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmitesaust ralis (Gav.) Trin. ex Steudel[J]. Annal of Botany,1997,80:363-370.
    [158]BrooksR R, Lee J, Reeves R D. Detection of nickliferous rocks by analysis of herbarium species of indicator plants[J]. Geochem. Explor,1977,7:49-77.
    [159]She Wei, Jie Yu-Cheng, Xing Hu-Cheng, et al. Absorption and accumulation of cadmium by ramie (Boehmeria nivea) cultivars:A field study [J]. Acta Agriculturae Scandinavica, B,2011,61(7):641-647.
    [160]王凯荣,龚惠群.兰麻(B. nivea(L). Gaud)对土壤Cd的吸收及其生物净化效应[J].环境科学学报,1998,18(5):509-516.
    [161]Ali N A, Bernal M P, Ater M. Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copp-er, and zinc. Aquatic Botany,2004,80:163-176.
    [162]Simmons R W, Noble A D, Pongsakul P, Sukreeyapongse O, Chinabut N. Analysis of field moist Cd contaminated paddy soils during rice grain fill allows reliable prediction of grain Cd levels. Plant Soil,2008,320:125-137.
    [163]Xu W F, Shi W M, Yan F, Zhang B, Liang J S. Mechanisms of cadmium detoxification in cattail (Typhaangustifolia L.). Aquatic Botany,2011,94:37-43.
    [164]Dalcorso G, Farinati S, Maistri S, Furini A. How plants cope with cadmium: staking all on metabolism and gene expression. Journal of Integrative Plant Biology, 2008,50:1268-1280.
    [165]Garnieret J, Cebron A,Tallec G, Billen G, Sebilo M, Martinnz A. Nitrogen behaviour and nitrous oxide emission in the tidal Seine River estuary (France) as influenced by human activities in the upstream watershed. Biogeochemistry,2006,77: 305-326.
    [166]Lin Y L, Chao Y Y, Huang W D, Kao C H. Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings. Plant Growth Regulation,2011, 64:263-273.
    [167]Noctor G, Foyer, C H. Ascorbate and glutathione:keeping active oxygen under contr-ol. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49:249-279.
    [168]Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thiobarbit-uric acid reaction. Analytical Biochemistry,1979,95:351-367.
    [169]Yannarelli G G, Gallego S M, Tomaro M L. Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons. Environmental and Experimental Botany,2006,56:174-181.
    [170]Webber C L, Bledsoe R E. Kenaf:Production, harvesting, processing, and products. In:Janick J, Simon J E, eds., New Crops. VCH, Wiley.1993. pp.416-421.
    [171]Othmana M R, Akil H M, Kimc J. Carbonaceous Hibiscus cannabinus L. for treatment of oil- and metal-contaminated water. Biochemical Engineering Journal, 2008,41:171-174.
    [172]Lam T B T, Hori H, Liyama K. Structural characteristics of cell walls of kenaf (Hibiscus cannabinus L.) and fixation of carbon dioxide. Journal of Wood Science, 2003,49:255-261.
    [173]Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H. Kenaf reinforced biod-egrada-ble composite. Composites Science and Technology,2003,63: 1281-1286.
    [174]Carlson K D, Cunninghanm R L, Carcia W J, Bagby M O, Kwole W F. Performance and trace metal content of crambe and kenaf grown on sweage sludgetreated stripmine land. Enviromental Pollution,1982,29:145-161
    [175]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemitry,1976,72:248-254.
    [176]Beauchamp C, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry,1971,44:276-287.
    [177]Beer R F, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry,1952,195: 133-140.
    [178]Carlberg I, Mannervik B. Glutathione reductase. Methods in Enzymology,1985, 113:488-495.
    [179]Egley G H, Paul R N, Vaughn K C, Duke S O. Role of peroxide in the developpment of wat- er impermeable seed coats in Sida spinosa L. Planta,1983,157: 224-232.
    [180]Kosugi H, Kikugawa K. Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid. Lipids,1985,20:915-920.
    [181]Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. International Series of Numerical Mathematics,1997,51:121-124.
    [182]Griffith O W. Determination of glutathione disulphide using glutathione reductase and 2-vi-nylpyridine. Analytical Biochemistry,1980,106:207-212.
    [183]Cakmak K B, Horst W J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in rot tips of soybean (Glycine max). Plant Physiol,1991,83:463-468.
    [184]Asada K. Production and action of active oxygen species in photosynthetic tissues. In Foyer C H, Mullineaux P M, eds., Causes of photooxidative stress and Amelioration of defense systems in Plants. VCH, CRC Press Inc.1994. pp.77-104.
    [185]Stevens R G, Creissen G P, Mullineaux P M. Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Molecular Biology,1997,35:641-654.
    [186]Lawal A O, Ellis E M. The chemopreventive effects of aged garlic extract against Cadmium-induced toxicity. Environmental Toxicology and Pharmacology, 2011,32:266-274.
    [187]Chaoui A, Mazhoudi S, Ghorbal M H, et al.Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus ulgaris L.). Plant Science,1997,127:139-147.
    [188]Hegedu A, Erdei S, Horvath G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science, 2001,160:85-93.
    [189]Olmos E, Martinez-Solano JR, Piqueras A, et al. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). Journal of Experimental Botany,2003,54:291-301.
    [190]Tiryakioglu M, Eker S, Ozkutlu F, et al. Antioxidant defense system and cadmium upt-ake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology,2006,20:181-189.
    [191]Smeets K, Ruytinx J, Semane B, Van B F. Cadmium induced trans-cripti onal and enzymatic alterations related to oxidative stress. Environmental a-nd Ex perimental Botany,2008,63:1-3.
    [192]Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolera nce. Annual Review of Plant Physiology and Plant Molecular Biology,1992,4 3:83-116.
    [193]Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist,1993,125:27-58.
    [194]Zhang F Q, Wang Y S, Lou Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere,2007, 67:44-50
    [195]Siedlecka A, Krupa Z. Functions of enzymes in heavy metal treated plants. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. VCH. Kluwer academic.2002. pp.314-317.
    [196]Scebba F, Arduini I, Ercoli L, et al. Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biologia Plantarum,2006,50:688-692.
    [197]Qadir S, Qureshi MI, Javed S, et al. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Science,2004,167: 1171-1181.
    [198]Mishra S, Srivastava S, Tripathi R D, et al. Phyto-chelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry,2006,44:25-37.
    [199]Lin R Z, Wang X R, Luo Y, et al. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.) Chemosphere,2007,69:89-98.
    [200]Luo H J, Li H Y, Zhang X Z, et al. Antioxidant responses and gene expression in Perennial ryegrass(Lolium perenne L.) under cadmium stress. Ecotoxicology,2011, 20:770-778.
    [201]Metwally A, Finkemeier I, Georgi M, et al. Salicylic acidalleviates the cadmium toxicity in barley seedlings. Plant physiology,2003,132:272-281
    [202]Perrin D D, Watt A E.1971. Complex formation of zinc and cadmium with glutathione.
    [203]Vogeli L R, Wagner G J. Relationship between cadmium, glutathione and cadmium binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Science,1996,114:11-18.
    [204]Tobias Henzler and Ernst Steudle. Transport and metabolic degradation of hydrogen peroxide in Chara corallina:model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany,2000,51:2053-2066.
    [205]Hasegawa P M, Bressan P A, et al. Plant cellular and molecular response to high salinity. Anne Rev Plant Physiol Mol Biol,2000,51:463-499.
    [206]严小龙,廖红,戈振扬等.植物根构型与磷吸收[J].植物学通报,2000,60(3)236-241.
    [207]倪才英,李华,骆永明等.铜、镉及其交互作用对泡泡草细胞超微结构的影响[J].环境科学学报,2004,24(2):343-348.
    [208]Panou-Filotheou H, Bosabalidis A M. Root structural aspects associated with copper toxicity in plants to copper stress. I. Growth, mineral content and ultrastructure of roots[J]. Environ. Exp. Bot.,1995,35:167-176.
    [209]吴韶辉,蔡妙珍,刘鹏.低pH和铝毒对荞麦根边缘细胞特性的交互作用研究[J].土壤学报,2008,45(2):336-340.
    [210]卫星,刘颖,陈海波.黄波罗不同根序的解剖结构及其功能异质性[J].植物生态学报,2008,32(6):1238-1247.
    [211]倪才英,陈英旭,骆永明等.红壤模拟铜污染下紫云英根表形态及其组织和细胞结构变化[J].环境科学,2003,24(3):116-121.
    [212]Liu J, Xiong ZT. Differences in accumulation and physiological response to copper stress in three populations of Elsholtzia haichowensis S[J]. Water Air Soil Pollut,2005,168:5-16.
    [213]李永华,杨林生,姬艳芳等.铅锌矿区土壤-植物系统中植物吸收铅的研究[J].环境科学,2008,29(1):196-201.
    [214]纳明亮,徐明岗,张建新.我国典型十壤上重金属污染对番茄根伸长的抑制毒性效应[J].生态毒理学报,2008,3(1):81-86.
    [215]Bhavsar SP, Diamond ML, Evans LJ, Gandhi N, Nilsen J, Antunes P.Development of a coupled metal speciation-fate model for surfacea quatic systems[J]. Environ Toxicol Chem,2003,23:1376-1385.
    [216]倪才英,陈英旭,骆永明等.红壤模拟铜污染下紫云英根表形态及其组织和细胞结构变化[J].环境科学,2003,24(3):116-121.
    [217]徐明岗,纳明亮,张建新.红壤中Cu、Zn、Pb污染对蔬菜根伸长的抑制效应[J].中国环境科学,2008,28(2):153-157.
    [218]胡星明,王丽平,杨坤.城市道路旁小蜡叶片对重金属的富集特征[J].环境化学,2009,28(1):89-93.
    [219]A. Brennan, M. L. Shelley, A odel of the ptake, translocation, and ccumulation of Pb(Pb) by maize for the purpose of phytoextraction[J], Ec01. Eng,1999,12,27 1-297.
    [220]麦维军,张明永.高等植物体内的谷胱甘肽[J].生物学通报,2005,40:4-5.
    [221]Ursini F, Miaorino M, et al. Diversity ofglutathione peroxides [J]. Methods Enzymol.,1995,252:38-53.
    [222]Yoshimura K, Miyao K, et al. Enhancement of stress tolerance in trans genic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplast or cy-tosol [J]. Plant J.,2004,3(1):21-33.
    [223]Foctor G, Foyer CH. Ascorbate and glutathione:keeping active oxygen u nder control [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol,1998,49:249-279
    [224]Asada K. The water-water cycle in chloroplasts:scavenging of active ox ygens and dissipation of excess photons[J]. Annu. Rev. Plant Physiol. Mol. Biol, 1999,50:601-639.
    [225]Singhal RK, Anderson ME, Meister A. Glutathione, a first line of defense against cad-mium toxicity[J]. FASEB J.,1987,1(3):220-223.
    [226]Milone MT, Sgherri C, Clijster H, et al.Antioxidant responses of wheat t reatment with realistic concentration of cadmium[J]. Environ. Exp. Bot.,2003,5 0:265-276.
    [227]Jing Dong, Feibo Wu, Guoping Zhang. Influence of cadmium on antioxida nt capacity and four microelement concentrations in tomato seedlings (Lycopersi con esculentum) [J]. Chemosphere,2006,64:1659-1666.
    [228]Kang, Y. J. Exogenousg lutathione decreases cellular cadmium uptake and toxicity[J]. Drug Metab. Dispos,1992,20:714-718.
    [229]Lima AlG, Corticeiro Sc and Figueira EMAP. Glutathione-mediated cadmi um Sequestration in Rhizobium leguminosarum[J]. Enzyme Microb. Tech.,2006, 39:763-769.
    [230]Tsuji N, Hirayanagi N, et al. Regulation of phytocbelatin synthesis by zi nc and cadmium in marine green alga,Dunaliella tertio-letca[J]. Phytochemistry, 2003,62:453-459.
    [231]Milone M T, Sgherri C, Clijster H, Navari-Izzo F Antioxidant responses of wheat treatment with realistic concentration of cadmium[J]. Environ. Exp. B ot.,2003,50:265-276.
    [232]Jing Dong, Feibo Wu, Guoping Zhang. Influence of cadmium on antioxida nt capa-city and four microelement concentrations in tomato seedlings (Lycope rsicon esculentum) [J]. Chemosphere,2006,64:1659-1666.
    [233]CobbettC, Goldsbrough P. Phytochelatins and metalothioneins:roles in heavy metal detoxifieation and homeostasis[J]. Annual Review of Plant Physiology and Plant Moleeular Biology,2002,53:159-182.
    [234]Singhal RK, Anderson ME, Meister A. Glutathione, a first line of defense against cad-mium toxicity[J]. FASEB J.,1987,1(3):220-223.
    [235]罗玲,2008.捕光色素蛋白复合物的研究进展[J].现代农业科技,22:270-276.
    [236]Nelson N, Ben Shem A. The structure of photosystem I and evolution of photosynthesis[J]. Bioessays,2005,27:914-922.
    [237]Jansson S. A guide to the Lhc genes and their relatives in Arabidopsis[J]. Trends Plant Sci.,1999,4:236-240.
    [238]Xiaobing Shi, Jiamian Wei, Yungang Shen. Insights into the subunit interactions of the chloroplast ATP synthase[J]. Chinese Science Bulletin,2002,47:58-62.
    [239]Ibrahim R. I. H., Azuma J., Sakamoto M. Complete nucleotide sequence of the cotton (Gossypium barbadense L.) chloroplast genome with a comparative analysis of sequences among 9 dicot plants[J]. Genes Genet. Syst.,2006,81:311-321.
    [240]王义琴,张利明,李文彬,孙勇如.植物病原相关蛋白研究进展[J].生物 工程进展,2000,20(5):36-38.
    [241]Ohme-Takagi, M., and Shinshi, H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell,1995,7:173-182.
    [242]Qadir S, Qureshi MI, Javed S, et al. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress[J]. Plant Science,2004, 167:1171-1181.
    [243]Mishra S, Srivastava S, Tripathi R D, et al. Phyto-chelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L[J]. Plant Physiology and Biochemistry,2006,44:25-37.
    [244]Kaminaka H., Morita S., Nakajima M., et al. Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.) [J]. Plant Cell Physiol.,1998, 39:1269-1280.
    [245]Cakmak K B, Horst W J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in rot tips of soybean (Glycine max) [J]. Plant Physiol,1991,83:463-468.
    [246]Siedlecka A, Krupa Z. Functions of enzymes in heavy metal treated plants[M]. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. VCH. Kluwer academic.2002. pp.314-317.
    [247]Musgrove J.E., Johnson R.A., Ellis R.J. Dissociation of the Ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits[J]. Eur. J. Biochem.,1987,163:529-534.
    [248]Nwugo CC.2008. Physiological and moleeular studies on silicon-induced cadmium tolerance in rice (OryzasativaL.)[D]. Miami:Miamiuniversity.
    [249]Rodriguez-Suarez R. J., Wolosiuk R. A. Sequence of a cDNA encoding chloroplast fructose-1,6-bisphosphatase from rapeseed[J]. Plant Physiol.,1993,103: 1453-1454.
    [250]Chan A.P., Crabtree J., Zhao Q., et al.Draft genome sequence of the oilseed species Ricinus communis[J]. Nat. Biotechnol.,2010,28:951-956.
    [251]J Meurer, H Plucken, K V Kowallik, P Westhoff. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana[J]. EMBO J.,1998,17(18):5286-5297.
    [252]Robert J.. Evolution of heat shock protein and immunity[J]. Dev. Comp. Immunol,2003,27 (6-7):449-64.
    [253]Choi Y. A., Lee J. S., Kwon Y. M. Molecular cloning and characterization of a plastid chaperonin 60 alpha subunit from Canavalia lineata[J]. Mol. Cells,1998,8: 491-495.
    [254]Rhee S, Chae H, Kim K. Peroxiredoxins:a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling[J]. Free Radic Biol. Med.,2005,38 (12):1543-52.
    [255]Wood Z, Schroder E, Robin Harris J, Poole L. Structure, mechanism and regulation of peroxiredoxins[J]. Trends Biochem Sci,,2003,28 (1):32-40.
    [256]冀先领等.桑树景天庚酮糖-1,7-二磷酸酶基因的克隆、原核表达与植物表达载体的构建[J].林业科学,2008,44(3):62-69.
    [257]Meiling Wang, Huangai Bi, Peipei Liu, Xizhen Ai. Molecular cloning and expression analysis of the gene encoding sedoheptulose-1,7-bisphosphatase from Cucumis sativus[J]. Scientia Horticulturae,2011,129:414-420.
    [258]曾娟等.大豆疫霉甘油醛-3-磷酸脱氢酶基因在病原物植物互作中诱导表达及其抗氧化作用在酵母遗传互补系统中的功能验证[J].科学通报,2006,51(10):1175-1181.
    [259]Hu T. T., Pattyn P., Bakker E. G., et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change[J]. Nat. Genet.,2011,43:476-481.
    [260]Wei Z Y, Xue Y Y, Xu H, GongW M. Crystal strueture of the C-terminal Domain of S.eerevisiae Eifs[J]. J. Mol. Biol.,2006,359:1-9.
    [261]Yamamaoto S, Sippel K C, Berson E L, et al. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness[J]. Nature Genet,1997,15: 175-178.
    [262]Chan A. P., Crabtree J., Zhao Q.,,et al. Draft genome sequence of the oilseed species Ricinus communis [J]. Nat. Biotechnol.,2010,28:951-959.
    [263]Carpentier SC, Witters E, Laukens K, et al. Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics,2005,5(10):2497-2507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700