用户名: 密码: 验证码:
X80管线钢宽厚板控轧控冷工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以东北大学轧制技术及连轧自动化国家重点实验室承担的“首钢宽厚板品种开发项目”为背景,通过实验室热模拟实验、热轧实验及现场工业试轧,研究了X80管线钢的高温热变形行为及控轧控冷工艺参数对组织及性能的影响,论
     1.利用Gleeble2000热模拟机,进行了单道次压缩实验,得到了实验钢的真应力-应变曲线,研究了管线钢的高温热变形行为,计算了动态再结晶过程的激活能、Z参数,建立了实验钢的变形抗力模型。
     2.通过实验室热轧实验,研究了三种不同化学成分的实验钢在不同TMCP工艺条件下的组织与性能,发现主要成分为0.045%C,1.778%Mn,0.042%Nb,0.046%V,0.02%Ti,0.29%Mo的实验钢在再轧温度854℃、终轧温度802℃、终冷温度550℃、冷却速率15.6℃/s时可获得Rto.5=605MPa、Rm=755MPa、A50mm%=46的良好力学性能,以及-20℃平均夏比冲击功287J,剪切面积97%的良好冲击韧性。
     3.通过轧制过程的离线模拟及在线水冷单体试验,校核了首秦4300mm宽厚板轧机的轧制能力及ACC冷却系统的水冷能力。结果表明,其轧制能力及水冷强度满足X80管线钢工艺要求。
     4.通过一轮的现场工业试轧,摸索了X80管线钢的工艺参数与性能的关系。结果表明,随着终冷温度的升高,组织中针状铁素体的含量减少,多边形铁素体含量增多。由于本次试验终冷温度控制较高,导致针状铁素体较少,钢板的强度偏低,而且其落锤结果(DWTT)不理想。
The thesis is combined with the project of The steel grade development of Shougang Group by the State Key Laboratory of Rolling Technology and Automation of Northeastern University. Hot simulation experiments, hot rolling experiments in laboratory and industrial experiments had been carried out; the high temperature deformation behavior and effect of thermo-mechanical control process on microstructure and mechanical properties of X80 pipeline steel were investigated. Main studies are rendered as follows:
     1. The single pass thermo-simulation compression experiment was carried out using Gleeble2000 hot simulation machine. The true stress-strain curves were obtained. The high temperature deformation behavior was researched and the activation energy of dynamic recrystallization and parameter Z were counted out. Besides, the model of deformation resistance of tested steels had been established.
     2. Through hot rolling test in lab, the microstructures and mechanical properties of three tested steels with different chemical component were studied in different TMCP conditions. The results showed:tested steel with 0.045%C,1.778%Mn, 0.042%Nb,0.046%V,0.02%Ti in rerolling temperature 854℃, finishing temperature 802℃, cooling temperature 550℃and cooling rate 15.6℃/s can achieve good mechanical properties with Rto.5=605MPa、Rm=755MPa、A50mm%=46 and charp ballistic work 287J,section of shear 97%.
     3. Through off-line simulation on the rolling and on-line accelerated cooling experiments, the rolling and cooling capability of Shouqin 4300mm production line were checked. The results showed that the rolling and cooling capability could satisfy the demand of process of X80 pipeline steel.
     4. Through one industrial experiment, the relations between process parameter and mechanical properties were surveyed. The results showed that the content of acicular ferrite was decreasing and the content of polygonal ferrite was increasing with the lowering of finishing cooling temperature. Due to the high finishing cooling temperature in the experiment, the content of acicular ferrite was lower. Therefore, the strength of tested steels were lower and the results of drop weight tear test were not satisfied the demand.
引文
[1]CLOVER A. X80 design, construction and operation. The International Symposium Proceedings on X80 Steel Grade Pipelines, Beijing,2004:143-198.
    [2]江海涛,康永林等.国内外管线钢的开发与应用[J].管道技术与设备,2005,5(4):21.
    [3]罗海文,董瀚.高级别管线钢X80-X120的研发与应用[J].中国冶金,2006,16(4):9.
    [4]P. C. M. Rodrigues, E. V. Pereloma, D. B. Santos. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Materials Science and Engineering, 2000, A283:136-143
    [5]A. B.Cota, P. J.Modenesi, R.Barbosa, et al. Determination of CCT diagrams by thermal analysis of an HSLA bainitic steel submitted to thermo mechanical treatment. Scripta Materialia,1999,40(2): 165-169.
    [6]Phil Hopkins. The challenges for frontier pipeline projects Pipe Dreamer's Conference, Yokohama,2002.3-32
    [7]J.Malclm Gray.Modern pipeline technology-specification trends and production experience. Liu Guoquan. HSLS Steels'2000, Xi'an, china,30 Oct.-2 Nov.,2000, Beijing:Metallurgical Industry Press,2000:71-79
    [8]S. K. Mishra, S. Ranganathan, S. K. Das, et al. Investigations on precipitation characteristics at a high strength low alloy steel. Scripta Materialia,1998,39(2):253-259
    [9]孔君华,郭斌,刘昌明等.高钢级管线钢X80的研制与发展[J].材料导报,18(4):24
    [10]ZHENGL, GAO S. Research and trial production of X80 pipeline steel with high toughness using acicular ferrite. The International Symposium Proceedings on X80 Steel Grade Pipelines, Beijing,2004:6-11.
    [11]KONG J H, ZHENG L. Development and production of X80 hot-rolled thick steel coils in WISCO. The International Symposium Proceedings on X80 Steel Grade Pipelines, Beijing,2004:17-21.
    [12]江海涛,康永林,于浩,梁正伟.国内外高钢级管线钢的开发与应用[J].管道技术与设备,2005.5:22-23
    [13]庄传晶,冯耀荣,霍春勇.李鹤林国内X80级管线钢的发展及今后的研究方向[J].焊管,28(2):11
    [14]B.N.波戈尔热耳斯基著.王有铭,鹿守理,韦兴译.控制轧制[M].北京:机械工业出版社,1982:1-10
    [15]王仪康,杨柯.我国高压输送管线钢的发展.石油天然气管道建设与技术论坛会.廊坊:石油 出版社,2002:18
    [16]B.C.Muddle,et al.Microstructure in Controlled-Rolled Low Carbon microalloyed Steels.Material Science,1994,34:1721
    [17]王仪康,杨柯,单以银.高压输送管线用钢[J].焊管,2002,25(1):1
    [18]王茂堂,马彦昌,王丽.X80级管线钢钢管技术条件制定中的关键技术问题[J].焊管,2005,28(2):15,19
    [19]Robert J Eiber, Leis, Brain N, Fracture Propagation Control in Onshore Transmission Pipelines. in 2nd International Onshore Pipelines Conference, Istanbul, Turkey, December,1998
    [20]Takahiro KUBO, Toyoaki SHIWAKU, Joe KONDO, et al. Quality Evaluation of Line Pipes by the Chevron Notched Drop Weight Tear Test. ISIJ international,1995,35(4):426-432
    [21]赵明纯,单以银,李玉海等.显微组织对管线钢抗硫化物应力腐蚀开裂的影响.金属学报,2001,10:1087
    [22]王茂堂,马彦昌,王丽.X80级管线钢、钢管技术条件制订中的关键技术问题[J].焊管,2005,28(3):16-18
    [23]贾志鑫.低碳微合金化管线钢的组织性能控制[D],东北大学博士学位论文,2005:11
    [24]H.Ohtani,S.Okaguchi,Y.Fujishiro and Y.Ohnori. Morphology and Properties of Low-Carbon Bainite[J]. Metall.Trans.A.1990,21A:877-888.
    [25]B.L.Bramfitt and J.G.Speer. Perspectiveon the Morphology of Bainite[J]. Metal. Trans.A,1990, 21A:817-831.
    [26]T.Araki et al. Atlas for Bainitic Microstructures-Vol.1.Continuous-Cooled Zw Microstructures of Low-Carbon Steel[J]. ISIJ Internationl, Tokyo,1992:4-5.
    [27]S.W.Thompson,D.J.Colvin and G.Krauss. Continuous Cooling Transformations and Microstructures in a Low-Carbon, High-Strength Low-Alloy PlateSteel[J]. Metal. Trans. A,1990, 21A:1493.
    [28]G.Krauss. and S.W.Thompson.. Ferrite Microstructure in Continuously Cooled Low-and-Ultra low-Carbon Steels[J]. ISIJ International,1995,35:937.
    [29]H.K.D.H.Bhadeshia. Alternatives to the Ferrite-Pearlite Microstructures[J]. Mater.Sci.Forum, 1998,284:39.
    [30]Y.Ohmori. Bainite Transformations in Extremely Low Carbon Steels[J]. ISIJ Internationl,1995, 35(8):962-968.
    [31]P.A.Manohar,T.Chandra and C.R.Killmore. Continuous Cooling Transformation Behaviour of Microalloyed Steels Containing Ti,Nb,Mn,and Mo[J]. ISIJ Internationl,1996,36(12):1486-1493.
    [32]T. Sakuma, R.W.K. Honeycombe. Mater. Sci. Technol.1985,1:351.
    [33]吴红艳,沈开照等.超细晶耐候钢高温变形行为的研究[J].第三届先进结构钢及轧制新技术国际研讨会,2005,11:24-29
    [34]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M].沈阳:东北大学出版社,90-93
    [35]许云波.基于物理冶金和人工智能的热轧钢材组织性能预测与控制[D].沈阳:东北大学,2003
    [36]雍歧龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金.北京:机械工业出版社,1989:209,341
    [37]W.P.Sun and E.B.Hawbolt.Comparison Between Static and Metadynamic Recrystallization-An Application to theHot Rolling of Steels.ISIJ International,1997,37(10):1000-1006
    [38]A.Laasroui,J.J.Jonas. Prediction of Flow Stress at High temperature and Strain Rates.Metall.Trans.A,1991,22A:1545-1558
    [39]戴铁军,刘战英等30MnSi钢金属变形抗力的数学模型[J].塑性工程学报,2001,8(3):17-20.
    [40]Saito Y, Enami T, Tanka T. The Mat hematical Model of Hot Deformation Resistance with Reference to Microst rictual Changes during Rolling in Plate Mill[J].Transactions ISIJ,1985,25 (11):1146-1150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700