用户名: 密码: 验证码:
无源探测系统DOA估计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波达角(Direction of Arrival, DOA)估计是现代阵列信号处理领域中的重要研究内容,它在通信、雷达、声纳等诸多领域有着非常广泛的应用。为了使无源探测系统具有对同时到达雷达信号DOA进行估计的能力,本课题主要针对无源探测系统面临的复杂电磁环境,围绕阵列天线DOA估计在无源探测系统中应用所面临的关键问题展开研究。研究内容主要包括阵列DOA快速估计、复杂雷达信号DOA估计以及信源数估计与阵列误差校正问题,针对每个问题进行深入细致的探讨,并提出了相应的解决方法。
     针对窄带雷达信号到达角快速估计引入传播算子方法(Propagator Method,PM)(?)弋替传统方法中的特征值分解步骤,快速获得信号和噪声子空间,解决了无源探测快速实现多目标DOA估计的问题。首先对PM算法引入对DOA估计带来的误差进行了详细分析。在此基础上,提出了基于PM算法的L型阵2维DOA参数估计快速方法并对算法进行了适当的改进。最后,针对PM方法的缺陷,提出了基于PM算法的信源数与DOA联合估计方法。通过仿真实验证明设计算法可在保证测向精度的同时,具有较高的DOA参数估计速度。
     在复杂雷达信号DOA方面,主要研究了两方面内容。分别针对频率不同的窄带雷达信号和宽带信号的DOA估计进行了研究。对于分布于宽频带的窄带信号,由于入射信号频率不同使得传统算法在未知频率情况下,难以使用估计的噪声子空间或信号子空间获得正确的目标DOA。因此根据时空等效性,利用接收信号采样之间的时间延时与阵元之间接收信号程差带来的等效延时同时估计信号的频率与DOA参数。在对均匀线阵条件下频率与DOA联合估计进行分析后,重点研究了任意阵列结构的联合估计问题。在状态空间频率与DOA联合估计方法基础上,通过对延时自相关矩阵的结构变化,提出了基于二阶盲分离(Second-Ordor Blind Idnetificaion, SOBI)的DOA与频率联合估计方法,与状态空间的频率-DOA联合估计相比,其优势在于可以对信号数多于天线阵元数的情况进行信号的频率-DOA估计。最后提出了一种快速的频率-DOA方法,保证测向精度同时减小了计算负担。
     对于多个宽带信号的DOA估计,本文主要从时频分析角度出发,通过对信号的时频分析将信号变化到时频域或模糊域,实现多个宽带信号的提取及其DOA估计。相对传统宽带信号DOA估计,通过宽带信号在时频平面的能量聚集性,可实现信噪比(Signl to Noise Ratio, SNR)的提高及信号的时频参数提取,从而改善了DOA估计性能。由于该类方法需要处理时空频3维矩阵,其计算量相对较大。所以提出了两种时频域DOA快速估计方法。在时频域DOA估计基础上,重点研究了时频模糊域信号DOA估计方法,主要针对线性调频体制这种确定信号,提出了在模糊域进行DOA估计的思想,设计了几种估计方法,发展了时频分析在DOA估计中的应用。相对于时频域DOA估计,其优势在于可实现宽窄与宽带信号自动分离;导向矢量结构不包含信号载频信息,使DOA估计突破了阵元间距的限制。
     对于影响DOA估计性能的信源数估计和阵元通道幅相误差校正问题,文章将多变量分析的因子分解技术引入到阵列信号DOA处理当中。提出了使用因子分解模型近似阵列接收信号模型。通过统计信号处理实现了在色噪声情况下,对辐射源数的估计问题。计算机实验验证了算法的估计性能在一定的虚警概率条件下优于传统的盖尔圆盘法。并利用因子分解模型,提出了最小方差和列向量比值方法实现对各个阵元通道幅度和相位不一致性误差的估计,通过在系统前端增加辅助信号源的方法,获取通道幅度和相位不一致性误差的快速处理。实现了对通道不一致性的在线校正,且有运算时间少的优点。
Direction of arrival (DOA) estimation by array is an important research branch in the field of modern signal processing. It has a great variety of applications in many fields, such as communications, radar and sonar, etc. In order to make passive detection system have the ability of measuring multiple radiant signals arrived simultaneously and improve the angle resolution of DOA estimation, application of super-resolution DOA estimation algorithm by array to passive detection system is researched deeply in the dissertation. According to the complexity of electromagnetism condition faced to passive detection, the dissertation extend the research of key techniques for passive detection system, including fast DOA estimation, complex radar signal DOA estimation, source number estimation and array channel calibration. Each subject is studied in detail and corresponding algorithms are proposed. The contributions and fruits of the dissertation are listed as follow.
     In the aspect of DOA estimation for multiple narrow signals, the dissertation focuses on fast subspace calculation for the data received, because the implementation of subspace methods in passive detection application with real-time operation usually experiences a bottleneck in the calculation of the signal or noise subspace. Propagator Method (PM) for fast computation of signal or noise subspace has introduced. Superior to conventional DOA estimation, PM can obtain the noise subspace and signal subspace fastly in stead of Eigen-Value Decomposition (EVD). The performances of the Propagator Method in terms of the mean squared error on DOA estimation are investigated in detail. Based on Propagator Method, several 2D fast algorithms of DOA parameter estimation have designed on L shape of array structure. Furthermore, a joint estimation of source number and DOA is proposed in order to conquer the inherence of limitation in PM for application. Computer simulation confirms the proposed methods valid impressively.
     Many methods of DOA estimation are essentially limited to processing narrow-band data. This is indeed a realistic assumption in many applications (e.g. active radar and communication). However, in the cases of passive detection system, the received signals may be broadband or narrowband distributed in broadband. In the environment of multiple narrow-band signals distributed in broadband, the subspace structure of data received by array can not be generally used for DOA estimation without the frequency information of each signal received. So the joint frequency-DOA methods of multiple narrowband signals are researched. Characteristic of time-space equivalence is properly used to joint frequency-DOA estimation. After analysis of joint frequency-DOA estimation techniques by uniform linear array (ULA), Joint frequency-DOA estimation by arbitrary array structure is researched deeply. Based on State-space joint estimation algorithm, a novel joint estimation algorithm, named SOBI (Second-Order Blind Identification) joint frequency-DOA estimation is shown by changing the structure of non-central auto-covariance matrix of data. Compared to the State-space algorithm, the new algorithm can realize the frequency-DOAs estimation in the condition that source number is more than the number of sensors in array. At last, a fast algorithm of joint frequency-DOA is explored for real-line application.
     For DOA estimation of wideband signals, developing spatial time-frequency technology is much suited for non-stationary signals. Spatial time-frequency distribution (STFD) is illuminated and its structure is analyzed, simulations show that STFD act effective for DOA estimation than the common methods. For dwelling with the large computation load of this kind of methods, two fast algorithm are derived. As the further progress of STFD, spatial ambiguity distribution of the signals received by array are exploit for the scenarios of LFM signals instead of STFD. Ambiguity transformation converts the absolute time and frequency of LFM signal into the domain of relative time lag and frequency difference, which bring more attractive steering vector structure than that in time-frequency domain. Several algorithms for DOA estimation in ambiguity domain for coherent and incoherent LFM signal are proposed, which can be applied to arrays of any aperture size and arbitrary chirp rate signals. The frequency of the sources can be higher than the non-aliasing frequency of array designed for signals and the number of sources can be greater than the number of sensors. The simulations demonstrate the improvements in the DOA estimation of the wideband LFM signal.
     At last but not the least, the factor analysis technique is introduced for sources number estimation and array channel calibration, which are two key problems to influence the performance of DOA estimation. Factor analysis model is shown to approximate the model of covariance matrix of data received. Then the statistic signal processing method for factor analysis is applied to estimate the sources number in colour noise condition. The simulation proves that the performance of the method for sources number estimation is better than that of GDE (Gerschgorin Disk Estimator) in certain false alarm rate. The two novel methods of array channel calibration, Least Square algorithm and Column Ration algorithm, are proposed by factor analysis technique. Based on an auxiliary testing source on microwave front-end, the two algorithm can extracting the amplitude-phase gain and noise parameters from the estimated covariance matrix in real-time.
引文
[1]Kim H, Viberg M. Two decades of array signal processing research [J]. IEEE Signal processing Magazine,1996,13(4):67-94.
    [2]Hongya Ge, Kirstein. Passive ranging capability of a multi-module array in underwater acoustic enviroments [J]. Acoustics speech and signal processing 2010, IEEE International Conference,2010:5642-5645.
    [3]Burg J P. Maximum entropy spectral analysis [C]. Proc. of the 37th Meeting of the Annual Int. Society of Exploration Geophysicists meeting, Oklahoma City,1967:852-857.
    [4]Capon J. High-resolution frequency-wave number spectrum analysis [J]. Proc. of IEEE, 1969,57(8):1408-1418.
    [5]Kumarersan and Tufts D.W. Estimation the angle of multiple plane wave [A]. IEEE Trans. AES-19(1),1983:134-139.
    [6]Rao B D, Hari K V S. Performance analysis of root-MUSIC [J]. IEEE Trans. on Acoustics Speech and Signal Processing,1989,37(12):1939-1949.
    [7]R. Roy, T. Kailath. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise [J]. IEEE Trans. on ASSP,1986,34(10):1340-1342.
    [8]A. Paulraj, R. Roy and T. Kailath. Estimation of signal parameters via rotational invariance techniques-ESPRIT [C]. In Proc. 19th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,1985:83-89..
    [9]R. Roy and T. Kailath. ESPRIT—estimation of signal parameters via rotational invariance techniques [J]. IEEE Trans. on ASSP.1989,37(7):984-995.
    [10]Bohme J F. Estimation of source parameters by maximum likelihood and nonlinear regression [A]. Proc. ICASSP'84 [C], Bostoa, MA, USA,1984:731-734.
    [11]R. Krummenauer, M. Cazarotto, A. Lopes, P. Larzabal, P. Forster. Improving the threshold performance of maximum likelihood estimation of direction of arrival [J]. Signal Processing,2010,90(5):1582-1590.
    [12]I. Ziskind and M. Wax. Maximum likelihood localization of multiple sources by alternating projection [J], IEEE Transactions on Acoustics, Speech and Signal Processing, 1988,36(10):1553-1560.
    [13]I. Ziskind, M. Wax. Maximum likelihood localization of eiversely polarized sources by simulated anealing [J]. IEEE Transactions on AP,1990,37(7):1111-1114.
    [14]Stoica P, Sharman K C. Novel eigenanalysis method for direction estimation [J]. IEEE processing, Pt. F,1990,137(1):19-26.
    [15]Hongyuan Gao, Zhongkai Zhao, Wei Wang. Direction Finding of Weighted Signal Subspace Fitting Based on Cultural Shuffled Frog Leaping [J]. Journal of Computational Information Systems,2010,6(3):847-854.
    [16]Georges R H, Fermando G L. The compace genetic algorithm [J]. IEEE Trans. Evolutionay computation,1999,3(4):289-297.
    [17]Viberg M, Otterstem B. Sensor array processing based on subspace fitting [J]. IEEE Trans. on Signal Processing,1991,39(5):1110-1121.
    [18]Cheoi-Sun Park, Jun-Ho Choi. Dirction of arrival estimation using weighter subspace fitting with unknown number of signal sources [C]. Advanced communication Techonlogy ICACT2009,2009:2295-2298.
    [19]Eriksson A, Stoica P. On-linesubspace algorithms for tracking moving sources [J], IEEE Trans. Signal Processing,1994, vol.42:2319--2330.
    [20]Swindlehurst A. Alterntive algorithm for maximum likelihood DOA estimation and detection [J], Proc. Inst. Elect. Eng. Radar, Sonar Navig.,1994, vol.141 (6):293-299.
    [21]Witzgail H. E. and Godlsein J. S. Deetetion Performance of the reduce-rank linear predictor ROCKET [J]. IEEE Trans, Signal Processing,2003, vol.51 (7):1731-1738.
    [22]Witzgail H. E and Godlsein J. S, ROCKET MUSIC-non-unitay spectral estimation [C], Tech, Rep. ASE-00-05-001, SAIC,2000:37-45.
    [23]Zoltowksi M D, Joham M, Recent Advances in Reduced_rank Apaptive Filtering with Application to High-speed Wireless Communications [J], In Proc. Of Spie 2001,2001: 721-727.
    [24]Marcos S and Benidir M. On a high resolution array procssin method non-based on the eigenanalysis approach [C], In Proc. IEEE int. Conf. Acoust., Speech and Signal process., Albuquerque, NM,1990:2955-2958.
    [25]Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation [J], Signal Prcess.,1995, vol.42(2):121-138.
    [26]Capon J. High-resolution frequency-wavenumber spectrum analysis [J]. proc.IEEE,1969. vol.57 (8):1408-1478.
    [27]L. B. Jackson, C. H. Chen. Frequency and bearing estimation by two dimensional linear predictions[C], ICASSP'79,1979:665-668.
    [28]M. Wax, T Shan, T Kailath. Spatio-temporal spectral ananlysis by egenstructure methods [J], IEEE Tans. On ASSP,1984, vol.32 (8):817-827.
    [29]M. D. Zoltowsk, C. P. Mathews. Frequeney and 2-D angle estimation with sub-nyquist spatio-temporal sampling [J], IEEE Tran on SP,1994, vol.42 (10),2791-2794.
    [30]M. Haardt, J. A. Nossek. 3-D unitary ESPRIT for joint angle and carrier estimation [C]. ICASSP'97,1997:255-258.
    [31]Peter Strobach. Total least square phased averaging and 3-D ESPRIT for joint azimuth-elevation carrier estimation [J]. IEEE Trans.On SP,2001, vol.49(1):54-62.
    [32]吴湘霖.非理想系统假设下阵列信号多信源多参数联合估计[D].西安:西北工业大学博士论文,2005:19-20.
    [33]Jen-der Lin, Wen_Hsien Fang. Joint Spatial-Temporal Channel Parameter Estimation Using Tree-structured MUSIC.2002
    [34]葛利嘉,陈天麒.基于正交投影的频率方向估计[J],系统工程与电子技术,1999,vol.21(1):50-54.
    [35]廖桂生,保铮.一种新的旋转不变技术实现起伏目标的高分辨方向-多普勒频率估计[J].电子学报,1996,vol.24(12):6-11.
    [36]廖桂生,保铮,未知阵列流形条件下波达方向-多普勒频率盲估计[J].电子科技大学学报,1997,Vol.19(2):152-57.
    [37]廖桂生,张林让,保铮.基于盲波束形成的波达方向一多普勒稳健估计[J],电子学报,1999,vol.27(3):5-8.
    [38]N Lemma, Alle-Jan van der Veen. Analysis of ESPRIT based joint angle-frequency estimation [C]. ICASSP'00,2000:3053-3056.
    [39]Aweke N Lemma, Alle-Jan van der Veen. Analysis of angle-frequency estimation using ESPRIT [J]. IEEE Trans. On SP,2003, vol.51 (5):1264-1283.
    [40]R. O. Schmit. A signal subspace approach to multiple emitter location and spectral estimation [D], PH.D Dissertation, Stanford University,1981.
    [41]E. Ferrar, T. Park. Direction finding with an array of antennas having diverse Polarizations [J], IEEE Trans. on AP,1983, Vol.31 (3):231-236.
    [42]Li J. Two-demensional angle and polarization estimation using the ESPRIT algorithm [J]. IEEE Trans on AP,1992,40:550-555.
    [43]Wong K T, Zoltowskimd. Root-MUSIC based direction finding and polarization estimation using diversely polarized possibly collocated antennas [J]. IEEE AWP letters, 2004(3):129-132.
    [44]王建英.阵列信号多参量联合估计技术研究[D].成都:电子科技大学博士论文,2000:12-13.
    [45]S. Santosh, O. P. Sahu, M. Aggarwal. An overview of different wideband direction of arrival (DOA) estimation methods [J]. WSEAS Transactions on Signal Processing,2009, 5(1):11-22.
    [46]J. M. Velni, K. Khorasani. A robust state-space approach for localizing wideband sources in sensor arrays [C].2004 Sensor Array and Multichannel Signal Procesing Workshop, 2004:298-302.
    [47]Wax M, Shan T J, and Kailath T. Spatio-temporal spectral analysis by eigenstructure methods [J]. IEEE Trans. on SP,1995,43(7):1728-1732.
    [48]H. Wang, M. Kaveh. Coherent signal subsapce processing for the detection and estimation of angles of arrival of multiple wide-band sources [J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1985,33(4):823-831.
    [49]H. Hung, M. Kaveh. Focussing matrices for coherent signal-sub space processing [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1988,36(8):1272-1281.
    [50]A. Desoki, J. I. Takaday, I. Hagiwaraz. Improved finite samples resampling for unbiased wideband direction of arrival estimation [J]. Acoutical Science and Technology,2009, 30(6):417-428..
    [51]R. Wu, T. Naren, X. Lu. Estimation of direction of arrival for wideband coherent signals with known waveforms [C]. IET International Radar Conference,2009:489-492..
    [52]M. Asgari, N. Y. Soltani, A. Riahi. A different approach to use narrowband super-resolution multiple signal classification algorithm on wideband sources [J]. Journal of the Acoustical Society of America,2010,127(1):286-291.
    [53]Y. S. Yoon, L. M. Kaplan. TOPS:new DOA estimator for wideband signals [J]. IEEE Transactions on Signal Processing,2006,54(6):1977-1989.
    [54]J. M. Velni, K. Khorasani. A robust state-space approach for localizing wideband sources in sensor arrays [C].2004 Sensor Array and Multichannel Signal Procesing Workshop, 2004:298-302.
    [55]S. Qian, Wigner distribution decomposition and cross-terms representation, Signal Processing [J],1992, Vol.25, No.2:125-144.
    [56]S. Qian, D. Chen, Decompostion of the Wigner-Ville distribution and time-ftequeney distribution series [J]. IEEE Trans. Signal Proeessing,1994, Vol.42, No.10:2836-2842.
    [57]L. Cohen. Time-Frequency Analysis [M]. Rnglewood Cliffs, NJ, Prentice-Hall,1995: 67-71.
    [58]张晔.信号时频分析及应用[M],哈尔滨:哈尔滨工业大学出版社,2006:151-183.
    [59]I. Raveh, D. Mendlovic. New properties of the Radon transform of the cross-wigner ambiguity distribution function [J]. IEEE Trans. Signal Processing,1999, Vol.47(7): 2077-2080.
    [60]M. Roessgen, B. Boashash. Time-frequency peak filtering applied to FSK signals[C], Time-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposiumon,1994:516-519.
    [61]Belouchrani A, Amin M. G. Blind source separation based on time-frequency signal representations [J]. IEEE Transactions on SP, Vol 46, Issue 11,1998:2888-2897.
    [62]Belouchrani, A, Amin M.G. Blind source separation using time-frequency distributions algorithm and asymptotic performance [C]. Acoustics, Speech, and Signal Processing, ICASSP-97,1997:3469-3472.
    [63]M. G. Amin. Spatial time-frequency distributions for direction finding and blind sourceseparation [C]. In Proc. SPIE,1999:62-70.
    [64]Yimin Zhang, Weifeng Mu, and Moeness G. Amin, Subspace Analysis of Spatial Time-Frequency Distribution Matrices [J]. IEEE Trans. on Signal Processing,2001, vol. 49(4):747-759.
    [65]Yimin Zhang, Weifeng Mu. Time-frequency maximum likelihood methods for direction finding [J]. Journal of the Franklin Institute,2000,337(4):483-497.
    [66]Hassanien A, Gershman A. B. Time-frequeney ESPRIT for direction-of-arrival estimation of chirp signals [C],.Sensor Array and Multi Channel Signal Processing, workshop proceedings,2002:4-6.
    [67]Cirillo L A, Zoubir A M, Gershman A B. Direction-of-arrival estimation for uncorrelated FM signals, Sensor Array and Multichannel Signal Proeessing Workshop proceedings, 2002:318-322.
    [68]A. B. Gershman and M. G Amin. Wide band direetion of arrival estimation of multiple chirp signals using spatial time-frequeney distribution [J], IEEE Signal Proeessing Lett, 2002, vol.7:152-155
    [69]黄克骥.时频分析在阵列信号处理中的应用[D].电子科技大学博士学位论文,2004:19-21
    [70]Hongyuan Gao, Ming Diao. Robust MC-CDMA Multiuser Detection Based on Quantum Shuffled Frog Leaping[C]. Journal of Computational Information Systems.2010,6(10): 3309-3318.
    [71]高洪元,刁鸣.文化量子算法实现的广义加权子空间拟合测向[J].电波科学学报,2010,25(4):798-804.
    [72]Dayong Zhao, Hongyuan Gao, Ming Diao. Direction Finding of Maximum Likelihood Algorithm Using Artificial Bee Colony in the Impulsive Noise[C]. The 2010 International Conference on Artificial Intelligence and Computational Intelligence.2010, 2:102-105.
    [73]Si Weijian, Si Xicai, Qu Zhiyu. New method for passive rader seeker to non-coherent radar decoy [J]. Journal of Systems Engineering and Electronics,2010, vol.21(3):12-17.
    [74]Zhen, Jiaqi, Si, Xicai, Liu Lutao. Method for determining number of coherent signals in the presence of colored noise[J]. Journal of Systems Engineering and Electronics, 2010, Vol.21(1):1-4.
    [75]刁鸣,缪善林.二维ESPRIT算法参数的快速配对[J].哈尔滨工程大学学报,2008.3:27-33.
    [76]M. Ghavami, L. B. Michael and R. Kohno. Ultra wideband signals and systems in communication engineering (Second Edition) [M]. New York:Wiley,2007:1-7.
    [77]Stoica P, Nehorai A. MUSIC, maxmum likelihood,and Cramer-Rao bound [J]. IEEE Trans. On ASSP,1989,37(5):720-741.
    [78]Stoica P, Nehorai A. MUSIC maxmum likelihood,and Cramer-Rao bound:further results and comparisons [J]. IEEE Trans. On ASSP,1990,38(12):2140-2150.
    [79]李毅,杨菊平.一种基于ESPRIT的改进算法[J].信号处理.2009,25(3):508-511.
    [80]贾继鹏,陈航,陈旭斌.一种改进的波束域ESPRIT算法[J].计算机仿真.2008,25(10):312-315.
    [81]M. Haardt and A. J. Nossek.Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden [J]. IEEE Trans. on SP.1995,43(5): 1232-1242..
    [82]F. Gao and A. B. Gershman. A generalized ESPRIT approach to direction-of-arrival estimation [J]. IEEE Signal Processing Letters,2005,12(3):254-257.
    [83]G. H. Golub and C. F. Van Loan. Matrix Computations [M]. The Johns Hopkins. Univesity Press, Baltimore, Maryland,1983:109-111.
    [84]B. D. Rao and K.V.S.Hari, Perforamce analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise[J], IEEE tran.Acoust,Speech, signal process., 1989, vol.ASS-3:1990-1995.
    [85]Maygrargue S. ESPRIT and TAM are theorectically equivalent[C]. ICAASP,1988: 2456-2459.
    [86]J. Sanchez-Araujo and S. Marcos. Statistical Analysis of the Propagator Method for DOA Estimation without Eigendecomposition [J],1996:57-61.
    [87]A.Belouchrani, K. A. Meraim. A blind source separation technique based on second order statistics [J], IEEE Trans Signal Processing,1997, vol.45:434-444.
    [88]A.L. Swindlehurst, T. Kailath, A performance analysis of subspace-based methods in the presence of model errors, Part I:the MUSIC algorithm [J], IEEE Trans. on Signal Processing,1992:1-7.
    [89]F. Li, R. J. Vaccaro. Unified analysis for DOA estimation algorithms in array signal processing [J], Signal Processing,1991, vol.25(2):147-169.
    [90]H. Haardt and J. A. Nossek. Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burned [J]. IEEE trans. Signal Process.,1995, vol.SP-43:1232-1242.
    [91]H. Haardt and M. E. Ali-Hackl. Unitay ESPRIT: How to exploit additional information inherent in the rotational invariance structure[C]. Proc. ICASSP, Adelaide, Australia, 1994, vol.4:229-2321.
    [92]M. D. zoltowski, H. Haardt and C. P. Mathews. Closed-form 2-D angle estimation with rectangular arrays in element space or beamsace via unitary ESPRIT [J], IEEE trans.singnal Process,1996, vol.SP-44:316-328.
    [93]R. A. Johnson and D. W. Wichern. Applied Multivariate statistical Analysis [M],2002: 492-598.
    [94]Wax M, Kailath T. Detection of signals by information theoretic criteria [J]. IEEE Trans. on Acoust Speech and Signal Processing,1985,33(2):387-392.
    [95]赵国庆,雷达对抗[M],西安电子科技大学出版社,1990:111-115.
    [96]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M].北京:清华大学出版社,2004,11:466-470.
    [97]Pillai S U, Knon B H. Performance analysis of MUSIC-type high resolution estimations for direction finding in correlated and coherent scenes[C], ASSP,1989,37(8):1176-1189.
    [98]N. Endo, H. Yamada, Y. Yamaguchi. Decorrelation performance of spatial smoothing preprocessing at transmitter in the presence of multipath coherent waves [J]. IEICE Transactions on Communications,2007, E90-B (9):2297-2302.
    [99]P. Chumchong, K. Ichige, H. Arai. Spatial-smoothing-like processing of array steering vectors for high resolution DOA estimation [C].6th European Radar Conference,2009: 421-424.
    [100]Shan T J, Wax M, Kailath T, On spatial smoothing for estimation of coherent signals[J], IEEE trans. On ASSP,1985,33(4):806-811
    [101]Steven. M. Kay, Fundamentals of signal processing-detection theory [M], PTR Prentice-hall,1993:23-44.
    [102]司锡才,赵建民编著.宽频带反辐射导弹导引头技术基础[M].哈尔滨:哈尔滨工 程大学出版社,1996:27-102.
    [103]A.Belouchrani, K.A.Meraim, A blind source separation technique based on second order statistics [J], IEEE Trans Signal Processing,1997, vol.45,434-444.
    [104]H. Wang, M. Kaveh. Coherent signal-subsapce processing for the detection and estimation of angles of arrival of multiple wide-band sources [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1985,33(4):823-831.
    [105]A. K. Marath, A. R. Leyman, H. K. Garg. New focusing scheme for DOA estimation of multipath clusters in WiMedia UWB systems without coarse estimation of angle of arrival [J]. IEEE Communications Letters,2010,14(2):103-105.
    [106]A. Belouchrani and Moeness G. Amin. Time-Frequency MUSIC[J]. IEEE Signal Processing Letters,1999,6(5):109-110.
    [107]M. G. Amin and Y. Zhang. Direction finding based on spatial time-frequency distribution matrices [J]. Digital Signal Processing,2000,10(4):325-339.
    [108]Yimin Zhang, Weifeng Mu, and Moeness G. Amin. Subspace Analysis of Spatial Time-Frequency Distribution Matrices[J]. IEEE Trans. on Signal Processing,2001,49 (4):747-759.
    [109]Yimin Zhang, Weifeng Mu and Moeness G. Amin, Time-frequency maximum likelihood methods for direction finding [J]. Journal of the Franklin Institute,2000,337(4): 483-497.
    [110]Yimin Zhang and Moeness G. Amin, Spatial Averaging of Time-Frequency Distributions[C]. Proceedings of the IEEE International Conference on ASSP. Phoenix, AZ,1999:1337-1340.
    [111]Weifeng Mu, Amin M, Yimin Zhang. Bilinear signal synthesis in array processing [J]. IEEE Transactions on Signal Processing,2003,51(1):90-100.
    [112]田达,黄克骥,陈天麒.利用空间时频分布实现宽带FM信号2-D到达角估计[J].电波科学学报.2003,18(1):91-94
    [113]Amin M G, Weifeng Mu, Yimin Zhang. Improved time-frequency synthesis using array manifolds[C]. Sixth International, Symposium on Signal Processing and its Appications. 2001,1:158-160
    [114]Amin M G, Weifeng Mu, Yimin Zhang. Spatial and time-frequency signature estimation of nonstationary sources[C]. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing,2001:313-316.
    [115]Cirillo L A, Amin M G. Auto-term detection using time-frequency array processing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing,2003,6: 465-468.
    [116]Belouchrani A, Amin M G, Abed-Meraim K. Direction finding in correlated noise fields based on joint block-diagonalization of spatio-temporal correlation matrices[C]. IEEE Signal Processing Letters,1997,4(9):266-268.
    [117]Weifeng Mu, Amin M G. SNR analysis of time-frequency distributions[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing.2000,2: 645-648.
    [118]Gershman A B, Pesavento M, Amin M G. Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays[J]. IEEE Transactions on Signal Processing. 2001,49(12):2924-2934.
    [119]Zhang Y, Amin M C, Obeidat B A. Direction finding using spatial polarimetric time-frequency distributions [C]. Seventh International Symposium on Signal Processing and Its Applications,2003:133-136.
    [120]Chenshu Wang, Amin M G. Zero-tracking time-frequency distributions[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-97. 1997,3:2021-2024
    [121]Roger A. Horn, Charles R. Johnson, Matrix Analysis [M], Cambridge University Press, 1986:296-297.
    [122]张晔,信号时频分析[M],哈尔滨:哈尔滨工业大学出版社:111-115
    [123]M I Skolnik, Radar Handbook.Second Edition [M], New York:McGraw-Hill Publishing Company,1990:538-574.
    [124]N. Ma, D. Vary, P. Delashartre, and G. Gemenez, Time-frequency representation of multic-mponent chirp ssignals, IEEE Trans. Signal Process.,1997,vol.56(2):149-155.
    [125]S.Peleg and B. Porat. Linear FM signal parameter estimation form discrete-time observations, IEEE Trans. Signal Process,1991, vol.27 (4):607614.
    [126]X. G. Xia. Discrete chirp-Fourier transform and its application to chirp rate estimation, IEEE Trans. Signal Process.,2000, vol.48 (11).3122-3133.
    [127]Bliss C I. Statistics in Biology, statistical methods for research in the natural Scieces [M],1967, vol.2, New York, McGraw-Hill.
    [128]汤俊.最优阵列处理技术[M].北京:清华大学出版社,2008:700-703.
    [129]Johnson R A. Applied Multivariate Statistical Analysis [M], Prentice-Hall,2002: 485-530.
    [130]Wax M, Kailath T. Detection of signals by information theoretic criteria [J]. IEEE Trans. on Acoust Speech and Signal Processing,1985,33(2):387-392.
    [131]B Friedhander, Sensitivity Analysis of the Maximum Likelihood Direction-finding Algorithm[C]. IEEE Trans AES-26, No.6 Nov,1990:953-968
    [132]苏卫民,顾红,倪晋麟等.通道幅相误差条件下MUSIC空间谱估计统计性能[J].电子学报,2001,28(6):105-107.
    [133]Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm [J]. IEEE Trans. On Signal Processing,1994,42(6):1519-1526.
    [134]黄磊.快速子空间估计方法研究及其在阵列信号处理中的应用[D].西安:西安电子科技大学博士学位论文,2005:51-73.
    [135]谢纪岭.二维超分辨测向算法理论及应用技术研究[D].哈尔滨:哈尔滨工程大学,2008:78-91.
    [136]李利,司锡才,柴娟芳.基于重排小波-Radon变换的LFM雷达信号参数估计,系统工程与电子技术[J],2009,31(1):35-39.
    [137]池庆玺,司锡才,朱元林.高阶模糊度函数LFM信号参数估计的改进与仿真[J],系统仿真学报.2007,19(27):51-55.
    [138]李利,司锡才,柴娟芳,线性调频雷达信号参数估计算法的多片ADSP实现[J],哈尔滨工程大学学报,2009,30(3):113-117.
    [139]司锡才,朱晓.基于频谱细化的线性调频信号参数估计[J],系统工程与电子技术,2009,31(3):89-95.
    [140]Zhang Q, Wong K M. Statistical analysis of the performance of information theoretic criteria in the detection of the number of signals in array processing[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1989,37(10):1557-1567.
    [141]Zhao L C, Krishnaiah P R, Bai Z D. On detection of numbers of signals when the noise covariance matrix is arbitrary[J]. Multivariate Anal,1986,20:26-49.
    [142]Zhao L C, Krishnaiah P R, Bai Z D. Remarks on Certain Criteria for Detection of Number of Signals[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1987, 35(2):129-132.
    [143]Wax M, Ziskind I. Detection of the number of coherent signals by the MDL principle[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1989,37(8):1190-1196.
    [144]Wong K M, Zhang Q, Reilly J P. On information theoretic criteria for determining the number of signals in high resolution array processing[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1990,38(1):1959-1971.
    [145]H. T. Wu, J. F. Yang, F. K. Chen. Source number estimation using transformed Gerschgorin Radii[J]. IEEE Trans. on Signal Processing,1995,43(6):1325-1333.
    [146]Petre Stoica, Mats Cedervall. Detection tests for array processing in unknown correlated noise fields[J]. IEEE Trans, on Signal Processing,1997,45(9):2351-2362.
    [147]Zhang Q T, Wang K M. Information theoretic criteria for the determination of the number of signals in spatially conrrelated noise[J]. IEEE Trans. on Signal Processing, 1993,41(4):1652-1663.
    [148]张杰,廖桂生,王珏.对角加载对信号源数目估计性能的改善[J].电子学报,2004,12(33):2094-2097.
    [149]刘君.色噪声背景中信源数检测方法研究[D].西安电子科技大学硕士学位论文,2004:33-35.
    [150]包志强,韩冰,吴顺君.基于模糊聚类的信源个数检测新算法[J].电子与信息学报,2006,28(10):1761-1765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700