用户名: 密码: 验证码:
黑曲霉SL-05固态发酵苹果渣产木聚糖酶、纤维素酶、甘露聚糖酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木聚糖、β-甘露聚糖和纤维素是植物细胞壁的主要成分,广泛而大量地存在于自然界中,是地球上最为丰富的可再生的生物聚合物。从高效和环保的角度出发,纤维素和半纤维素被彻底分解且无污染的一条有效的途径便是利用酶的水解作用。β-甘露聚糖酶、木聚糖酶和纤维素酶在食品、医药、纺织、洗涤剂、造纸、饲料、石油开采等方面具有广泛的应用前景。近年来,β-甘露聚糖酶、木聚糖酶和纤维素酶的研究与开发已引起了人们的高度关注。本文以工农业废料苹果渣为基料,对β-甘露聚糖酶、木聚糖酶和纤维素酶固态发酵工艺条件以及部分酶学性质进行了系统的研究,为我国工业用酶的开发提供新的思路与途径。主要研究结果如下:
     1、以苹果渣为基础碳源,通过单因素试验和统计学试验设计,采用回归分析研究了黑曲霉SL-05固态发酵产β-甘露聚糖酶、木聚糖酶和纤维素酶的工艺条件,确定了菌株SL-05发酵产酶的最佳培养基:甘露聚糖酶,棉粕和苹果渣比例1:1、尿素2%、葡萄糖2%、KH2PO4 0.12%、含水率60%;木聚糖酶,棉粕和苹果渣比例1:1、尿素2%、葡萄糖2%、KH2PO4 0.06%、含水率65%;纤维素酶,棉粕和苹果渣比例1:1、尿素2%、葡萄糖2%、KH2PO4 0.09%、含水率62%。在最佳条件下,获得了酶活分别为296、6347、66032 U/g的甘露聚糖酶、木聚糖酶、纤维素酶高酶活发酵干曲,比基础培养基分别提高了61%、49%、53%。
     2、研究了发酵过程中,甘露聚糖酶、木聚糖酶、纤维素酶的酶活、糖、总蛋白、精蛋白、pH、干重失重率、氨基酸含量随时间的变化规律。结果显示:最佳的培养时间为48 h,此时未见孢子生成,酶活值已经达到了较高水平。发酵过程中,酶的分泌阶段24-48 h是菌体旺盛生长阶段,此时还原糖、总糖随着酶的分泌而被消耗,精蛋白明显增长,培养基的pH降低,干重失重率成大幅度提高。此后,酶活上升趋势下降。发酵前后氨基酸含量比较可以得出,发酵后大部分氨基酸含量增加,特别是几种常见限制性氨基酸:赖氨酸、蛋氨酸、组氨酸,64 h时比灭菌前分别分别提高了38%、85%、69%。
     3、试验对黑曲霉木聚糖酶和纤维素酶的部分酶学性质做了研究,对β-甘露聚糖酶的酶学性质做了详细研究。结果表明β-甘露聚糖酶、木聚糖酶和纤维素酶均为酸性酶,最佳反应pH分别为5.0、5.0、4.5,在pH3.5-6.0范围内处理6 h和1 h残余酶活均保持在85%以上;三个酶的最适反应温度分别是80℃、55℃、75℃,β-甘露聚糖酶和纤维素酶热稳定性较好,β-甘露聚糖酶50℃处理6 h、纤维素酶60℃处理30 min后剩余酶活都保持在80%以上,而木聚糖酶60℃处理30 min后残余酶活只剩下17.35%。对甘露聚糖酶的动力学研究求得酶促反应的Km和Vmax分别是0.083μmol/mL、166.67μmol/min。试验还研究了金属离子对甘露聚糖酶的影响,结果表明,Fe2+、Fe3+、Mg2+对酶活有激活作用,Fe2+的激活作用最为显著,可达127%,Cu2+对甘露聚糖酶的酶活有明显的抑制作用(91%),Ca2+在浓度为0.5 mM时激活,在浓度为1.0 mM时抑制。
Cellulose and hemicelluloses, the main composition of the plant cell wall, exists widely in the nature and is the most abundant reproducible bio-polymer in the earth. In view of the high efficiency and the environment protection, the degradation catalysed with enzymes is the most effective way to hydrolyze cellulose and hemicellulose thoroughly and causes no pollution.β-mannanase, xylanase and cellulase provide obvious advantages for the applications in the processes, such as in laundry detergents, paper pulp bleaching and hydraulic fracturing of oil well. In recent years, the research forβ-mannanase, xylanase and cellulase has been extensively studied. In this thesis, the composition medium of solid-state fermentation, which used apple pomace and cottonseed meal as carbon source for Aspergillus niger SL-05 producing extracellularβ-mannanase, xylanase and cellulase, was optimized and characteristics of these three enzymes were extensively studied. The main results are as follows:
     1. Medium compositions for Aspergillus niger SL-05 producing extracellularβ-mannanase, xylanase and cellulase were optimized in solid-state fermentation using single factor experiments and statistical experimental designs. The optimal medium forβ-mannanase production contained apple pomace and cottonseed meal (1:1) as carbon and nitrogen sources, 2% urea, 2% glucose, 0.12% KH2PO4 and 60% initial moisture content; the optimal medium for xylanase production contained apple pomace and cottonseed meal (1:1) as carbon and nitrogen sources, 2% urea, 2% glucose, 0.06% KH2PO4 and 65% initial moisture content; the optimal medium for cellulase production contained apple pomace and cottonseed meal (1:1) as carbon and nitrogen sources, 2% urea, 2% glucose, 0.09% KH2PO4 and 62% initial moisture content. Under optimized conditions,β-mannanase production of 296 Units/g (U/g) dw, xylanase production of 6347 U/g dw and cellulase production of 66032 U/g dw can be achieved, which were improved 61%, 49%, 53% compared with that of the initial medium, respectively.
     2. The growth kinetics of Aspergillus niger SL-05 were investigated. The results showed that the optimal fermentation time for xylanase production under the optimized conditions would be 48 h. As spores were produced after 48 h, the enzymes production tended to be slower. The major enzymes secretion was observed during 24-48 h of inoculation with high cellular metabolism activities. In this period, the amount of total sugar and reducing sugar decreased dramatically, the pure protein increased rapidly, the pH value of the medium decreased, and the dry weight loss rate increased distinctly. Then, small increase in enzyme secretion was found. Compared with the amino acid content before fermentation, the content of most amino acid increased after fermentation, especially limiting amino acids: Lys, Met and His, which were improved 38%, 85%, 69% compared with that of the initial medium, respectively.
     3. The effects of the optimal temperature, pH, thermal stability, stability of acid and alkali, common metal ions to enzymes were researched. The results showed that theβ-mannanase, xylanase and cellulase were acidic enzymes and the optimal pH were 5.0, 5.0, and 4.5, respectively. Three enzymes all remained above 85% of the initial activity after incubated at pH3.5-6.0. The optimal reaction temperature were 80℃, 55℃, 75℃, respectively. Thermal stabilities ofβ-mannanase and cellulase were high. They remained above 80% of initial activity afterβ-mannanase incubated for 5 h at 50℃and cellulase incubated for 30 min at 60℃. But xylanase remained only 17.35% after incubated for 30min at 60℃. The Km and Vmax of theβ-mannanase were obtained, which were 0.083μmol/mL and 166.67μmol/min, respectively. The activity of the mannanase was inhibited greatly by Cu2+(91%) and was activated by Fe2+, Fe3+ and Mg2+, especially Fe2+(127%). The activity of mannanase was inhibited by 0.5 mM Ca2+; however it was activated at 1.0 mM Ca2+.
引文
[1]敖维平,杨正德.饲料纤维素酶的研究进展与应用现状[J].贵州农业科学, 2004, 32(4): 77-79.
    [2]常显波,薛泉宏,来航线,等.鲜苹果渣发酵生产饲料蛋白研究[J].西北农林科技大学学报, 2004, 32(1): 40-46.
    [3]陈和秀,龙敏南,徐方成,等.木聚糖酶生产菌株的筛选及产酶条件的优化[J].中国生物工程杂志, 2007, 27(11): 41-44.
    [4]陈力宏.纤维素酶在食品发酵中的应用[J].中国酿造, 1990, (5): 2-5.
    [5]陈益人,张一鸣.纤维素酶对纤维素纤维织物的后整理[J].印染助剂, 1999, 16(3): 24-26.
    [6]成莉凤.β-甘露聚糖酶高产菌株筛选及酶的纯化与性质研究[D].中国农业科学院, 2007.
    [7]崔月明.木聚糖酶产生菌的选育、酶学性质及xynA基因的克隆表达[D].广西大学, 2005, 21-23.
    [8]崔宗均,朴哲,王伟东,等.一组高效稳定纤维素分解菌复合系MCl的产酶条件[J].农业环境科学学报, 2004, 23(2): 296-299.
    [9]方洛云,邹晓庭,许梓荣.木聚糖酶基因的分子生物学与基因工程.中国饲料, 2002, (7): 11-13.
    [10]冯定远,张莹,余石英.含有木聚糖酶和β-葡聚糖酶的酶制剂对猪日粮消化性能的影响[J].畜禽业, 2000, (7): 44-45.
    [11]傅博弧,谢明勇,周鹏.纤维素酶法提取茶多糖团[J].无锡轻工大学学报, 2002, 21(4): 362-366.
    [12]高才昌,张树政.酶制剂工业(下册) [M].北京:北京科学出版杜. 1984: 595.
    [13]高艳华,袁建国,董成涛,等.木聚糖酶在提高馒头品质中的应用[J].食品与药品, 2005, 7(6): 39-41.
    [14]顾琪萍,尤纪雪,勇强,等.脂肪酶和纤维素酶/木聚糖酶混合用于ONP脱墨[J].中国造纸, 2004, 25(2): 7-9.
    [15]顾宇峰,姜晓红,赵允麟.粥化酶在果蔬加工中的应用[J].食品与生物技术学报, 2005, 24(3): 79-83.
    [16]韩进诚,瞿红侠.纤维素酶在动物生产中的应用[J].山东饲料, 2004, (7): 13-15.
    [17]黄立本,诸葛健.近年来纤维素酶研究的进展[J].科学通报, 1976, 21(2): 53-60.
    [18]加滕久明,等.酶在果蔬加工中的应用[J].应用微生物, 1986, 2: 19.
    [19]江正强.微生物木聚糖酶的生产及其在食品工业中应用的研究进展[J].中国食品学报, 2005, 5(1): 1-9.
    [20]李德舜,颜涛,宗雪梅,等.芽抱杆菌(Bacillus sp.No.16A)芒麻脱胶研究.山东大学学报, 2006, 41(5): 151-154.
    [21]李惠军,刘畅.木聚糖酶高产菌株的筛选及固态发酵条件的研究[J].郑州牧业工程高等专科学校学报, 2007, 27(3): 10-12.
    [22]李剑芳,乌卜敏辰.夏文水.β-甘露聚糖酶高产菌株选育及产酶条件的研究[J].食品发酵工业, 2005, 31(9): 9-13.
    [23]李里特,李秀婷,江正强,等.嗜热真菌耐热木聚糖酶对面包品质的改善[J].中国粮油学报, 2004, 19(5): 11-15.
    [24]李志健,张志杰,张素凤.生物技术在制浆造纸中的应用与研究进展[J].中国造纸, 2001, 20(1): 51-54.
    [25]刘唤明,梁运祥,彭定祥.芝麻酶法脱胶的研究.中国麻业, 2006, 28(2): 87-90.
    [26]刘翔,何国庆.纤维素酶及相关酶在食品生物技术中的应用[J].粮油加工与机械, 2003(6): 61-63.
    [27]刘燕,刘钟栋,潘坷,等.甘露聚糖酶水解烟草胶质的研究.河南工业大学学报:自然科学版, 2006, 27(6): 69-72.
    [28]刘自熔,程海,任健平.大麻酶法脱胶的机理初探.纺织学报, 2001(6): 87-90.
    [29]龙健儿,陈一平.β-甘露聚糖酶的研究现状[J].微生物学杂志, 1998, 18(3): 44.
    [30]栾兴社,胡家济,王贵宏.由丝状真菌转化纤维素质原料为乙醇[J].山东食品发酵, 1994, Z1: 17-21.
    [31]毛丹漪,戴蓓,余菁.酶在造纸工业中的应用[J].造纸化学品, 2002, 14(2): 38-41.
    [32]毛胜勇.甘露寡聚糖在动物生产中的应用研究[J].粮食与饲料工业, 2000(9): 31-33.
    [33]皮雄娥,费笛波,王龙英,等.黑曲霉AS6034酸性β-甘露聚糖酶的性质研究.饲料研究, 2006(2), 50-52.
    [34]蒲海燕.纤维素酶发酵工艺条件优化研究[D].西南农业大学, 2005.
    [35]秦全贵,宋永华,许开绍,等.纤维素酶与造纸工业[J].广西工业, 1997(3): 12-15.
    [36]邱雁临.纤维素酶的研究和应用前景[J].粮食与饲料工业, 2001, (8): 30-31.
    [37]邱雁临.纤维素酶的研究和应用前景[J].粮食与饲料工业, 2001, 8: 30-31.
    [38]邱雁临.纤维素酶对啤酒糟蛋白酶解率的影响[J].粮油加工与食品机械, 2001, 9: 39-40.
    [39]曲音波,高培基.造纸厂废物发酵生产纤维素酶、酒精和酵母综合工艺的研究进展[J].食品与发酵工业, 1993, 3: 62-68.
    [40]尚维,刘群.纤维素酶在清香型优质白酒中应用初探[J].酿酒科技, 1996, 2: 20-21.
    [41]司翔宇,葛蕾,李志西.苹果渣固态发酵生产饲料蛋白的研究[J].湖北农业科学, 2005(3): 35-37.
    [42]孙庆杰,丁霄霖.番茄红素稳定性的初步研究田[J].食品与发酵工业, 1998, 24(2): 47-49.
    [43]孙振涛.产碱性木聚糖酶菌株的筛选及产酶条件研究[D].山东农业大学, 2007.
    [44]田新玉,徐毅,马延和,等.嗜碱芽孢杆菌N16-5β-甘露聚糖酶的纯化与性质[J].微生物学报, 1993, 33(2): 115-121.
    [45]王海英,吴赞敏,景改玲,等.纤维素酶处理与染色的研究[J].整染科技, 2002, (6): 3-6.
    [46]王素雅,王璋.酶法生产澄清型香蕉汁的研究[J].食品科技, 2002, 12(7): 44-46.
    [47]王晓,李林波,马小来,等.酶法提取山植叶中总黄酮的研究[J].食品工业科技, 2002, 23(3): 37-39.
    [48]王修启,张兆敏,李春群.高比例小麦日粮添加不同水平木聚糖酶对猪生产性能的影响[J].动物营养学报, 2002, 14(1): 60-62.
    [49]邬敏辰.β-甘露聚糖酶及其水解产物的应用研究[J].江苏调味副食品, 2001, 69(2): 5-7.
    [50]邬敏辰.微生物β-甘露聚糖酶的生产与应用[J].中国商办工业, 2001, 5: 46-47.
    [51]吴襟,何秉旺.微生物β-甘露聚糖酶[J].微生物学通报, 1999, 6(2): 134-136.
    [52]伍安国,曾辉,苏庆平.生物技术在造纸工业中的应用研究进展[J].西南造纸, 2005, 34(2): 15-19.
    [53]肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志,2002, 22(2): 33-35.
    [54]谢响明,何晓青.微生物的木聚糖酶及其生物漂白研究进展[J].北京林业大学学报, 2003, 25(3): 111-116.
    [55]许牡丹,杨伟东,许宝红,等.微生物β-甘露聚糖酶的制备与应用研究进展.动物医学进展, 2006, 27(9): 31-34.
    [56]阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展, 1999, 26(3): 233-237.
    [57]杨辉,石振海,代春吉.苹果渣固体发酵生产果胶酶的研究[J].陕西科技大学学报, 2003, 21(4): 1-5.
    [58]杨文博,佟树敏,沈庆,等.β-甘露聚糖酶酶解植物胶及其产物对双歧杆菌的促生长作用[J].微生物学通报, 1995, 22(4): 204-207.
    [59]杨玉华,刘德海,王子光.纤维素酶在食醋酿造中的应用[J].河南农业大学学报, 1999, 4: 398-399.
    [60]殷露琴,王璋.酶解前后可可粉体系的变化[J].食品工业科技, 2006, 32(3): 51-54.
    [61]余有贵,蒋盛岩,梁莲花.非淀粉多糖酶改善麦汁品质的研究[J].酿酒科技, 2005, (4): 65-67.
    [62]袁勤生.现代酶学[M].上海:华东理工大学出版社, 2001, 1.
    [63]张启先.纤维素和纤维素酶[J].微生物学通报, 1976, 3(2): 31-34.
    [64]张勤良,王璋,许时婴.中性木聚糖酶在面包制作中的应用[J].食品与发酵工业, 2004, 30(7): 21-25.
    [65]张素风,陈鹏,郑冬颖.木聚糖酶用于旧书刊纸脱墨的研究[J].中国造纸, 2005, 24(10): 13-16.
    [66]张运雄,刘正初.高效菌株T85-260在芒麻脱胶过程中的胞外酶系研究.中国麻业, 2001, 23(1).
    [67]张智,刘复军.纤维素酶在酱油酿造上的应用研究.中国调味品[J]. 1997, 8: 15-19.
    [68]赵玮莉. Co60γ射线诱变选育木聚糖酶和β-葡聚糖酶高产菌株及其应用研究[D].河南农业大学, 2005.
    [69]赵玉林,王福君,陈中耗.纤维素酶在造纸工业中的应用研究进展[J].纸和造纸, 2002, (2): 64-66.
    [70]周春晖,孙加龙.纤维素酶及其应用[J].中国商办工业, 2002, (2): 43-44.
    [71]周正红,高孔荣,等.纤维素酶在食品发酵工业中的应用及前景.暨南大学学报, 1998, 19(5): 125-130.
    [72]周正红,高孔荣.纤维素酶在食品发酵工业中的应用及其前景[J].广州化学, 1996(4): 8-14.
    [73]朱吉力,李剑芳,邬敏辰.酸性β-甘露聚糖酶的固态发酵工艺研究[J].西北农林科技大学学报, 2005, 33(8): 139-143.
    [74]朱劼,邬敏辰.黑曲霉酸性β-甘露聚糖酶的酶学性质[J].食品与生物技术学报, 2007, 26(2): 21-25.
    [75]邹义明.植物纤维化学[M].北京:中国轻工业出版社, 1997, 50-52.
    [76] Ademark P and Varga A. Softwood hemicellulose-degrading enzymes from Aspergillus niger: Purification and properties of aβ-mannanase [J]. J Biotechnol, 1998, 63(3): 199-210.
    [77] Akino T, Nakamura N and Horikoshi K. Production ofβ-mannosidase andβ-mannanase by an alkalophilic Bacillus sp [J]. Appl Microbio Biotechnol, 1987, 26(4): 323-327.
    [78] Aspinall G O. Chemistry of cell wall polysaccharides [J]. Biochemistry of Plants, 1980, 3: 473-500.
    [79] Autio K, Parkkonen T and Frigard K. Effects of purified endo-β-xylanase and endo-β-glucanase on the structural and baking characteristics of RyeDoughs [J]. Lebensm Wissu. Techno, 1996, 29: 18-27.
    [80] Bailey M J, Biely P and Poutanen K. Interlaboratory testing of methods for assay of xylanase activity [J]. Biotechnol, 1992, 23(3): 257-270.
    [81] Beg Q K, Kapoor L and Mahajan L. Microbial xylanses and their industrial application: a review [J]. Appl Microbiol Biotechnol, 2001, 56: 326-338.
    [82] Bisaria V S and Glose T K. Biodegradation of cellulosic materials microorganisms’enzymes substrates and products [J]. Enzyme Microbiotechnol, 1981, 3: 90-104.
    [83] Bouquelet S, Spik G and Monrteuil J. Properties of aβ-mannanase from Aspergillus niger [J]. Biochem Biophys Acat, 1978, 552: 521-530.
    [84] Cowling E B. Structural features of cellulose that influences its susceptibility to enzymatic hydrolysis, in: E.T. Reese (Ed.), Advances in Enzymatic Hydrolysis of Cellulose and Related Materials [M]. Pergamon Press, New York, 1963: 1-32.
    [85] Crawford R L. Lignin biodegradation and transformation [M]. New York: John Wiley and Sons, 1981, ISBN 0-471-05743-6.
    [86] Dekker R F H. Biodegradation of the hetero-l, 4-linked xylans. In: Plant cell wall polymers [M]: biogenesis and biodegradation. Washington, DC: American Chemical Society, 1989, 619-629.
    [87] Dekker R F H. Ethanol production from D-xylose and other sugars by the yeastPachysolen tannophilus [J]. Biotechnology Letters, 1982, 4(7): 411-416.
    [88] Desai J D, Desai A J and Patel N P. Production of cellulases andβ-glucosidase by shake culture of Scytalidium lignicola [J]. J Ferment Technol, 1982, 60: 117-124.
    [89] Duffaud G D, McCutchen C M, Leduc P, et al. Purification and characterization of extremely thermostableβ-mannanase,β-mannosidase, andα-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068 [J]. Appl Environ Microbiol, 1997, 63: 169-177.
    [90] Feng Y Y, He Z M, et al. Optimization of agitation, aeration, and temperature conditionsβ-mannanase production for maximum [J]. Enzyme and Microbial Technology, 2003, 32: 282-289.
    [91] Galante Y M and Monteverdi R. New applications of enzymes in wine making and olive oil prouctions [J]. Italian: Biochem Soc, Trans, 1993, 4:34-38.
    [92] Gao J M, Weng H B, Zhu D H, et al. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover [J]. Biore Technol, 2008, in press.
    [93] Geater C W, Fehr W R, Wilson L A, et al. A more rapid method of total sugar analysis for soybean seed [J]. Crop Sci, 2001,41:250-252.
    [94] Gouda M K and Abdel-Naby M A. Catalytic properties of the immobilized Aspergillus tamarii xylanase. Microbiological Research, 2002, 4(157): 275-281.
    [95] Gubitz G M, Hayn M, Sommerauer M and Steiner W. Mannan-degrading enzymes from Sclerotium rolfsii: characterization and synergism of two endoβ-mannanases and aβ-mannosidase. Biore Technol, 1996, 58: 127-135.
    [96] Guibitez G M and Hayn M. Mannan-degrading enzymes from Sclerotium rolfsii. Characterization and synerigiism of two Endo-p-mannanase and a p-mannosidase. Biore Technol, 1996, 58(2): 127-135.
    [97] Gutierrez-Correa M, Tengerdy R P. Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse [J]. Biotechnol Letters, 1998, 20(1): 45-47.
    [98] Hashimoto Y and Fukumoto J. Studies on the enzyme treatment of coffee beans. Purification of mannanase from Rhyzopus niveus and its action on coffee mannan [J]. Nippon Nogeikagaku Kaishi, 1996, 43: 317-322.
    [99] Heck J X, Soares L H, Ayub M A Z. Optimization of xylanase and mannanase production by Bacilluscirculans strain BL53 on solid-state cultivation[J]. Enzyme Microb Technol, 2005, 37: 417-423.
    [100] Henrik S, Matti S, Maija T and Liisa V. Purification and characterization of twoβ-mannanases from Trichoderma reesei [J]. J Biotechnol, 1992, 29(3): 229-242.
    [101] Hristov A N, McAllister T A and Cheng K J. Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes: Effects on nutrient digestion in cattlefed a barley grain diet [J]. J Anim Sci, 2000, 78(2): 477-487.
    [102] Jain A. Production of xylanase by thermophilic Melanocarpus albomyces PS-68. Process Biochem, 1995(30): 705-709.
    [103] Jin Zhou, Yong-Hong Wang, Ju Chu, et al. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14 [J]. Biore Technol, 2008, 99(15): 6826–6833.
    [104] Johnson K G and Ross N W. Enzymic properties ofβ-mannanase from Polyporus versicolor [J]. Enzyme and Microbial Technol, 1990, 12(12): 960-964.
    [105] Jose C. The state of the art in textile biotechnology [J]. J Society Dyers Colourists, 1996, 112(11): 326-329.
    [106] Jurasek L, Ross C J and Whitaker D R. Microbiological aspects of the formation and degradation of cellulosic fibers [J]. Advances Appl Microbiol, 1967, 9: 131.
    [107] Kim T J, Ow S and Eom T J. In Procedings of Tappi Pulping Conference [C]. Atlanta: Tappi Press, 1991, 2: 1023-1030.
    [108] Kulkami N, Shendye A and Rao M. Molecular and biotechnological aspects of xylanase [J]. FFMS Microbiol Rev, 1999, 23: 411-456.
    [109] Lehmberg G L, Balentine D A, Hang R S and Gobbo S A. Enzyme extraction process for tea [P]. United States Patent, 2000 (FSTA, 2000-03-H0710).
    [110] Lin T C and Chen C. Enhanced mannanase production by submerged culture of Aspergillus niger NCH-189 using defatted copra based media [J]. Process Biochem, 2004, 39: 1103-1109.
    [111] Maat J, Roza M and Verbakel J. Xylanases and their application in bakery [J]. Biotechnol American, 1992, 7: 3493-3560.
    [112] Martin S. Enzymatic properties of cellulases from Humicola insolens. J Biotechnol, 1997(57): 71-81.
    [113] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31(3): 426-428.
    [114] Monica H, Cristina R M and Carmen B. Effect of different carbohydrases on fresh bread texture and breadstaling [J]. Eur Food Res Technol, 2002, 215: 425-430.
    [115] Ogasawara H, Takahashi K and Iitsuka K. Contribution of hemicellulase in Shochu koji to the resolution of barley in the Shochu mash [J]. J Brew Soc, Japan, 1991, 86(4): 304-307.
    [116] Orskov F and Orskov I. Serotyping of Escherichia coli [J]. Methods Microbiol, 1984, 14: 43-112.
    [117] Panagiotou G, Kekos D, Macris B J, et al. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation [J]. Ind Crops Products, 2003, 18: 37-45.
    [118] Park Y S, Kang S W, Lee J S, et al. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs [J]. Appl Microbiol Biotechnol, 2002, 58: 761-766.
    [119] Petit-Benvegnen M D, Saulnier L and Rouan X. Solubilition of pentosan from isolated water-unextractable and wheat flour doughs by cell wall degrading enzymes [J]. Cereal Chem, 1998, 75(4): 551-556.
    [120] Poutanen K, Tenkanen M and Korte H. Accessory enzymes involved in the hydrolysis of xylan. In: Leatham G F, Himmel M E, eds. Enzymes in biomass conversion. ACS Symp. Washington: American Cheml Society, 1991, 460: 426-436.
    [121] Prade R A. Xylanases: from biology to biotechnology [J]. Biotechnol Genetic Engine Reviews, 1995, 13: 101-131.
    [122] Prokop V. The effect of targeted combination of additives to prestarter on nutrition parameters and performance of piglets [J]. J Anim Sci, 1999, 44(3): 119-124.
    [123] Puchar V, Katapodis P, Biely P, et al. Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus [J]. Enzyme Microbial Technol, 1999, 24: 355-361.
    [124] Reese E T, Siu R G and Levinson H S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis [J], J Micorboil, 1950, 59: 485-497.
    [125] Roberts J C, Mccarthy A J, Flynn N J, et al. Modification of paper properties by the pretreatment of pulp with Saccharomonospora viridis xylanase. Enzyme Microb Technol, 1990, 3(12): 210-213.
    [126] Rosanne M. Measurement of saeeharifieation by cellulases [J]. J Enzyme Mirob Technol, 1985, 7: 65-87.
    [127] Rulquin H. The determination of certain limiting amino acids in the dairy cow by post-ruminaladministration [J]. Reprod Nutr Dev, 1987, 27: 299.
    [128] Saeki K and Miyashita Y. Purification and properties of mannanase from Oerskovia xanthineolytica [J]. J Fermentation Bioengine, 1990, 70(4): 215-221.
    [129] Schwab M E. Regeneration of lesioned CNS axons by neutralization of neurite growth inhibitors: a short review [J]. J Neurotrauma, 1992, 9: 219-21.
    [130] Senthilkumar S R, Ashokkumar B, Chandra R K, et al. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design [J]. Bioresou Technol, 2005, 96: 1380-1386.
    [131] Seyis I and Aksoz N. Effect of carbon and nitrogen sources on xylanase production by Trichoderma harzianum 1073 D3. Int Biodeterior Biodegrad, 2005, 55: 115-119.
    [132] Shao W L, Deblois S and Wiegel J. A high-molecular-weight, cell-associated xylanase isolated from exponentially growing Thermoanaero bacterium sp. strain JW/SL-YS485 [J]. Appl Environ Microbiol, 1995, 61(3): 937-940.
    [133] Silva D, Tokuioshi K, Martins E D S, S et al. Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem, 2005(40): 2885–2889.
    [134] Singh S, Madlala A M and Prior B A. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Reviews, 2003, 27, 3-16.
    [135] Smiht R E. Sutdies of cellulose Sysetm [J]. APPlied and Enviornmental Miocrbiol, 1977, 33(4): 980-981.
    [136] Srinivasan M C and Rele M V. Microbial xylanases for paper industry. Current Science, 1999(77), 137-142.
    [137] Timmel T E. Recent progress in the chemistry of wood hemicelluloses [J]. Wood Sci Technol, 1967, 1: 45-70.
    [138] Updegraff D M. Semimicro determination of cellulose in biological materials [J]. Analytical Biochem, 1969, 32: 420-424.
    [139] Viikari L, Ranva M and Kantelinen A. Bleaching with enzymes [C]. Stockholm: Third International Conference in Biotechnology in Pulp and Paper Industry, 1986, 67-69.
    [140] Wang X J, Bai J G and Liang Y X. Optimization of multienzyme production by two mixed strains in solid-state fermentation [J]. Appl Microbiol Biotechnol, 2006, 73(3): 533-540.
    [141] Wilkie K C B. The hemicelluloses of grasses and cereal [J]. Adv Carbohydr Chem Biochem, 1979, 36: 215-262.
    [142] Wong K K Y, Tan L U L and Saddler J N. Multiplicity ofβ-1, 4-xylanase in microorganisms: function and applications [J]. Microbiol Rev, 1988, 52: 305-317.
    [143] Wu M, Li S C, Yao J M, et al. Mutant of a xylanase-producing strain of Aspergillus niger in solid state fermentation by low energy ion implantation [J]. World J Microbiol Biotechnol, 2005, 21: 1045-1049.
    [144] Yuan K P, Lilian L P. Vrijmoed, et al. Survey of coastal mangrove fungi for xylanase production and optimized culture and assay conditions [J]. Acta Microbiologica Sinica, 2005, 45(1): 91-96.
    [145] Zakaria M M, Yamamoto S and Yagi T. Purification and characterization of an endo-1, 4-β-mannanase from Bacillus subtilis KU-1FEMS [J]. Microbiol Letters, 1998, 158(1): 25-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700