用户名: 密码: 验证码:
卡拉胶和褐藻胶流变学特性及凝胶特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐藻胶和卡拉胶是从海藻中提取的两种多糖,在食品中具有良好的应用前景。本论文以卡拉胶和褐藻胶为研究对象,进行了以下几个方面的研究:
     1)两种海藻胶溶液流变学特性的研究。结果表明卡拉胶和褐藻胶溶液在一定的温度下均为假塑性流体,其流动曲线与power law模型具有较好相关性;在低频率区域,这两种海藻胶以粘性为主,在高频率区域以弹性为主。当浓度为时2.0%,二者都有明显的触变性,随着二者浓度降低,溶液的触变性逐渐减弱。
     2)两种海藻胶凝胶特性的研究。
     卡拉胶凝胶是热可逆凝胶,在升降温过程中有明显的热滞后现象。当凝胶时间为8小时时凝胶强度最大;KCl浓度对其凝胶强度有较大影响,随着KCl浓度的增加凝胶强度呈先增加后减少的趋势,浓度为0.8%时凝胶强度最大。
     褐藻胶凝胶是非可逆凝胶,在氯化钙体系中,氯化钙浓度、温度及褐藻胶M/G对凝胶性能有很大的影响;当氯化钙温度为50℃、浓度为2.0%时,凝胶的拉伸强度和吸水性能最佳;高G型褐藻酸钙凝胶拉伸强度优于高M型,但吸水性能比较差;红外光谱结果表明,褐藻胶成凝胶后,-OH峰向高波数方向偏移并且C-H伸缩振动变弱。
     在葡萄糖醛酸内酯体系中,褐藻胶凝胶结构比较均匀,但Ca2+浓度、M/G比以及葡萄糖醛酸内酯对其性质影响较大。随着钙离子浓度的增加,体系凝胶时间逐渐缩短,而贮藏模量G′、损耗模量G″、复合粘度、凝胶强度逐渐增大;随着M/G比增加,G′、G″和凝胶强度都逐渐减少,而tanδ和凝胶时间逐渐增加;随着葡萄糖醛酸内酯的增加,凝胶时间逐渐缩短,但对稳定后凝胶的G′、G″和凝胶强度影响不大。3)两种海藻胶与其他胶体协同作用的研究。
     卡拉胶与魔芋胶之间有协同增效的作用,所形成的凝胶具有热可逆性,并且胶凝点低于熔化点。随着魔芋胶量的增加,混合凝胶的G′和G″、凝胶强度、胶凝点和熔化点都有先增大后降低的趋势,当卡拉胶与魔芋胶比为7:3时最大;在酸性条件下蔗糖对体系的凝胶强度保护作用,KCl浓度为0.5%时,凝胶强度最大。红外光谱结果表明,卡拉胶与魔芋胶混合形成凝胶后,-OH峰向低波数方向偏移。
     褐藻胶与高甲氧基果胶之间有增效的协同作用,二者的混合比、褐藻胶M/G比以及蔗糖对其凝胶性质影响比较大;当两者质量比为3:2时,凝胶强度最大;褐藻胶M/G比越小,混合凝胶的G′和G″越大,tanδ越小,与频率的相关性越低。添加适量的蔗糖可增加体系的凝胶强度。红外光谱结果表明,褐藻胶和高甲氧基果胶形成凝胶后,-OH峰高波数方向偏移,并且C-H和C=O伸缩振动变弱。
Carrageenan and algin are two kinds of polysaccharides which are extracted from the seaweed, and they had broad applications in food. The object of this thesis is to study the rheological and gel properties of algin and carrageenan. The main results are as follows:
     1) Study on the rheological properties of the aqueous solution of carrageenan and algin:
     The results showed that carrageenan and algin were both pseudoplastic fluid and their flow curve had a good correlation with the power law model. In the low-frequency region, they mainly exhibited viscous, while in the high frequency region mainly flexibility. When the concentration was 2.0%, they both had thixotropy, and the lower the concentration was, the smaller the thixotropic central was.
     2) Study on the gelling properties of carrageenan and algin.
     Carrageenan was a hot reversible gel, and it had the thermal hysteresis significantly in the process of heating and cooling.The maximum gel strength was found when the gelling time was 8h .The KCl concentration had great effect on gel strength, with the KCl concentration increasing, the gel strength firstly increased and then reduced, the maximum gel strength was found when the content of KCl was 0.8%.
     Alginate gel was a non-reversible gel.In the system of CaCl2,the content of CaCl2,temperature of CaCl2 and the composition of mannuronic acid / guluronic acid ( M/G) had made difference on the properties of alginate calcium gel .The texisle strength and absorbency ability of gel was the best when the content of CaCl2 and the temperature of CaCl2 was 2.0% and 50℃respectively; The texisle strength of alginate calcium by high G algin was better than that of by high M, while the absorbency ability of water by high G was smaller than that of high M. The IR spectra results showed that the loacation of -OH peak migrated to the high wavenumber and C-H stretching weak, when alginate sodium changed into alginate calcium.
     In GDL system, the gel structure was more uniform, but the concentration of Ca2+ and GDL and the M / G ratio had great effect on the gel properties. The storage modulus, loss modulus, complex viscosity, gel strength gradually increased with the increasing of calcium concentration, while the gel time gradually decreased. As the M / G ratio increased, the storage modulus, loss modulus and gel strength diminished, while tanδand gel time gradually increased.
     3) Study on the synergy of algin, carrageenan and other gel.
     Synergy was between carrageenan and konjac gum, and the mixture was a kind of heat reversible gel, the melt temperature was higher than the gel temperature. The G′and G″,gel strength ,the gel point and melt point increased at first and then decreased with the content of konjac gum increasing, the maximum synergy was found when carrageenan/ konjac gum was7:3. In addition , pH、sugar and the concentration of KCl had some effect on gel strength, sugar could protect the gel strength in low pH, and the gel strength firstly increased and then decreased with the content of KCl increasing, the maximum was found when the content of KCl was 0.5%. The IR spectra results showed changes were-OH peak migration to the low wavenumber during the gel formation .
     5 Algin could interact with high-methoxy pectin to form gel, the gel strength was the maximum when the ratio is 3:2.The storage modulus, loss modulus had great relevance with oscillation frequency, and with the M / G ratio of algin decreasing, the relevance was lower. In the same frequency, the storage modulus and loss modulus of by high G was greater than of by high M; while the tanδof by high G was smaller. The addition of sucrose could increase the gel strength properly. The IR spectra results showed that the major structural changes were-OH peak migration to the high wavenumber and C-H and C = O stretching weak during the gel formation.
引文
[1] OWEN R. FENNEMA.食品化学.北京:中国轻工业出版社.2003.176-179.
    [2] M JI.W YATOHE. Structural analysis of carrageenan fractions extracted sequentially from three carrageenophytes using carbon-13NMR and Inspectoscopy.Chem Abstr,1988(109):187-313
    [3]徐强,管华诗.卡拉胶研究的发展与现状.青岛海洋大学学报,1995,12(3):117-119
    [4]刘凌,薛毅,王亚南,等.κ-卡拉胶胶凝特性研究.郑州轻工业学院学报,1999,14(1):64
    [5]陈声明.海藻酸的微生物合成及其发酵条件.食品与发酵工业,1994 ,4:12-15
    [6] Gombotz W R , Wee S F. Protein release from alginate matrices[J ] . Advanced Drug Delivery Reviews , 1998 , 31 :272.-278
    [7]王卫平.食品品质改良剂:亲水胶体性质及应用之四-海藻胶.食品与发酵工业,1996,1:72-78
    [8] WARENDORF T. A refrigerated water jelly and a process for its preparation. European.Patent.Application, 1999: 11-14
    [9] ANON. Sugaring the process. Confection, 2000, 3:8-9
    [10] DEFREITAS Z. Carrageenan effects on thermal stability of meat proteins. Journal of Food Science, 1997, 62 (3) :544-547
    [11] MOON J.D. Effects of seed oils, water and carrageenan on the chemical properties of low-fat sausages during cold storage. Korean.Journal of Animal Science, 1996; 38 (4):423-433
    [12] TRIUS A .Carrageenans and their use in meat products. Critical Reviews in Food Science and Nutrition. 1996.36 (12):69-85
    [13] DROHAN DD. Milk protein-carrageenan interactions. Food Hydrocolloids.1997. 11(1):101-107
    [14] MILLER LIVNEY T. Ice recrystallization in ice cream: interactions between sweeteners and stabilizers. Journal of Dairy Science, 1997, 80(3):447-456
    [15] GIESE J. Developments in beverage additives. Food Technology, 1995, 49 (9):63-65
    [16]邝生鲁编.现代精细化工高新技术与产品的合成工艺.北京:科学技术文献出版社,1997,574-575
    [17]管华诗.褐藻胶的应用-褐藻酸钠对人体健康的作用,125-127(1987)
    [18]沈月新.严伯奋.提高多酯冻鱼冷藏品质的研究.北京:科学技术文献出版社,1999,474-475
    [19] Liu X X.Qian R Y Shu T. Rheology characterization of sol-gel transition in aqueous alginate solutions Induced by calciumcations through in siturelease. Polymer ,2003,44:407-412.
    [20] G O Phillips,P A Williams,D J Wedlock Eds.Morris V J. Gums and stabilisers for the food industry.London:Elsevier,1986.87.
    [21] PhiillipsGO,WilliamsPA. Introductiontofoodhydrocolloids.In: Handbook of H drocolloids,Woodhead PublishingLtd,England,2000.1-19.
    [22] Annable P,Williams PA,Nishinari. Interaction in Xanthan-Glucomannan Mixtures and the Influence of Electrolyte.Macromolecules, 1994,27: 4204-4211.
    [23]何东保,詹东风,张文举.魔芋精粉与黄原胶协同相互作用及其凝胶化的研究.高分子学报,1999,(4): 460-464.
    [24] Kohyama K, Iida H and Nishinari. A mixed system composed of different molecular weights konjac glucomannan and kappa-carragageenan : large deformation and dynamic viscoelastic study.FoodHydrocoll,1993,(7):213-226.
    [25] ishinari K.Miyoshi E.Takaya T,et al. Rheological and DSC studies on the Interaction between gellan gum and konjac glucomannan. CarbohydrPolym, 1996,30,(4):193-207.
    [26] Oakenfull D, Nishinarl,Mlyoshli A. Comparative study of milk gels formed Withκ-carrageenan or low-methoxy pectin. In: Hydrocolloids ,part 2,K.Nishinarieds.Elseviec TheNetherlands,2000.153-163.
    [27]赵谋明,林伟峰,徐建祥,等.酪蛋白-卡拉胶体系交互作用机理的研究.食品与发酵工业,1997,(5):1-9
    [28] Gombotz W R , Wee S F. Protein release from alginate matrices . Advanced Drug Delivery Reviews , 1998 , 31 :272.-278
    [29] Windhab E. Rheology in food processing. Physico-Chemical Aspects of Food Processing, Beckett S T. Blackie Academic and Professional, London, 1995, 80-116
    [30] aubert C, and Foegending A. Rheological priciples for food analysis. Food Analysis, S.Suzanne Nielsen9. Aspen Publishers, Inc,Gaithersburg, 1998, 551-556
    [31] Davis S. Rheological properties of semi-solid foodstuff: Viscoelasticity and its role in quality contr. Texture Studies, 1998, 4(1):15-40.
    [32] Kokini J.Plutchok G, Viscoelastic properties of semisolid foods and their biopolymeric components.Food Technol, 1987, 41(3): 89-95
    [33] Marcott M, Hoshahili A, Ramaswamy H. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 2001,34: 695-703
    [34] Sherman P.The texture of ice cream. 3. Rheological properties of mix and melted ice cream. Food Science, 1966,31(5): 707-716
    [35] Zczesniak A, Farkas E. Objective characerization of the mouthfeel of gum solution. Food Science,1962, 27(4):381-385. Carrageenan
    [36] Rao M. Rheology of liquid foods-A review.Food Texture Sudies, 1977, 8(2): 135-168.
    [37] Rao M. Measurement of flow properties of fluid foods-developments, limitations, and interpretation of phenomena.Food Texture Sudies, 1977b, 8(3): 257-282 [38 ]Howard D. A look at viscosity. Food Technol, 1991,45(7): 84-86
    [39]刘志东,郭本恒.食品流变学研究进展.食品研究与开发,2006,27(11):211-216
    [40] Steffe J. Introduction to rheology. Rheological Methods in Food Process Engineering, Freeman Press, East Lansing, 1996, 1-48
    [41]Chmiel H, Anadere I, Walitza E. The determination of blood viscoelasticity in clinical hemorheology.Clinical Hemorheology, 1990, 10: 363-374
    [42] Hossain K S,Nemoto N, Nishlnari K.Structure and dynamics of gelling system. NihonReorojiGakkaishi,1997,25:135-142.
    [1]刘凌,薛毅,王亚南,等.κ-卡拉胶胶凝特性研究.郑州轻工业学院学报,1999,14(1):64-68
    [2] Yu Chen.Ming Long Liao.Dave.E,Dunsan. The Rheology of K+-κ-carrageenan as a weak gel. Carbohydrate Polymers.2002,50:109-116
    [3]刘芳,沈光林,彭志英.卡拉胶的交互作用特性及其在食品工业中的应用.冷饮与速冻食品工业,2000,(4):31-33
    [4] RENN D. Biotechnology and the red seaweed polysaccharide industry status needs and prospects. Treds in Biotechnology. 1997 (15) :9~14
    [5]李安平,人心果乳汁的流变学特性.中南林学院学报,2005, 4 (25) : 88
    [6] C. Michon. Structure evolution of carrageenan /milk gels: effect of shearing, carrageenan concentration and nufraction on rheological behavior. Food Hydrocolloids, 2005, 3 (19) : 544-547
    [7] Rodriguez2Hernandez A I , Tecante A. Dynamic viscoelastic behavior of gellan-ι-carrageenan and gellan-xanthan gels . Food Hydrocollids , 1999 ,13 :59 - 64.
    [8]李里特.食品物性学.北京:中国农业出版社, 2001: 16-26.
    [9] Nishinari k., Rheological and DSC study of sol-gel transition in aqueous dispersions of industriallyimportant polymers and colloids. Colloid Polymer Science, 1997, 275: 1093-1107
    [10]代欣欣,李汴生.食品增稠剂流变学研究综述.中国食品添加剂,2007 ,4:138-142
    [11] Y.Hemar .C.E.Hall.P.A.Munro. Small and large deformertion rheology and microstructure of k-carrageenan gelscontaining commercial milk protein products. International Dairy Journal 2002,12: 371-381
    [12]代欣欣,李汴生.食品增稠剂流变学研究综述.中国食品添加剂, 2007 ,4:138-142
    [13]汤毅珊赵谋明等.卡拉胶流变性能的研究.广州食品工业科技,1994,4:34-38
    [14]金竣,林美娇.海藻利用与加工.北京:科学出版社,1993
    [1]刘凌,薛毅,王亚南,等.κ-卡拉胶胶凝特性研究.郑州轻工业学院学报,1999,14(1):64-68
    [2]Yu Chen,Ming Long Liao,Dave.E.Dunsan. The Rheology of K+-κ-carrageenan as a weak gel.Carbohydrate Polymers,2002,50:109-116
    [3]许时婴,钱和,魔芋葡甘露聚糖的化学结构与流变性质.无锡轻工业学院学报, 1991,10(1): 1- 12.
    [4]汪超,李斌,徐潇,等.魔芋葡甘聚糖的流变特性研究.农业工程学报,2005,21(8):157-160
    [5]何东保,彭学东,詹东风.卡拉胶与魔芋葡甘聚糖协同相互作用及其凝胶化的研究[J].高分子材料科学与工程. 2001 ,17(2):28-31
    [6] M.H. Norziah, S.L. Foo, A.Abd. Karim.Rheological studies on mixtures of agar (Gracilaria changii)and k-carrageenan. Food Hydrocolloids ,2006,20: 204–217
    [7]刘芳,赵谋明,彭志英.卡拉胶与其它多糖类协同作用机理的研究进展.食品科学,2000,21 (4):8-2
    [8]孟凡玲,罗亮,宁辉.κ-卡拉胶研究进展.高分子通报,2003,10:49-56
    [9]詹永,杨,勇.复配魔芋胶凝胶特性的影响因素.中国食品添加剂,2005,3:61-67
    [10] S.Y. Hsu , H.-Y. Chung.Interactions of konjac, agar, curdlan gum, j-carrageenan and eheating treatment in emulsified meatballs. Journal of Food engineering ,2000,44: 199-204
    [11]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000.
    [12] P. Penroja, J.R. Mitchellb,, S.E. Hillb. Effect of konjac glucomannan deacetylation on the properties of gels ormed from mixtures of kappa carrageenan and konjac glucomannan . Carbohydrate Polymers , 2005 ,59:367–376
    [13] Paula M. Gilsenan, Simon B. Ross-Murphy.Shear creep of gelatin gels from mammalian and piscine collagens.International Journal of Biological Macromolecules,2001,29: 53-61
    [14] Phillippa Rayment, Simon B. Ross-Murphy, Peter R.Rheological properties of guargalactomannan and rice starch mixtures. II. Creep measurements. Carbohydrate Polymers ,1998,35:55-63
    [15] A.B. Rodda, C.R. Davisb, D.E. Dunstana.Rheological characterisation of‘weak gel’carrageenan stabilised milks. Food Hydrocolloids,2000,19:445-454
    [16]金竣,林美娇.海藻利用与加工.北京:科学出版社,1993
    [17]魏德卿,夏怡,旷文峰.高分子学报(Acta PolymericaSinica),1997,(4): 404~409.
    [1]邝生鲁编.现代精细化工高新技术与产品的合成工艺.北京:科学技术文献出版社,1997,574-575
    [2]谢平.海藻酸及其盐的食用和药用价值.开封医专学报,1997,16(4):28-31
    [3]李安平.人心果乳汁的流变学特性.中南林学院学报,2005, 4 (25) : 88
    [4] C. Michon. Structure evolution of carrageenan /milk gels: effect of shearing, carrageenan concentration and nufraction on rheological behavior. Food Hydrocolloids , 2005, 3 (19) : 544
    [5] Rodriguez.Hernandez A I , Tecante A. Dynamic viscoelastic behavior of gellan-ι-carrageenan and gellan-xanthan gels,Food Hydrocollids , 1999 ,13 :59 - 64.
    [6]过菲,许时婴.羊栖菜多糖中褐藻酸钠溶液的流变性质和胶凝性质无锡轻工业大学学报,2003,22(2):93-97
    [7]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000:235-240
    [8]代欣欣,李汴生.食品增稠剂流变学研究综述.中国食品添加剂, 2007 ,4:138-142
    [9]李里特.食品物性学.北京:中国农业出版社, 2001: 16-26.
    [10]江体乾.化工流变学.上海:华东理工大学出版社, 2004: 212-220.
    [11]申瑞玲,姚惠源.裸燕麦麸β-葡聚糖的流变学特性及凝胶形成.无锡轻工业大学学报,2005,24(1):41-44
    [12]周宇英,唐伟强.食品流变特性研究的进展.粮油加工与食品机械,2001,8:7-9
    [13]李辉芹,巩继贤.可生物降解的海藻酸盐凝胶及应用,新纺织,2002(1):35- 37.
    [14]秦益民.甲壳胺和海藻酸凝胶在医用敷料中的应用.针织工业,2004(l0):60- 63.
    [15]刘昌龄译.海藻酸盐凝胶和绷带.印染译丛,2000(4):99-103.
    [16]秦益民.海藻酸凝胶在医敷用料中的应用.合成凝胶,2003,4:11-13.
    [17]展义臻,朱平,张建波,郭小青.海藻凝胶在医疗和防护纺织品中的应用.染整技术,2006,28(5):1-6.
    [18] David P Tong. Process for the Production of Alginate Fiber Material and Products Made Therefrom,American .Patent, 4562110
    [19]郑瑞津,吕志华,于广利等.褐藻胶M/ G比值测定方法的比较.中国海洋药物2003,6:35-37.
    [20]张春雪,王苹,袁晓燕.新型药物释放材料褐藻酸盐凝胶的制备研究.天津理工学院学报,2004,2(1):82.
    [21]马成浩,于丽娟,张义明,彭奇均.热和紫外光对海藻酸钠降解影响.食品科学,2004,25(7):90-92. [22 ] Gombotz W R , Wee S F. Protein release from alginate matrices. Advanced Drug Delivery Reviews , 1998 , 31 :272.-278
    [23] Nestle N, Kimmich R. Heavy metal uptake of alginate gels studied by NMRmicroscopy, Colloids and Surfaces.Physicochemical and Engineering Aspects, 1996, 115:141-147
    [24] Wang Z.Y., Zhang Q. Z., Konno M., et al. Sol-gel transition of alginate solution by the addition of various divalent cations:13C-NMR spectroscopicstud..Biopolymer, 1993, 33(4):703-711
    [25]何淑兰尹玉姬张敏姚康德.组织工程用海藻酸盐水凝胶的研究进展.化工进展,2004.,11(23):1174-1177
    [26] Marco Mancini, Mauro Moresi , Roberto Rancini. Mechanical properties of alginate gels: empirical characterization, Journal of Food Engineering 1999,39:369-378
    [27]过菲,许时婴.羊栖菜多糖中褐藻酸钠溶液的流变性质和胶凝性质无锡轻工业大学学报.2003,22(2):93-97
    [28] H.H. Winter, F. Chambon, Analysis of linear viscoelasticity of a crosslinking polymer at the gel point, Journal of Rheology .1986,(30)67–382.
    [29] O. Smidsrod, K.I. Draget, Chemistry and physical properties of alginates, Carbohydrates in Europe.1996(14) :6–13.
    [30] Gombotz W R , Wee S F. Protein release from alginate matrices. Advanced Drug Delivery Reviews.1998 , 31 :272.-278
    [31] F. Tanaka, W.H. Stockmayer, Thermoreversible gelation with junctions variable multiplicity, Macromolecules ,1994 (27):3943–3954.
    [32] M. Ishida, F. Tanaka, Theoretical study of the postgel regime in thermoreversible gelation, Macromolecules,1997(30):3900–3909.
    [33] A.N. Semenov, M. Rubinstein, Thermoreversible gelation in solutions of associative polymers. 1. Statics, Macromolecules. 1998 ,(31):1373–1385.
    [34] Stefan?′a G. Baldursdo′ttir, Anna-Lena Kj?niksen Rheological characterization and turbidity of riboflavin-photosensitized changes in alginate/GDL systems.European Journal of Pharmaceutics and Biopharmaceutics 2005,(59):501–510
    [1]杜继煜,白岚,白宝璋.果胶的化学组成与基本特性.农业与技术,2002.10(25):72-74
    [2]邝生鲁编.现代精细化工高新技术与产品的合成工艺.北京:科学技术文献出版社,1997:574-575
    [3]谢平.海藻酸及其盐的食用和药用价值.开封医专学报, 1997,16(4):28-31
    [4] Yapeng Fang , Saphwan Al-Assaf,Glyn O. Phillips. Binding behavior of calcium to polyuronates: Comparisonof pectin with alginate,Carbohydrate Polymers 72 (2008) 334–341
    [5] TOFT K. Interactions between pectins and alginates[J ] . ProgFood Nutr Sci ,1982 , 6 :89 - 96.
    [6] MORRIS V J , CHILVERS G R. Cold setting alginate-pectinmixed gels, Sci Food Agric , 1984 , 35 :1370 - 1376.
    [7]THOMD , DEA I CM, MORRIS E R , et al. Interchain associations of alginates and pectins. Prog Food Nutr Sci ,1982 ,6 :97 - 108.
    [8]周爱梅,郝淑贤,刘欣.海藻酸钠-高甲氧基果胶复合体系凝胶特性的研究.华南农业大学学报, .2003,4(24):75-78
    [9] OAKENFULL D , SCOTT A , CHAI E. The mechanism of for mation of mixed gels by high methoxyl pectins and alginate .Food Sci , 1984 ,49 :244 - 246.
    [10] H.H. Winter, F. Chambon, Analysis of linear viscoelasticity of a crosslinking polymer at the gel point, Journal of Rheology .1986,(30)67–382.
    [11]Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., & Thom, D.. Biological interactions between polysaccharides and divalentcations– egg-box model. FEBS Letters. 1973,32:195–198.
    [12]]Kohn, R. Ion binding on polyuronates– alginate and pectin. Pure and Applied Chemistry. 1975,42: 371–397.
    [13] Braccini, I., & Perez, S. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules, 2001,2:1089–1096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700