用户名: 密码: 验证码:
产乳糖酶酵母菌株的遗传改良和乳糖酶的发酵生产
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马克斯克鲁维酵母菌(Kluyveromyces marxianus)具有代谢底物广、耐热性好及比生长速率快等多种优良特性,并且能合成大量的乳糖酶、菊粉酶、β-葡萄糖苷酶和其它酶,因而引起国内外学者的广泛关注。与其它种类的微生物相比,该酵母菌是一类在食品工业中普遍采用的微生物,用作酶源非常合适。
     微生物中普遍存在葡萄糖阻遏现象,当有葡萄糖存在时,许多酶的合成和基因表达都会受到抑制。参与葡萄糖阻遏作用的主要为Snf1复合体和Mig1蛋白,当培养基中葡萄糖浓度较高时,Snf1复合体去磷酸化,Snf1复合体失去活性,这时Migl由于不能被磷酸化,进入细胞核中与受葡萄糖阻遏基因的启动子结合,使基因表达受到抑制,说明Mig1在菌株的酶合成和调控中起重要的作用。如果将编码Mig1的MIG1基因敲除,相关基因的阻遏效应解除。因而本研究通过基因敲除法阻断K. marxianus km菌株MIG1基因,然后研究该基因的敲除对该菌株酶的合成和相关基因的表达产生的影响。首先利用编码潮霉素的HPT基因的ORF替换km-15菌株的MIG1基因的ORF,在含有潮霉素的YPD平板上筛选获得了敲除菌株km-15,它能在含有2-脱氧-D-葡萄糖的乳糖培养基平板上生长,而野生型菌株km则都不能,表明敲除菌株葡萄糖阻遏作用解除。与野生型菌株km相比,敲除菌株km-15的乳糖酶、菊粉酶和β-葡萄糖苷酶的产量均有很大提高,同时编码这些酶基因的表达量也有极大提高。这表明,K. marxianus km中的Mig1确实能阻遏某些基因的表达,对一些酶的合成具有调控作用。
     对敲除菌株km-15产乳糖酶培养基进行了优化,确定了最佳培养基成分为(w/v):乳清粉10.0%、酵母粉1.5%、蛋白胨1.0%和MnCl21.0mM。在28°C、pH7.0条件下180rpm振荡培养48h,km-15菌株乳糖酶产量为111.7U/mL。经过2-L发酵罐发酵,该菌株乳糖酶产量提高到121.7U/mL。同时,确定了酶法水解乳糖的适宜条件,即乳糖浓度9.0%(w/v)、乳糖酶使用量为440U/g乳糖、40°C、pH7.0和水解时间2.5h,在这种条件下乳糖水解率为99.2%。在同样条件下,12.0%(w/v)的乳清粉经过该酶水解3.5h后,乳清粉中乳糖水解率为98.7%。调节乳糖酶使用量为260U/g乳糖添加到5.0mL牛奶中,水解3.0h后,牛奶中乳糖水解率为99.3%。将上述水解液进行薄层层析,结果显示水解产物只有单糖,即葡萄糖和半乳糖,其中的乳糖完全水解,表明该乳糖酶在食品工业中具有潜在的应用价值。
     就上面所说的那样,该酵母菌还产菊粉酶。对敲除菌株km-15产菊粉酶培养基进行了优化,确定了最佳培养基成分为(w/v):菊粉8.0%、酵母粉3.0%,在28°C、pH4.5的条件下180rpm振荡培养42h,km-15菌株菊粉酶的活力为69.0U/mL。分别以菊粉和菊芋汁作为碳源,经过2-L发酵罐发酵,发酵48h和60h后,菊粉酶活性分别为79.9U/mL和73.3U/mL。然后,确定了酶法水解菊粉的适宜条件,即菊粉浓度6.0%(w/v)、菊粉酶使用量为400U/g菊粉、50°C、pH4.5、水解时间3.0h,菊粉水解率为96.2%。将其水解产物进行薄层层析分析,水解终产物以单糖为主,仅有少许寡糖,表明km-15菌株所产菊粉酶为外切菊粉酶。
     本实验室自南极海洋沉积物中分离出1株耐冷酵母Guehomyces pullulans17-1菌株在15°C可同时产胞外和与细胞结合的乳糖酶。故采用NTG对G.pullulans17-1菌株进行诱变,结合X-gal显蓝斑和发酵培养测定的选育方法,获得乳糖酶活力达24.8U/mL且遗传稳定的突变菌株NTG-133,产量比野生型菌株(13.9U/mL)提高近一倍。对突变菌株NTG-133产乳糖酶培养基进行了优化,确定了最佳培养基成分为(w/v):乳清粉4.0%、蛋白胨1.0%、酵母粉0.5%,于15°C、pH4.5条件下,170rpm振荡培养132h,乳糖酶活达38.0U/mL。采用发酵罐发酵产酶,乳糖酶活提高到48.1U/mL。然后,确定了酶法水解乳糖的适宜条件,即乳糖浓度9.0%(w/v)、乳糖酶的使用量为550U/g乳糖、40°C、pH4.0、水解时间6.0h,乳糖水解率为91.8%。在最适水解条件下,12.0%(w/v)的乳清粉,水解7.5h后,乳清粉中乳糖水解率为88.3%。将上述水解液进行薄层层析分析,结果显示水解产物主要是单糖,即葡萄糖和半乳糖,但没有水解完全,仍有残留乳糖存在。
As Kluyveromyces marxianus has the capacity to assimilate variable substrates;an extremely rapid growth rate, short generation time, thermotolerance, and a highsecretory capacity, it has been widely used in biotechnology. A lot of advantagesmake K. marxianus more suitable to produce enzymes in food industry compared toother microorganisms.
     Many enzymes synthesis and gene expression in microrganisms are repressedwhen high concentration of gluose exists in the medium, and this is called glucoserepression which is a common regulation phenomenon found in microorganisms. Twomain proteins involved in glucose repression are Snf1and Mig1. When the glucoseconcentration in the medium is very low or there is no glucose in the growth medium,the Snf1complex is phosphorylated by another unknown kinase in yeast cells. In thiscase, the Snf1complex is active and can catalyze the phosphorylation of Mig1. Thephosphorylated Mig1fails in binding to the promoters of the genes repressed byglucose and is translocated to cytoplasm, leading to the active transcription of thegenes. Therefore, the Mig1protein is a central component for glucose repression inyeasts. The transcriptional repressor was found to play an important role in glucoserepression. In this study, the MIG1gene in Kluyveromyces marxianus KM wasdisrupted by integrating the HPT (hygromycin B phosphotransferase) gene into ORF(Open Reading Frame) of the MIG1gene. The disruptant (mig1) km-15obtainedcould grow in the media containing hygromycin and2-deoxy-D-glucose, respectively.β-galactosidase, inulinase and β-glucosidase production by the disruptant andexpression of their genes in the disruptant km-15were significantly enhanced. Thisconfirms that Mig1, the transcriptional repressor, indeed regulates expression of thegenes and production of the enzymes in K. marxianus km.
     Then, β-galactosidase production by the mig1mutant of K. marxianus km wasoptimized and the optimal medium was whey powder10.0%(w/v), polypeptone1.0% (w/v), yeast extract1.5%(w/v), MnCl21.0mM. Under the optimal conditions, theβ-galactosidase activity of111.7U/mL was reached within48h at flask level whilethe β-galactosidase activity of121.0U/ml was achieved within60h during2-Lfermentation.99.2%of lactose in9.0%(w/v) of lactose solution was hydrolyzedwithin2.5h when the added β-galactosidase activity was440U/g of lactose whereas98.7%of lactose in12.0%of whey powder suspension was degraded within3.5hwhen the added β-galactosidase activity was440U/g of the whey powder.99.3%oflactose in milk was hydrolyzed within3.0h when the added β-galactosidase activitywas260U/g of lactose. This suggests that the β-galactosidase produced could veryefficiently hydrolyze lactose and whey lactose. The hydrolysates obatimed wereanalyzed by TLC. The results showed that only monosaccharides such as glucose andgalactose existed in the hydrolysates, indicating the lactose was almost completelyhydrolyzed and the lactase had potential applications in food industry.
     At the same time, inulinase production by K. marxianus km-15was optimizedand the optimal medium was inulin8.0%(w/v), yeast extract3.0%(w/v). Under theoptimal conditions, the inulinase activity of69.0U/mL was reached within42h atflask level while the inulinase activity of79.9U/ml was achieved within60h during2-L fermentation. Over96.2%of inulin (6.0%, w/v) was hydrolyzed in the presenceof the inulinase activity of400U/g of inulin within3.0h. The hydrolysates were alsoanalyzed by TLC. The result showed that main monosaccharides with minoroligosaccharides existed in the final hydrolysates, demontrating the inulinaseproduced by K. marxianus km-15was an exo-inulinase.
     The psychrotolerant yeast Guehomyces pullulans17-1isolated from seasediment in Antarctica can produce a large amount of cell-bound and extracellularβ-galactosidase, and the yeast strain grew best and produced high level ofβ-galactosidase at15°C. In order to isolate β-galactosidase overproducers of G.pullulans17-1, its cells were mutated by using nitrosoguanidine (NTG). One mutant(NTG-133) with enhanced β-galactosidase production was obtained. Afteroptimization of the medium and cultivation conditions, the mutant could produce38.0U/ml of total β-galactosidase activity within132h at the flask level while the mutant could produce48.1U/ml of total β-galactosidase activity within144h in2-Lfermentor. Over91.8%of lactose solution (9.0%, w/v) was hydrolyzed in thepresence of the β-galactosidase activity of550U/g of lactose within6.0h while over88.3%of lactose in the whey powder was hydrolyzed in the presence ofβ-galactosidase activity of550U/g of lactose within7.5h. The hydrolysates wereanalyzed by TLC. The results showed that main monosaccharides such as glucose andgalactose existed in the hydrolysates.
引文
陈洪章,李佐虎.酵母菌的高密度发酵.工业微生物,1998,28:28-31
    陈其军,肖玉梅,王学臣等植物功能基因组研究中的基因敲除技术.植物生理学通讯,2004,40(1):121-126
    尺相孝亮.酶应用手册.上海:上海科学技术出版社,1989
    崔巍.利用高蛋白解脂亚罗维亚酵母转化菊粉生产单细胞蛋白的研究:[硕士学位论文].青岛:中国海洋大学,2011
    丁倩,蒋燕灵,邵靖宇.产乳糖酶酵母株培养产酶发酵条件的优化.浙江大学学报(医学版),2001,30(2):49-51
    杜海英,于宏伟,韩军,等.原生质体诱变选育乳糖酶高产菌株.微生物学通报,2006,33(6):48-51
    郭杰炎,毛敏伟,孙玉华等.酵母乳糖酶对牛乳乳糖水解作用的研究.食品与发酵工业,1991,(3):19-22
    郭胜伟.乳糖酶的特性及应用.食品开发,2002(5):18-20
    归莉琼,魏东芝.生物活性物质-低聚半乳糖.天然产物研究与开发,1998,11(3):41-46
    龚广予,李明.低乳糖牛奶的研制.上海奶牛,1999,3:4-46
    施特尔马赫B [德].酶的测定方法.北康:轻工业出版社,1992,195-201
    胡学智.功能性低聚糖及其制造概要.工业微生物,1997,1:30-39
    蒋爱民,李素简,王增勇.乳糖酶菌在乳制品生产中的应用.中国奶牛,1993,2:56-57
    李宁,李红飞,柯晓静,等.黑曲霉D2-26高温乳糖酶的酶学性质研究微生物学通报.2008,35(7):1045-1050
    李宁.乳糖酶高产菌株的选育及其产酶研究:[硕士学位论文].河北石家庄:河北农业大学,2005
    李红飞.黑曲霉D2-26乳糖酶分离纯化及酶学性质研究:[硕士学位论文].河北石家庄:河北农业大学,2006
    李素芬,陈占洲,刘建福,等.渗透性K.lactis细胞内乳糖酶水解牛乳中乳糖的研究.食品科学,2007,28(5):254-257
    李玉强.丝状真菌β-半乳糖苷酶的研究:[硕士学位论文].天津:天津轻工业学院,2000
    李玉强,王昌禄.新型液体乳低乳糖牛乳的开发及应用.山东食品科技,2000,4:4-6
    李兴峰,贾英民,檀建新,等.乳糖酶高产菌株筛选及酶活测定方法的研究.中国食品学报,2003,21:47-52
    刘建福.脆壁克鲁维酵母(Kluyveromyces fragilis) LFS-8611β-D-半乳糖苷酶催化合成低聚半乳糖:[硕士学位论文].无锡:江南大学,2004
    刘文玉,史应武,王杏芹,等.亚硝基胍诱变选育低温β-半乳糖苷酶高产菌.生物技术通报,2008,4:185-187
    刘月英,郑忠辉,郑志成,等.克鲁维酵母Y-85菊粉酶水解菊粉的研究及其中试.厦门大学学报(自然科学版),1996,35(6):971-976
    吕跃钢,马家津,顾天成,等.利用固定化菊粉酶和酵母细胞以菊芋为原料发酵生产乙醇的研究.食品与发酵工业,2003,29(5):66-68
    欧阳平凯.生物化工产品.北京:化学工业出版社,1999
    彭英云,江波,金征宇.曲霉SK004产菊粉酶发酵条件的确定及酶学性质研究.食品与发酵工业,2005,31(1)61-65
    任玮.产菊粉酶微生物水解菊芋粉的应用研究:[硕士学位论文].无锡:江南大学,2008
    瑞典利乐公司.乳品加工手册.北京:中国轻工业出版社,2002,322
    沈为群,郭杰炎.乳酸克鲁维酵母β-半乳糖苷酶的分离纯化及性质研究.生物工程学报,1993,9:344-348
    宋春丽.耐冷酵母Guehomyces pullulans17-1菌株乳糖酶的研究:[硕士学位论文].青岛:中国海洋大学,2010
    宋礼.复合诱变亮白曲霉筛选高产乳糖酶菌株:[硕士学位论文].兰州:兰州大学,2010
    谭树华,HadeelA,MaklekA,等.脆壁克鲁维酵母乳糖酶提取物性质研究.药物生物技术,2000,7:153-156
    谭树华,高捷,海迪勒,等.酵母菌药用乳糖酶制备新方法.中国药科大学学报,2004,35(1):86-89
    汤凤霞,葛志军,乔长晟.低乳糖乳制品的生产研究及应用.宁夏农学院学报,2000,21:79-82
    王东方.产菊粉酶丝状真菌的筛选及菊粉酶的研究:[硕士学位论文].山东大学,2005
    王东升.扣囊复膜酵母A11菌株酸性蛋白酶基因和MIG1基因敲除对酶的生产和海藻糖积累的影响:[博士学位论文].青岛:中国海洋大学,2011
    王光远.季也蒙毕赤酵母产菊粉酶的研究:[硕士学位论文].山东大学,2005
    王志峰.乳酸克鲁维酵母乳糖酶基因在大肠杆菌中表达及酶学性质研究:[硕士学位论文].武汉:华中农业大学,2009
    王筱兰,魏东芝,史凌洋,等.半乳糖寡糖的生物活性.华东理工大学学报,1999,25:374-376
    魏凌云,王建华,郑晓冬,等.菊粉研究的回顾与展望.食品与发酵工业,2005,31(7):81-85
    谢元.高果糖浆在饮料中的应用.食品工业,2002,23(2):33-34
    徐宁,孙波,迟玉杰.以乳清为原料酶法水解乳糖条件的研究.食品科学,2007,(28)12:286-290
    杨海军.果葡糖浆的特性及应用.食品科学,2002,23(2):154-156
    杨慧敏,孙秋,张炳火,等.微生物菊粉酶发酵生产研究.贵州农业科学,2004,32(3):83-84
    袁文杰.克鲁维酵母同步糖化发酵菊芋生产乙醇的研究:[硕士学位论文].大连:大连理工大学,2009
    张红岩,申乃坤,周兴.基因敲除技术及其在微生物育种中的应用酿.酿酒科技,2010,4:21-25
    张萃荟.适合乳果糖制备的β-半乳糖苷酶高产株的筛选及产酶条件的优化:[硕士学位论文].无锡,江南大学,2008
    张敏.β-半乳糖苷酶在毕赤酵母中的高效表达及其在低乳糖奶生产中的应用:[硕士学位论文].长春:长春理工大学,2006
    张瞳.海洋季也蒙毕赤酵母重组菊粉酶及其在产乙醇中的应用:[博士学位论文].青岛:中国海洋大学,2010
    张同亮,张扬,缪翔,等.亚硝基胍诱变选育酸性蛋白酶产生菌.四川纺织科技,2004,4:4-7
    张伟.利用生物技术开发一种新乳糖酶及其高效生产途径:[博士学位论文].中国农业科学院生物技术研究所,2002
    Adams A, Gottschling DE, Kaiser CA, et al. Methods in Yeast Genetics: A Cold Spring HarborLaboratory Course Manual.1998
    Adam AC, Rubio-Texeira M, Polaina J. Lactose: the milk sugar from a biotechnologicalperspective. Critical reviews in food science and nutrition,2004,44:553-557
    Ahuatzi D, Herrero P, Moreno F. Hxk2regulates the phosphorylation state of Migl and thereforeits nucleocytoplasmic distribution. Journal of Biological Chemistry,2007,282:4485-4493
    Ashe MP, De Long SK, Sachs AB. Glucose depletion rapidly inhibits translation initiation in yeast.Mol. Biol. Cell,2000,11:833-848
    Ausubel FM, Brent R, Kingston RE, et al. Current protocols in molecular biology,1989, vol.2.New York: John Wiley&Sons, Inc.
    Bajpai PK, Bajpai p. Cultivation and utilization of Jerusalem artichoke for ethanol, single cellprotein, and high-fructose syrup produetion. Enzyme and Microbial Technology,1991,13:359-362
    Banas JA, VickermanM M.Glucan-binding proteins of the oral Streptococci. Critical Reviews inOral Biology&Medicine,2003,14(2):89-99
    Becerra M, Gonzalez Siso MI. Yeast β-galactosidase in solid-state fermentations. Enzyme andMicrobial Technology,1996,19:39-44
    Becerra M, Cerdán E, Siso MIG. Heterologous Kluyveromyces lactis beta-galactosidaseproduction and release by Saccharomyces cerevisiae osmotic-remedial thermosensitiveautolytic mutants. Biochimica Biophysica Acta,1997,1335:235-241
    Becerra M, Cerdan E, Siso MG. Micro-scale purification of β-galactosidase from Kluyveromyceslactis reveals that dimeric and tetrameric forms are active. Biotechnology Techniques,1998,12:253-256
    Becerra M, Rodríguez-Belmonte E, Esperanza Cerdán M, et al. Engineered autolytic yeast strainssecreting Kluyveromyces lactis beta-galactosidase for production of heterologous proteins inlactose media. Journal of Biotechnology,2004,109:131-137
    Becerra M, Baroli B, Fadda AM, et al. Lactose bioconversion by calcium-alginate immobilizationof Kluyveromyces lactis cells. Enzyme and Microbial Technology,2001,29:506-512
    Belem MAF, Lee BH. Fed-batch fermentation to produce oligonucleotides from Kluyveromycesmarxianus grown on whey. Process Biochemistry,1999,34:501-509
    Berruga MI, Jaspe A, SanJose C. Selection of yeast strains for lactose hydrolysis in dairy effluents.International Biodeterioration&Biodegradation,1997,40:119-123
    Brady D, Marchant R, McHale L, et al. Isolation and partial characterization of β-galactosidaseactivity produced by a thermotolerant strain of Kluyveromyces marxianus during growth onlactose-containing media. Enzyme and Microbial Technology,1995,17:69-99
    Braga ARC, Gomes PA, Kalil SJ. Formulation of culture medium with agroindustrial waste forβ-galactosidase production from Kluyveromyces marxianus ATCC16045. Food andBioprocess Technology,2011, DOI10.1007/s11947-011-0511-0
    Burmeister G, Rainsford KD. Discriminating effects of a nucleotide-rich yeast extract,probioticum, as an immunomodulator contrasted with actions in chronicimmuno-inflammatory disease (adjuvant-induced arthritis) in rodents. Inflammopharmacol,1991,1:161-183
    Capecchi MR. Altering the genome by homologous recombination. Science,1989,244(4910):1288-1292
    Carla Oliveira, Pedro MR. Guimar es, Lucília Domingues. Recombinant microbial systems forimproved β-galactosidase production and biotechnological applications. BiotechnologyAdvances,2011,29(6):600-609
    Cassart JP, Georis I, stling J, et al. The MIG1repressor from Kluyveromyces lactis: cloning,sequencing and functional analysis in Saccharomyces cerevisiae. FEBS Letters,1995,371:191-194
    Cassart JP, stling J, H Ronne, et al. Comparative analysis in three fungi reveals structurally andfunctionally conserved regions in the Mig1repressor. Molecular Genetics and Genomics,1997,255:9-18
    Cazetta ML, Martins PMM, Montib R, et al.(Polymnia sanchifolia) extract as a substrate toproduce inulinase by Kluyveromyces marxianus var. bulgaricus. Journal of Food Engineering,2005,66(3):301-305
    Chi Z, Gao J. Recent advances in the mechanisms of ethanol tolerance in yeasts. Microbiology,1999,26(5):373-376
    Cortés G, Trujillo-Roldán MA, Ram rez OT,et al. Production of β-galactosidase byKluyveromyces marxianus under oscillating dissolved oxygen tension. Process Biochemistry,2005,40:773-778
    Dagbagli S, Goksungur Y. Optimization of β-galactosidase production using Kluyveromyces lactisNRRL Y-8279by response surface methodology. Electronic Journal of Biotechnology,2008,11:1-12
    Daniela TB, Stoilova I, Gargova S, et al. An efficient two step purification and molecularcharacterization of β-galactosidases from Aspergillus oryzaez. Journal of MolecularRecognition,2006,19:299-304
    DeVit MJ, Waddle JA, Johnston M. Regulated nuclear translocation of the Mig1glucose repressor.Molecular Biology of the Cell,1997,8:1603-1618
    Domingues L, Onnelam L, Teixeira JA, et al. Construction of a flocculent brewer’s yeast strainsecneting Aspergillus niger β-galactosedase. Applied Microbiology and Biotechnology,2000,54:97-103
    Dong JS, Dickson RC. Glucose represses the lactose–galactose regulon in Kluyveromyces lactisthrough a SNF1and MIG1-dependent pathway that modulates galactokinase (GAL1) geneexpression. Nucleic Acids Research,1997,25:3657-3664
    Dowzer C E A, Kelly JM. Analysis of the creA gene, a regulator of carbon catabolite repression inAspergillus nidulans. Molecular and Cellular Biology,1991,11:5701-5709
    Elbashir SM, Harborth J, Lendeckel WSM, et al. Duplexes of21-nucleotide RNAs mediate RNAinterference in cultured mammalian cells. Nature,2001,411:494-498
    Farkade VD, Harrison STL, Pandit AB. Improved cavitational cell disruption following pHpretreatment for the extraction of β-galactosidase from Kluveromyces lactis. BiochemicalEngineering,2006,31:25-30
    Federoff H J, T R Eccleshall, J Marmur. Carbon catabolite repression of maltase synthesis inSaccharomyces carlsbergensis. Journal of Bacteriology,1983,156:301-307
    Feitosa Teles FF, Cheryl K. Young, J.W. Stull. A method for rapid determination of lactose.Journal of Dairy Sicence,1978,61(4):506-508
    Ferrari MD, Loperena L, Varela H. Ethanol production from concentrated whey permeate usingfed-batch culture of K. fragilis. Biotechnology Letters,1994,16:205-210
    Fiedurek J, Gromada A, Jamro J. Effect of medium components and metabolic inhibitors onβ-galactosidase production and secretion by Penicillium notatum1. Journal of BasicMicrobiology,1996,36:27-32
    Furlan SA, Schneider ALS, Merkle R, et al. Formulation of a lactose-free, low-cost culturemedium for the production of β-D-galactosidase by Kluyveromyces marxianus. Biotechnology Letters,2000,22:589-593
    G nzle MG, Haase G, Jelen P. Lactose: crystallization, hydrolysis and value-added Derivatives.International Dairy Journal,2008,18:685-694
    Gancedo JM. Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews,1998,62:334-361
    Gancedo C, Flores CL. The importance of a functional trehalose biosynthetic pathway for the lifeof yeasts and fungi. FEMS Yeast Research,2004,4:351-359.
    Gey MH, Unger KK. Calculation of the molecular masses of two newly synthesized thermostableenzymes isolated from thermophilic microorganisms. Journal of Chromatography B:Biomedical Sciences and Applications,1995,666(1):188-193
    Gill PK, Manhas RK, Singh P. Purification and properties of a heatstable exoinulinase isoformfrom Aspergillus fumigatus. Bioresource Technology,2006,97:894-902
    Gong F, Sheng J, Chi ZM, et al. Inulinase production by a marine yeast Pichia guilliermondii andinulin hydrolysis by the crude inulinase. Journal of Industrial Microbiology andBiotechnology,2007,34:179-185
    Goodman RE, Pederson DM. Beta-galactosidase from Bacillus stearothermophilus. CanadianJournal of Microbiology,1976,22:817-825
    Gosling A, Stevens GW, Barber AR, et al. Recent advances refining galactooligosaccharideproduction from lactose. Food Chemistry,2010,121:307-18
    Guimar es PM, Teixeira JA, Domingues L. Fermentation of lactose to bio-ethanol by yeasts aspart of integrated solutions for the valorisation of cheese whey. Biotechnology Advances,2010,28:375-384
    Guo JF, Liu R, Tan X. Purification and characterization of β-galactosidase from a strain ofPenicillum frequentans. Journal of Fudan University (Natural Science),1990,29:79-84
    Hans R. Negative control of gene expression by the yeast glucose repression pathway. PlantBiology, Swedish University of Agricultural Sciences,2000
    Hendry G. The ecological significance of fructan in a contemporary flora. New Phytologist,1987,106,201-216
    Horak J, Regelmann J, Wolf DH. Two distinct proteolytic systems responsible for glucose-induceddegradation of fructose-l,6-bisphosphatase and the Ga12p transporter in the yeastSaccharomyces cerevisiae share the same protein components of the glucose signalingpathway. The Journal of Biological Chemistry,2002,277:8248-8254
    Hoyoux A, Jennes I, Dubois P, et al. Cold-Adapted β-Galactosidase from the AntarcticPsychrophile Pseudoalteromonas haloplanktis. Applied and Environmental Microbiology,2001,67:1529-1535
    Hu Z, Nehlin JO, Ronne H, et al. MIG1-dependent and MIG1-independent glucose regulation ofMAL gene expression in Saccharomyces cerevisiae. Current Genetics,1995,28:258-266
    Hsu CA, Yu RC, Chou CC. Production of β-galactosidase by Bifidobacteria as influenced byvarious culture conditions. International Journal of Food Microbiology,2005,104:197-206
    Hua G, Jamey DM, Paul CO, et al. Deletion of a DNA polymerase β gene segment in T cells usingcell type-specific gene targeting. Science,1993,265:103-106
    Hung MN, Lee BH. Purification and characterization of a recombinant β-galactosidase withtransgalactosylation activity from Bifidobacterium infantis HL96. Applied Microbiology andBiotechnology,2002,58:439-445
    Huber RE, Gupta MN, Khare SK. The active site and mechanism of the β-galactosidase fromEscherichia coli. The International Journal of Biochemistry&Cell Biology,1994,26:309-318
    Husain Q. Beta galactosidases and their potential applications: a review. Critical Reviews inBiotechnology,2010,30:41-62
    Itoh T, Suzuki M, Adachi S. Production and characterization of β-galactosidase fromlactose-fermenting yeasts. Agricultural Biology and Chemistry,1982,46(4):899-904
    Jiang R, M. Carlson. Glucose regulates protein interactions within the yeast SNF1protein kinasecomplex. Genes&Development.,1996,10:3105-3115
    Johnston M. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends inGenetics,1999,15:29-33
    JeffWu CF, Hamada M. Experiments Planning, Analysis and Parameter Design Optimization.John Wiley and Sons,2002,97(458):654
    Kim JW, Rajagopal SN. Isolation and characterization of beta-galactosidase from Lactobacilluscrispatus. Folia Microbiologica,2000,45:29-34
    Kovacs E. Nemeth-Szerdahelyi.beta-Galactosidase Activity and Cell Wall Breakdown in Apricots.Journal of Food Science,2002,67(6):2004-2008
    Kuhn KM, DeRisi JL, Brown PO, et al. Global and specific translational regulation in the genomicresponse of Saccharomyces cerevisiae to a rapid transfer from a fermentable to anonfermentable carbon source. Molecular and Cellular Biology,2001,21:916-927
    Lane MM, Morrissey JP. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow.Fungal Biology Reviews,2010,24(1):17-26
    Lee YC, Victoria Wacek. Galactosidase from Aspergillus niger. Archives of Biochemistry andBiophysics,1970,138:264-271
    Li N, Jia Y, Zhu Y. Induced breeding of the strains of high-yielding lactase from AspergillusNiger. Journal of Chinese Institute of Food Science and Technology,2006,6:54-58
    Li N, Li HF, Ke XJ, et al. Studies on the characterization of a thermostable lactase fromAspergillus niger D2-26. Microbiology,2008,35(7):1045-1050
    Lifran EV, Hourigan JA, Sleigh RW, et al. New wheys for lactose. Food Aust,2000,52:120-125
    Lite L, Zhang M, Jiang ZQ, et al. Characterisation of a thermostable family42β-galactosidasefrom Thermotoga maritime. Food Chemistry,2009,112:844-850
    Liu GL, Wang DS, Wang LF, et al. Mig1is involved in mycelial formation, synthesis andexpression of extracellular enzymes in Saccharomycopsis fibuligera A11. Fungal Geneticsand Biology,2011,48(9):904-913
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitativePCR and the2-ΔΔCt method. Methamphetamine,2001,25:402-408
    Loveland CJ, Sheridan PP, Gutshall KR, et al. Biochemical and phylogenetic analyses ofpsychrophilic isolates belonging to the Arthrobacter subgroup and description ofArthrobacter psychrolactophilus, sp. nov. Archives of Microbiology,1999,171:355-363
    Lu LL, Xiao M, Xu XD, et al. A novel β-galactosidase capable of glycosyl transfer fromEnterobacter agglomerans B1. Biochemical and Biophysical Research Communications,2007,356:78-84
    Lukondeh T, Ashbolt NJ, Rogers PL. Fed-batch fermentation for production of Kluyveromycesmarxianus FII510700cultivated on a lactose-based medium. Journal of IndustrialMicrobiology and Biotechnology,2005,32:284-288
    Lundin M, Nehlin JO, Ronne H. Importance of a flanking AT-rich region in target site recognitionby the GC box-binding zinc finger protein MIG1. Molecular and Cellular Biology,1994,14:1979-1985
    Lutfiyya LL, Johnston M. Two zinc-finger-containing repressors are responsible for glucoserepression of SUC2expression. Molecular and Cellular Biology,1996,16:4790-4797
    Mahoney RR. Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. FoodChemistry,1998,63(2):147-154
    Majid HAMA, Tan SH, Gao XD, et al. Fermentation studies on yeast producing high level oflactase. Journal of China Pharmaceutical University,1999,30:392-395
    Martins DBG, de Souza CG, Ardaillon Simoes JDA, et al. The β-galactosidase activity inKluyveromyces marxianus CBS6556decreases by high concentrations of galactose. CurrentMicrobiology,2002,44:379-382
    Montallto M, Nucera G, Santoro L, et al. Effect of exogenous β-galactosidase in patients withlactose malabsorption and intolerance: acrosser double-blindplacebo-controlled study.European Journal of Clinical Nutrition,2005,59:489-493
    Nagy Z, Keresztessy Z, Szentirmai A, et al. Carbon source regulation of β-galactosidasebiosynthesis in Penicillium chrysogenum. Journal of Basic Microbiology,2001,41:351-362
    Nair V, Usseri MA. New hypoxanthine nucleosides with RNA antiviral activity. AntiviralResearch,1992,19:173-178
    Nakagawa T, Ikehata R, Uchino M. Cold-active acid β-galactosidase activity of isolatedpsychrophilic-basidiomycetous yeast Guehomyces pullulans. Research in Microbiology,2006,161:75-79
    Nalarmura J. Continuous production of fructose syrups from inulin by immobilized inulinase fromAspergillus niger mutant817. Journal of Fermentation and Bioengineering,1995,80(1):164-169
    Nakamura T, Ogata Y, Hamada S, et al. Ethanol production from Jerusalem artichoke tubers byAspergillus niger and Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering,1996,81:564-566
    Nehlin JO, Carlberg M, Ronne H. Control of yeast GAL genes by MIG1repressor: atranscriptional cascade in the glucose response. The EMBO Journal,1991,10:3373-3377
    Nguyen TH, Splechtna B, Steinbock M, Kneifel W, Lettner HP, Kulbe KD, Haltrich D.Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri.Journal of Agricultural and Food Chemistry,2006,54:4989-4998
    O’Connell S, Walsh G. A novel acid-stable, acid-active β-galactosidase potentially suited to thealleviation of lactose intolerance. Applied Microbiology and Biotechnology,2010,86:517-524
    Ohashi R., Mochizuki E., Kamoshita Y., et al. A mini-scale mass production and separationsystemfor secretory heterologous proteins by perfusion culture of recombinant Pichia pastorisusing a shaken ceramic membrane flask. Journal of Fermentation and Engineering,1998,86:44-48
    Onishi N, Tanaka T. Purification and properties of a novel thermostable galacto-oligosaccharide-producing β-galactosidase from Sterigmatomyces elviae CBS8119. Applied andEnvironmental Microbiology,1995,61:4026-4030stling J, Carlberg M, Ronne H. Funtional domains in the Migl repressor. Molecular Biology ofthe Cell,1996,16:753-761
    Ou J, Li W, Liang J, et al. Study on the fermentation conditions for lactase production fromAspergillus Oryzae. Dairy Science and Technology,2008,3:110-114
    Pandey A, Soccol CR, Selvakumar P, et al. Recent developments in microbial inulinases, itsproduction, properties and industrial applications. Applied Biochemistry and Biotechnology,1999,81:35-52
    Park AR, Oh DK. Galacto-oligosaccharide production using microbial beta-galactosidase: currentstate and perspectives. Applied Microbiology and Biotechnology,2010,85:1279-1286
    Parmjit SP, Reeba P, Ram SS, et al. Review Microbial production, immobilization andapplications of β-D-galactosidase. Journal of Chemical Technology and Biotechnology,2006,81:530-543
    Pilipenko OS, Atyaksheva LF, Chukhrai ES. Inhibition of β-galactosidases with mono-anddisaccharides. Russian Journal of Physical Chemistry,2010,84:118-122
    Rajakala P, Selvi PK. The effect of pH, temperature and alkali metal ions on the hydrolsis ofwhey lactose catalysed by β-galactosidase from Kluyveromyces marxianus. Internationaldairy journal,2006,1:167-172
    Rajoka MI, Latif F, Khan S, et al. Kinetics of improved productivity of β-galactosidase by acycloheximide-resistant mutant of Kluyveromyces marxianus. Biotechnology Letters,2004,26:741-746
    Rech R, Cassini CF, Secchi A, et al. Utilization of protein-hydrolyzed cheese whey for productionof β-galactosidase by Kluyveromyces marxianus. Journal of Industrial Microbiology andBiotechnology,1999,23:91-96
    Rech R, Ayub MAZ. Simplified feeding strategies for fed-batch cultivation of Kluyveromycesmarxianus in cheese whey. Process Biochemistry,2007,42:873-877
    Rejikumar S, Devi S. Hydrolysis of lactose and milk whey using a fixed-bed reactor containingβ-galactosidase covalently bound onto chitosanandcross-linkedpoly (vinylalcohol).International Journal of Food Science and Technology,2001,36:91-98
    Rocha JR, Catana R, Ferreira BS, et al. Design and characterization of an enzyme system forinulin hydrolysis. Food Chemistry,2006,95:77-82
    Rolland F, Winderickx J, et al. Glucose-sensing and-signalling mechanisms in yeast. FEMS YeastResearch,2002,2:183-201
    Rubio-Texeria M, Arevalo-Rodriguez M, Lequeriea J L. lactose utilization by Saccharomycescerevisiae staitns expressing Kluyveromyces lactis LAC genes. Biotechnology,2001,84(2):97-106
    Schultz N, Chang LF, Hauck A, et al. Microbial production of single-cell protein fromdeproteinized whey concentrates. Applied Microbiology and Biotechnology,2006;69:515-520
    Shaikh SA, Khire JM, Khan MI. Characterization of a thermostable extracellular β-galactosidasefrom a thermophilic fungus Rhizomucor sp. Biochimica et Biophysica Acta,1999,1472:314-322
    Sharp R, Fishbain S, Macfarlane GT. Effect of short-chain carbohydrates on human intestinalBifidobacteria and Escherichia coli in vitro. Journal of Medical Microbiology,2001,50:152-160
    Sheng J, Chi ZM, Gong F, et al. Purification and characterization of extracellular inulinase from amarine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase.Applied Biochemistry and Biotechnology,2008,144:111-121
    Singh D, Nigam P, Banat IM, et al. Review: Ethanol production at elevated temperatures andalcohol concentrations: Part II-Use of Kluyveromyces marxianus IMB3. World Journal ofMicrobiology and Biotechnology,1998,14:823-834
    Singh R.S., Dhaliwal R., Puri M. Production of inulinase from Kluyveromyces marxianus YS-1using root extract of Asparagus racemosus. Process Biochemistry,2006,41:1703-1707
    Sisler EC, Serek M. Inhibitors of ethylene responses in plants at the receptor level: Recentdevelopments. Plant Physiology,1997,100:577-582
    Slightom JL, Metzger BT, Luu HT, et al. Cloning and molecular characterization of the geneencoding the Aureobasidin A biosynthesis complex in Aureobasidium pullulans BP-1938.Gene,2009,431:67-79
    Smithies O, Gregg RG, Boggs SS, et al. Insertion of DNA sequences into the human chrosomoalbetaglobin locus by homologous recombination. Nature,1985,317(6034):230-234
    Sosa M, Saha A, Giner-Sorolla A, et al. Immunopharmacologic properties of inosine5%-methylmonophosphate (MIMP). Annals of the New York Academy of Sciences,1993,685:458-63
    Song CL, Chi ZM, Li J, et al. β-Galactosidase production by the psychrotolerant yeastGuehomyces pullulans17-1isolated from sea sediment in Antarctica and lactose hydrolysis.Bioprocess and Biosystems Engineering,2010,33(9):1025-1031
    Song CL, Liu GL, Xu JL, et al. Purification and characterization of extracellular β-galactosidasefrom the psychrotolerant yeast Guehomyces pullulans17-1isolated from sea sediment inAntarctica. Process Biochemistry,2010;45,954-960
    Spiro RG. Analysis of sugars found in glycoproteins. Methods in Enzymology,1966,8:3-26
    Tan SH, Gao J, Hadeel AMAM, et al. A novel method for preparation of lactase fromKluyeromyces fragilis. Journal of China Pharmaceutical University,2004,35:86-89
    Tanaka N, Ohuchi N, Mukai Y, et al. Isolation and characterization of an invertase and itsrepressor gene from Schizosaccharomyces pombe. Biochemical and Biophysical ResearchCommunications,1998,245:246-253
    Tarum B, Elmer HM. β-Galactosidase of Pediococcus species: induction, purification and partialcharacterization. Journal of Applied Microbiology,1990,33:317-323
    Todorova-Balvay D, Stoilova I, Gargova S, et al. An efficient two step purification and molecularcharacterization of β-galactosidases from Aspergillus oryzae. Journal of MolecularRecognition,2006,19:299-304
    Treitel MA, Carlson M. Repression by SSN6-TUP1is directed by MIG1, a repressor/activatorprotein. Proceedings of the National Academy of Sciences,1995,92:3132-3136
    Tzorztis G, Goulas AK, Gee JM, et al. A Novel Galacto-oligosaccharide Mixture Increases theBifidobacterial Population Number in a Continuous in Vitro Fermentation System and in theProximal Colonic Contents of Pigs In Vivo. American Society Nutritional,2005,135:1726-1731
    Van Casteren WHM, Eimermann M, van den Broek LAM, et al. Purification and characterisationof a β-galactosidase from Aspergillus aculeatus with activity towards (modified)exopolysaccharides from Lactococcus lactis subsp. cremoris B39and B891CarbohydrateResearch,2000;329:75-85
    Vandamme EJ, Derycke DG. Microbial inulinases: fermentation process, properties andapplications. Advances in Applied Microbiology,1983,29:139-176
    Vincento, TownleyR, KuehinS, et al. Subcellular localization of the Snf1Kinase is ruglated byspecific β-subunits and a novel glucose singaling mechanism. Genes&Development,2001,5:1104-1114
    Wanarska M, Kur J, Pladzyk R, et al. Thermostable Pyrococcus woesei β-D-galactosidase: highlevel expression, purification and biochemical properties. Acta Biochimica Polonica,2005,52:781-787
    Westholm JO, Nordberg N, Murén E, et al. Combinatorial control of gene expression by the threeyeast repressors Mig1, Mig2and Mig3. BMC Genomics,2008,9:601-607
    Wijnands MVW, Schoterman HC, Bruijntjes JP, et al. Effect of dietary galacto-oligosaccharideson azoxymethane-induced aberrant crypt foci and colorectal cancer in Fischer344rats.Journal of Carcinogenesis,2001,22:127-132
    Yuji Tanaka, Akihiro Kagamishi, Akira Kiuchi, et al. Purification and properties ofbeta-galactosidase from Aspergillus oryzae, The Journal of Biological Chemistry,1975,77:241-247
    Zadow JG. Lactose-properties and uses. Journal of Dairy Science,1984,67:2654-2679
    Zafar S, Owais M. Ethanol production from crude whey by Kluyveromyces marxianus.Biochemical Engineering Journal,2006,27:295-298
    Zaragoza O, Rodriguez C, Gancedo C. Isolation of the MIG1gene from Candida albicans andeffects of its disruption on catabolite repression. Journal of Bacteriology,2000,182:320-326
    Zhang L, Zhao C, Wang J, et al. Inhibition of glucose on an exoinulinase from Kluyveromycesmarxianus expressed in Pichia pastoris. Process Biochemistry,2005,40:1541-1545
    Zhang ML, Liu WQ, Xiong H, et al. Studies on the optimization for lactase production byKluyveromyces lactis. Journal of Food Science,2006,27:428-431
    Zhao CH, Cui W, Liu XY, et al. Expression of inulinase gene in the oleaginous yeast Yarrowialipolytica and single cell oil production from inulin-containing materials. MetabolicEngineering,2010,12:510-517
    Zitomer RS, Montgomery DL, Nichols DL, et al. Transcriptional regulation of the yeastcytochrome gene. Proceedings of the National Academy of Sciences,1979,76:3627-3631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700